首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complex interplay between species along environmental gradients ultimately shapes their distributions and additional community interactions. Ant-mediated seed dispersal fails in the wettest habitat of deciduous forest in eastern North America, and we examine whether this pattern corresponds with colony distributions for seed-dispersing ants and associated heterogeneity in abiotic and biotic variables. Specifically, we used spatial variation in soil moisture, temperature and diffuse light along natural habitat gradients and experimentally manipulated soil moisture gradients to examine ant habitat selection. We also examined niche segregation between effective (Aphaenogaster spp.) and ineffective (Lasius alienus Foerster) seed-dispersing ants across these environmental gradients. Whereas most research links ant foraging and nesting with temperature gradients, we find niche segregation between Aphaenogaster spp. and L. alienus by soil moisture along naturally occurring gradients and in experimentally irrigated upland habitat. The failure of Aphaenogaster spp. to occupy the wettest habitats, where L. alienus is present, is consistent with observed seed dispersal failure in these habitats. These results indicate that environmental heterogeneity drives niche segregation between effective (Aphaenogaster spp.) and ineffective (L. alienus) seed dispersers so each occupies distinct habitat. Most forest understory plants rely on ants for seed dispersal. Our research implies that climate-mediated interactions between effective and ineffective seed dispersing ant species may structure the microhabitat distributions for woodland herbs.  相似文献   

2.
Range limits of species are determined by combined effects of physical, historical, ecological, and evolutionary forces. We consider a subset of these factors by using spatial models of competition, hybridization, and local adaptation to examine the effects of partial dispersal barriers on the locations of borders between similar species. Prompted by results from population genetic models and biogeographic observations, we investigate the conditions under which species' borders are attracted to regions of reduced dispersal. For borders maintained by competition or hybridization, we find that dispersal barriers can attract borders whose positions would otherwise be either neutrally stable or moving across space. Borders affected strongly by local adaptation and gene flow, however, are repelled from dispersal barriers. These models illustrate how particular biotic and abiotic factors may combine to limit species' ranges, and they help to elucidate mechanisms by which range limits of many species may coincide.  相似文献   

3.
We consider a two-species competition model in which the species have the same population dynamics but different dispersal strategies. Both species disperse by a combination of random diffusion and advection along environmental gradients, with the same random dispersal rates but different advection coefficients. Regarding these advection coefficients as movement strategies of the species, we investigate their course of evolution. By applying invasion analysis we find that if the spatial environmental variation is less than a critical value, there is a unique evolutionarily singular strategy, which is also evolutionarily stable. If the spatial environmental variation exceeds the critical value, there can be three or more evolutionarily singular strategies, one of which is not evolutionarily stable. Our results suggest that the evolution of conditional dispersal of organisms depends upon the spatial heterogeneity of the environment in a subtle way.  相似文献   

4.
Species diversity gradients seen today are, to a large degree, a product of history. Spatially nonrandom originations, extinctions, and changes in geographic distributions can create gradients in species and higher-taxon richness, but the relative roles of each of these processes remain poorly documented. Existing explanations of diversity gradients have tended to focus on either macroevolutionary or biogeographic processes; integrative models that include both are largely lacking. We used simple models that incorporate origination and extinction rates along with dispersal of taxa between regions to show that dispersal not only affects regional richness patterns but also has a strong influence on the average age of taxa present in a region. Failure to take into account the effects of dispersal can, in principle, lead to biased estimates of diversification rates and potentially wrong conclusions regarding processes driving latitudinal and other gradients in diversity. Thus, it is critical to include the effects of dispersal when formulating and testing hypotheses about the causes of large-scale gradients in diversity. Finally, the model results, in conjunction with the results of existing empirical studies, suggest that the nature of macroevolutionary and biogeographic processes may differ between terrestrial and marine diversity gradients.  相似文献   

5.
Aim To evaluate how factors acting at different spatial scales influence range limits in bird species of the Colombian Andes. Location Andes Mountains of Colombia. Methods We used Maxent , a climate envelope model (CEM), and environmental and geographic information to study range‐filling (i.e. the extent to which a species occurs in all the areas in which it is predicted to occur) in 70 range‐restricted bird species of the Colombian Andes. Environmental data were taken from the WorldClim database, and species occurrence data were taken from museum data collated by the BioMap project, an observational database, and the literature. We evaluated how climate and geographic barriers may shape range limits at two scales. Results At a broad extent (i.e. across the three main cordilleras within the Colombian Andes), we find that CEMs predict there to be suitable environmental conditions for particular species in regions where the species is absent, possibly as a result of dispersal limitation or biotic interactions. In contrast, at a finer scale (within a given cordillera), species generally occur across the entire area predicted to be suitable by a given CEM. Geographic discontinuities within cordilleras do not generally correspond to range limits; instead, range limits correspond to changes in environmental conditions. Main conclusions Our results suggest that different mechanisms influence the presence of species at different scales. Dispersal limitation, potentially combined with species interactions, may influence range limits at a broad extent (the entire Colombian Andes), while strong environmental gradients correspond to range limits at a finer scale (within a cordillera).  相似文献   

6.
The present study examined how competitive interactions and environmental conditions generate species boundaries and determine species distributions. A spatially explicit, quantitative genetic, two-species competition model was used to manipulate the strengths of competition, gene flow and local adaptation along environmental gradients. This allowed us to assess the long-term persistence of each species and whether the ranges they inhabited had boundaries in space or were unlimited. We found that a species boundary arises along less steep environmental gradients when the strength of stabilizing selection and diversifying selection are similar. We also found that a species boundary may arise along shallow environmental gradients if interspecific competition is more intense than intraspecific, which relaxes previous requirements for steep gradients for generating range limits. We determined an analytical form for the critical environmental gradient as a function of ecological and genetic parameters at which a species boundary is expected to arise by competition. Results suggest an alternative to resource competition as an explanation for phenotypic divergence between sympatric competitors. Competitors sharing a trait that is under stabilizing selection along an environmental gradient may segregate spatially and evolve in different regions, with phenotypic sympatric divergence reflecting the resulting clines. Along various types of environmental gradients, variation in stabilizing selection intensities could lead to contrasting patterns in the distribution of species. For stabilizing selection strengths in accord with field data estimates, this study predicts that the level of sympatric character divergence would be limited along environmental gradients.  相似文献   

7.
Disentangling the relative influence of the environment and biotic interactions in determining species coexistence patterns is a major challenge in ecology. The zonation occurring along elevation gradients, or at bioclimatic contact zones, offers a good opportunity to improve such understanding because the small scale at which the partitioning occurs facilitates inference based on experiments and ecological modelling. We studied the influence of abiotic gradients, habitat types, and interspecific competition in determining the spatial turnover between two pipit and two bunting species in NW Spain. We explored two independent lines of evidence to draw inference about the relative importance of environment and biotic interactions in driving range partitioning along elevation, latitude, and longitude. We combined occurrence data with environmental data to develop joint species distribution models (JSDM), in order to attribute co‐occurrence (or exclusion) to shared (or divergent) environmental responses and to interactions (attraction or exclusion). In the same region, we tested for interference competition by means of playback experiments in the contact zone. The JSDMs highlighted different responses for the two species pairs, although we did not find direct evidence of interspecific aggressiveness in our playback experiments. In pipits, partitioning was explained by divergent climate and habitat requirements and also by the negative correlations between species not explained by the environment. This significant residual correlation may reflect forms of competition others than direct interference, although we could not completely exclude the influence of unmeasured environmental predictors. When bunting species co‐occurred, it was because of shared habitat preferences, and a possible limitation to dispersal might cause their partitioning. Our results indicate that no single mechanism dominates in driving the distribution of our study species, but rather distributions are determined by the combination of many small forces including biotic and abiotic determinants of niche, whose relative strengths varied among species.  相似文献   

8.
Most of the Earth's biodiversity resides in the tropics. However, a comprehensive understanding of which factors control range limits of tropical species is still lacking. Climate is often thought to be the predominant range‐determining mechanism at large spatial scales. Alternatively, species’ ranges may be controlled by soil or other environmental factors, or by non‐environmental factors such as biotic interactions, dispersal barriers, intrinsic population dynamics, or time‐limited expansion from place of origin or past refugia. How species ranges are controlled is of key importance for predicting their responses to future global change. Here, we use a novel implementation of species distribution modelling (SDM) to assess the degree to which African continental‐scale species distributions in a keystone tropical group, the palms (Arecaceae), are controlled by climate, non‐climatic environmental factors, or non‐environmental spatial constraints. A comprehensive data set on African palm species occurrences was assembled and analysed using the SDM algorithm Maxent in combination with climatic and non‐climatic environmental predictors (habitat, human impact), as well as spatial eigenvector mapping (spatial filters). The best performing models always included spatial filters, suggesting that palm species distributions are always to some extent limited by non‐environmental constraints. Models which included climate provided significantly better predictions than models that included only non‐climatic environmental predictors, the latter having no discernible effect beyond the climatic control. Hence, at the continental scale, climate constitutes the only strong environmental control of palm species distributions in Africa. With regard to the most important climatic predictors of African palm distributions, water‐related factors were most important for 25 of the 29 species analysed. The strong response of palm distributions to climate in combination with the importance of non‐environmental spatial constraints suggests that African palms will be sensitive to future climate changes, but that their ability to track suitable climatic conditions will be spatially constrained.  相似文献   

9.
Dispersal modulates gene flow throughout a population's spatial range. Gene flow affects adaptation at local spatial scales, and consequently impacts the evolution of reproductive isolation. A recent theoretical investigation has demonstrated that local adaptation along an environmental gradient, facilitated by the evolution of limited dispersal, can lead to parapatric speciation even in the absence of assortative mating. This and other studies assumed unconditional dispersal, so individuals start dispersing without regard to local environmental conditions. However, many species disperse conditionally; their propensity to disperse is contingent upon environmental cues, such as the degree of local crowding or the availability of suitable mates. Here, we use an individual-based model in continuous space to investigate by numerical simulation the relationship between the evolution of threshold-based conditional dispersal and parapatric speciation driven by frequency-dependent competition along environmental gradients. We find that, as with unconditional dispersal, parapatric speciation occurs under a broad range of conditions when reproduction is asexual, and under a more restricted range of conditions when reproduction is sexual. In both the asexual and sexual cases, the evolution of conditional dispersal is strongly influenced by the slope of the environmental gradient: shallow environmental gradients result in low dispersal thresholds and high dispersal distances, while steep environmental gradients result in high dispersal thresholds and low dispersal distances. The latter, however, remain higher than under unconditional dispersal, thus undermining isolation by distance, and hindering speciation in sexual populations. Consequently, the speciation of sexual populations under conditional dispersal is triggered by a steeper gradient than under unconditional dispersal. Enhancing the disruptiveness of frequency-dependent selection, more box-shaped competition kernels dramatically lower the speciation-enabling slope of the environmental gradient.  相似文献   

10.
Predicting how species will respond to the rapid climatic changes predicted this century is an urgent task. Species distribution models (SDMs) use the current relationship between environmental variation and species’ abundances to predict the effect of future environmental change on their distributions. However, two common assumptions of SDMs are likely to be violated in many cases: (i) that the relationship of environment with abundance or fitness is constant throughout a species’ range and will remain so in future and (ii) that abiotic factors (e.g. temperature, humidity) determine species’ distributions. We test these assumptions by relating field abundance of the rainforest fruit fly Drosophila birchii to ecological change across gradients that include its low and high altitudinal limits. We then test how such ecological variation affects the fitness of 35 D. birchii families transplanted in 591 cages to sites along two altitudinal gradients, to determine whether genetic variation in fitness responses could facilitate future adaptation to environmental change. Overall, field abundance was highest at cooler, high‐altitude sites, and declined towards warmer, low‐altitude sites. By contrast, cage fitness (productivity) increased towards warmer, lower‐altitude sites, suggesting that biotic interactions (absent from cages) drive ecological limits at warmer margins. In addition, the relationship between environmental variation and abundance varied significantly among gradients, indicating divergence in ecological niche across the species’ range. However, there was no evidence for local adaptation within gradients, despite greater productivity of high‐altitude than low‐altitude populations when families were reared under laboratory conditions. Families also responded similarly to transplantation along gradients, providing no evidence for fitness trade‐offs that would favour local adaptation. These findings highlight the importance of (i) measuring genetic variation in key traits under ecologically relevant conditions, and (ii) considering the effect of biotic interactions when predicting species’ responses to environmental change.  相似文献   

11.
Global change is widely altering environmental conditions which makes accurately predicting species range limits across natural landscapes critical for conservation and management decisions. If climate pressures along elevation gradients influence the distribution of phenotypic and genetic variation of plant functional traits, then such trait variation may be informative of the selective mechanisms and adaptations that help define climatic niche limits. Using extensive field surveys along 16 elevation transects and a large common garden experiment, we tested whether functional trait variation could predict the climatic niche of a widespread tree species (Populus angustifolia) with a double quantile regression approach. We show that intraspecific variation in plant size, growth, and leaf morphology corresponds with the species' total climate range and certain climatic limits related to temperature and moisture extremes. Moreover, we find evidence of genetic clines and phenotypic plasticity at environmental boundaries, which we use to create geographic predictions of trait variation and maximum values due to climatic constraints across the western US. Overall, our findings show the utility of double quantile regressions for connecting species distributions and climate gradients through trait‐based mechanisms. We highlight how new approaches like ours that incorporate genetic variation in functional traits and their response to climate gradients will lead to a better understanding of plant distributions as well as identifying populations anticipated to be maladapted to future environments.  相似文献   

12.
Darwin viewed species range limits as chiefly determined by an interplay between the abiotic environment and interspecific interactions. Haldane argued that species' ranges could be set intraspecifically when gene flow from a species' populous center overwhelms local adaptation at the periphery. Recently, Kirkpatrick and Barton have modeled Haldane's process with a quantitative genetic model that combines density-dependent local population growth with dispersal and gene flow across a linear environmental gradient in optimum phenotype. To address Darwin's ideas, we have extended the Kirkpatrick and Barton model to include interspecific competition and the frequency-dependent selection that it generates, as well as stabilizing selection on a quantitative character. Our model includes local population growth, movements over space, natural selection, and gene flow. It simultaneously addresses the evolution of character displacement and species borders. It reproduces the Kirkpatrick and Barton single-species result that limited ranges can be produced with sufficiently steep environmental gradients and strong dispersal. Further, in the absence of environmental gradients or barriers to dispersal, interspecific competition will not limit species ranges at evolutionary equilibrium. However, interspecific competition can interact with environmental gradients and gene flow to generate limited ranges with much less extreme gradient and dispersal parameters than in the single-species case. Species display character displacement in sympatry, yet the reduction in competition that results from this displacement does not necessarily allow the two species to become sympatric everywhere. When species meet, competition reduces population densities in the region of overlap, which, in turn, intensifies the asymmetry in gene flow from center to margin. This reduces the ability of each species to adapt to local physical conditions at their range limits. If environmental gradients are monotonic but not linear, the transition zone between species at coevolutionary equilibrium occurs where the environmental gradient is steepest. If productivity gradients are also introduced into the model, then patterns similar to Rapoport's rule emerge. Interacting species respond to climate change, as it affects the optimal phenotype over space, by a combination of range shifts and local evolution in mean phenotype, while solitary species respond solely by range shifts. Finally, we compare empirical estimates for intrinsic growth rates and diffusion coefficients for several species to those needed by the single-species model to produce a stable limited range. These empirical values are generally insufficient to produce limited ranges in the model suggesting a role for interspecific interactions.  相似文献   

13.
There has been a proliferation of studies aimed at predicting the distributions of species from environmental variables despite evidence that spatial interpolation or spatially‐constrained mechanistic models have comparable explanatory power. Moreover, the processes behind environmental and spatial correlations – and their interactions – remain elusive. Here, we examined geographic patterns in the amount of variation explained by environmental correlation and exogenous or endogenous spatial autocorrelation for 4423 terrestrial vertebrate species in Africa using variation partitioning analysis. We also tested the effects of range size and taxonomic class on the relative importance of environmental and spatial correlations, and contrasted empirical patterns to two environmentally‐neutral models to identify potential underlying environmental and spatial mechanisms. Results showed that geographic range size was associated with environmental and spatial variation components in ways that where qualitatively indistinguishable from environmentally‐neutral species with constrained dispersal, suggesting that proportions of variation are due to range cohesiveness rather than other ecological processes. As a consequence, large‐scale patterns of biodiversity should be studied cautiously due to the difficulty of obtaining evidence of causal mechanistic links between species distributions and spatio‐environmental gradients. However, we also uncovered ecologically‐meaningful patterns in the residuals of the relationship between range size and the respective variation components, which differed among vertebrate classes. Moreover, these patterns coincided with contemporary biogeographical regions. This study, therefore, demonstrates that it is possible to extract meaningful environmental and spatial associations that potentially link ecological and biogeographical processes.  相似文献   

14.
Accounting for spatial pattern when modeling organism-environment interactions   总被引:10,自引:0,他引:10  
Statistical models of environment-abundance relationships may be influenced by spatial autocorrelation in abundance, environmental variables, or both. Failure to account for spatial autocorrelation can lead to incorrect conclusions regarding both the absolute and relative importance of environmental variables as determinants of abundance. We consider several classes of statistical models that are appropriate for modeling environment-abundance relationships in the presence of spatial autocorrelation, and apply these to three case studies: 1) abundance of voles in relation to habitat characteristics; 2) a plant competition experiment; and 3) abundance of Orbatid mites along environmental gradients. We find that when spatial pattern is accounted for in the modeling process, conclusions about environmental control over abundance can change dramatically. We conclude with five lessons: 1) spatial models are easy to calculate with several of the most common statistical packages; 2) results from spatially-structured models may point to conclusions radically different from those suggested by a spatially independent model; 3) not all spatial autocorrelation in abundances results from spatial population dynamics; it may also result from abundance associations with environmental variables not included in the model; 4) the different spatial models do have different mechanistic interpretations in terms of ecological processes – thus ecological model selection should take primacy over statistical model selection; 5) the conclusions of the different spatial models are typically fairly similar – making any correction is more important than quibbling about which correction to make.  相似文献   

15.
One of the fundamental dimensions of biodiversity is the rate of species turnover across geographic distance. The Cape Floristic Region of South Africa has exceptionally high geographic species turnover, much of which is associated with groups of closely related species with mostly or completely non-overlapping distributions. A basic unresolved question about biodiversity in this global hotspot is the relative importance of ecological gradients in generating and maintaining high geographic turnover in the region. We used reciprocal transplant experiments to test the extent to which abiotic environmental factors may limit the distributions of a group of closely related species in the genus Protea (Proteaceae), and thus elevate species turnover in this diverse, iconic family. We tested whether these species have a “home site advantage” in demographic rates (germination, growth, mortality), and also parameterized stage-structured demographic models for the species. Two of the three native species were predicted to have a demographic advantage at their home sites. The models also predicted, however, that species could maintain positive population growth rates at sites beyond their current distribution limits. Thus the experiment suggests that abiotic limitation under current environmental conditions does not fully explain the observed distribution limits or resulting biogeographic pattern. One potentially important mechanism is dispersal limitation, which is consistent with estimates based on genetic data and mechanistic dispersal models, though other mechanisms including competition may also play a role. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Functional trait composition is increasingly recognized as key to better understand and predict community responses to environmental gradients. Predictive approaches traditionally model the weighted mean trait values of communities (CWMs) as a function of environmental gradients. However, most approaches treat traits as independent regardless of known tradeoffs between them, which could lead to spurious predictions. To address this issue, we suggest jointly modeling a suit of functional traits along environmental gradients while accounting for relationships between traits. We use generalized additive mixed effect models to predict the functional composition of alpine grasslands in the Guisane Valley (France). We demonstrate that, compared to traditional approaches, joint trait models explain considerable amounts of variation in CWMs, yield less uncertainty in trait CWM predictions and provide more realistic spatial projections when extrapolating to novel environmental conditions. Modeling traits and their co‐variation jointly is an alternative and superior approach to predicting traits independently. Additionally, compared to a ‘predict first, assemble later’ approach that estimates trait CWMs post hoc based on stacked species distribution models, our ‘assemble first, predict later’ approach directly models trait‐responses along environmental gradients, and does not require data and models on species’ distributions, but only mean functional trait values per community plot. This highlights the great potential of joint trait modeling approaches in large‐scale mapping applications, such as spatial projections of the functional composition of vegetation and associated ecosystem services as a response to contemporary global change.  相似文献   

17.
Alternative causes for range limits: a metapopulation perspective   总被引:1,自引:1,他引:0  
All species have limited distributions at broad geographical scales. At local scales, the distribution of many species is influenced by the interplay of the three factors of habitat availability, local extinctions and colonization dynamics. We use the standard Levins metapopulation model to illustrate how gradients in these three factors can generate species' range limits. We suggest that the three routes to range limits have radically different evolutionary implications. Because the Levins model makes simplifying assumptions about the spatial coupling of local populations, we present numerical studies of spatially explicit metapopulation models that complement the analytical model. The three routes to range limits give rise to distinct spatiotemporal patterns. Range limits in one species can also arise because of environmental gradients impinging upon other species. We briefly discuss a predator–prey example, which illustrates indirect routes to range limits in a metacommunity context.  相似文献   

18.
Drought and pests are primary abiotic and biotic factors proposed as selective filters acting on species distributions along rainfall gradients in tropical forests and may contribute importantly to species distributional limits, performance, and diversity gradients. Recent research demonstrates linkages between species distributions along rainfall gradients and physiological drought tolerance; corresponding experimental examinations of the contribution of pest pressure to distributional limits and potential interactions between drought and herbivory are limited. This study aims to quantitate differential performance and herbivory as a function of species range limits across a climatic and floristic transition in Southeast Asia. Khao Chong Botanical Garden, Thailand and Pasoh Forest Reserve, Malaysia straddle the Kangar‐Pattani Line. A reciprocal transplantation across a seasonality gradient was established using two groups of species (“widespread” taxa whose distributions include seasonally dry forests and “aseasonal” taxa whose distributions are limited to aseasonal forests). Growth, biomass allocation, survival, and herbivory were monitored for 19 months. Systematic differences in performance were a function of species distribution in relation to rainfall seasonality. In aseasonal Pasoh, aseasonal species had both greater growth and survivorship than widespread species. These differences were not a function of differential herbivory as widespread and aseasonal species experienced similar damage in the aseasonal forest. In seasonally dry Khao Chong, widespread species showed higher survivorship than aseasonal species, but these differences were only apparent during drought. We link this differential performance to physiological mechanisms as well as differential tolerance of biotic pressure during drought stress. Systematic decreases in seedling survival in aseasonal taxa during drought corresponded with previously documented physiological differences and may be exacerbated by herbivore damage. These results have important implications for tropical diversity and community composition in light of predicted increases in the frequency and severity of drought in hyperdiverse tropical forests.  相似文献   

19.
To study evolution of conditional dispersal, a Lotka-Volterra reaction-diffusion-advection model for two competing species in a heterogeneous environment is proposed and investigated. The two species are assumed to be identical except their dispersal strategies: both species disperse by random diffusion and advection along environmental gradients, but one species has stronger biased movement (i.e., advection along the environmental gradients) than the other one. It is shown that at least two scenarios can occur: if only one species has a strong tendency to move upward the environmental gradients, the two species can coexist since one species mainly pursues resources at places of locally most favorable environments while the other relies on resources from other parts of the habitat; if both species have such strong biased movements, it can lead to overcrowding of the whole population at places of locally most favorable environments, which causes the extinction of the species with stronger biased movement. These results provide a new mechanism for the coexistence of competing species, and they also imply that selection is against excessive advection along environmental gradients, and an intermediate biased movement rate may evolve.  相似文献   

20.
Urbanization is a major driver of biodiversity change but how it interacts with spatial and temporal gradients to influence the dynamics of plant–pollinator networks is poorly understood, especially in tropical urbanization hotspots. Here, we analysed the drivers of environmental, spatial and temporal turnover of plant–pollinator interactions (interaction β-diversity) along an urbanization gradient in Bengaluru, a South Indian megacity. The compositional turnover of plant–pollinator interactions differed more between seasons and with local urbanization intensity than with spatial distance, suggesting that seasonality and environmental filtering were more important than dispersal limitation for explaining plant–pollinator interaction β-diversity. Furthermore, urbanization amplified the seasonal dynamics of plant–pollinator interactions, with stronger temporal turnover in urban compared to rural sites, driven by greater turnover of native non-crop plant species (not managed by people). Our study demonstrates that environmental, spatial and temporal gradients interact to shape the dynamics of plant–pollinator networks and urbanization can strongly amplify these dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号