首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The symbiotic interaction between Rhizobium etli and Phaseolus vulgaris, the common bean plant, ultimately results in the formation of nitrogen-fixing nodules. Many aspects of the intermediate and late stages of this interaction are still poorly understood. The R. etli relA gene was identified through a genome-wide screening for R. etli symbiotic mutants. RelA has a pivotal role in cellular physiology, as it catalyzes the synthesis of (p)ppGpp, which mediates the stringent response in bacteria. The synthesis of ppGpp was abolished in an R. etli relA mutant strain under conditions of amino acid starvation. Plants nodulated by an R. etli relA mutant had a strongly reduced nitrogen fixation activity (75% reduction). Also, at the microscopic level, bacteroid morphology was altered, with the size of relA mutant bacteroids being increased compared to that of wild-type bacteroids. The expression of the sigma(N)-dependent nitrogen fixation genes rpoN2 and iscN was considerably reduced in the relA mutant. In addition, the expression of the relA gene was negatively regulated by RpoN2, the symbiosis-specific sigma(N) copy of R. etli. Therefore, an autoregulatory loop controlling the expression of relA and rpoN2 seems operative in bacteroids. The production of long- and short-chain acyl-homoserine-lactones by the cinIR and raiIR systems was decreased in an R. etli relA mutant. Our results suggest that relA may play an important role in the regulation of gene expression in R. etli bacteroids and in the adaptation of bacteroid physiology.  相似文献   

2.
3.
Rhizobium etli, as well as some other rhizobia, presents nitrogenase reductase (nifH) gene reiterations. Several R. etli strains studied in this laboratory showed a unique organization and contained two complete nifHDK operons (copies a and b) and a truncated nifHD operon (copy c). Expression analysis of lacZ fusion demonstrated that copies a and b in strain CFN42 are transcribed at lower levels than copy c, although this copy has no discernible role during nitrogen fixation. To increase nitrogenase production, we constructed a chimeric nifHDK operon regulated by the strong nifHc promoter sequence and expressed it in symbiosis with the common bean plant (Phaseolus vulgaris), either cloned on a stably inherited plasmid or incorporated into the symbiotic plasmid (pSym). Compared with the wild-type strain, strains with the nitrogenase overexpression construction assayed in greenhouse experiments had, increased nitrogenase activity (58% on average), increased plant weight (32% on average), increased nitrogen content in plants (15% at 32 days postinoculation), and most importantly, higher seed yield (36% on average), higher nitrogen content (25%), and higher nitrogen yield (72% on average) in seeds. Additionally, expression of the chimeric nifHDK operon in a poly-beta-hydroxybutyrate-negative R. etli strain produced an additive effect in enhancing symbiosis. To our knowledge, this is the first report of increased seed yield and nutritional content in the common bean obtained by using only the genetic material already present in Rhizobium.  相似文献   

4.
Crude bean root extracts of Phaseolus vulgaris were tested for inhibition of the growth of several polysaccharide mutants of Rhizobium etli biovar phaseoli CE3. Mutants deficient only in exopolysaccharide and some mutants deficient only in the O-antigen of the lipopolysaccharide were no more sensitive than the wild-type strain to the extracts, whereas mutants defective in both lipopolysaccharide and exopolysaccharide were much more sensitive. The inhibitory activity was found at much higher levels in roots and nodules than in stems or leaves. Inoculation with either wild-type or polysaccharide-deficient R. etli did not appear to affect the level of activity. Sequential extractions of the crude root material with petroleum ether, ethyl acetate, methanol, and water partitioned inhibitory activity into each solvent except methanol. The major inhibitors in the petroleum ether and ethyl acetate extracts were purified by C18 high-performance liquid chromatography. These compounds all migrated very similarly in both liquid and thin-layer chromatography but were distinguished by their mass spectra. Absorbance spectra and fluorescence properties suggested that they were coumestans, one of which had the mass spectrum and nuclear magnetic resonances of coumestrol. These results are discussed with regard to the hypothesis that one role of rhizobial polysaccharides is to protect against plant toxins encountered during nodule development.  相似文献   

5.
6.
7.
Phaseolus vulgaris L. (common bean) is nodulated by rhizobia present in the fields around the Seibersdorf laboratory despite the fact that common bean has not been grown for a long time. Using PCR analysis with repetitive primers, plasmid profiles, nifH profiles, PCR-RFLP analysis of the 16S rRNA gene and of the 16S rRNA-23S rRNA intergenic spacer and the nodulation phenotype, two well-differentiating groups could be distinguished. One group showed high similarity to Rhizobium sp. R602sp, isolated from common bean in France, while the other showed the same characteristics as R. etli . We detected little variation in the symbiotic regions but found higher diversity when using approaches targeting the whole genome. Many isolates obtained in this study might have diverged from a limited number of strains, therefore the Austrian isolates showed high saprophytic and nodulation competence in that particular soil.  相似文献   

8.
Abstract A Gram-negative sporulating thermophilic anaerobe, designated AB11Ad, was isolated from the heated waters of the Great Artesian Basin of Australia. It grew on a variety of carbohydrates including glucose, starch, and dextran and produced a thermostable and thermoactive extracellular endo-dextranase. The enzyme was produced more actively under pH controlled continuous culture conditions than under batch conditions. Ammonium sulfate precipitated crude dextranase exhibited a temperature optimum of 70 °C and a pH optimum between 5 and 6. The half life was ~ 6.5 h at 75 °C and 2 h at 80 °C at pH 5.0 and in the absence of added dextran. 16S rRNA sequence analysis indicated that isolate AB1 lAd was a member of the genus Thermoanaerobacter .  相似文献   

9.
A Tn5-induced mutant strain (CTNUX5) of Rhizobium etli unable to grow with ammonium as the sole nitrogen source was isolated and characterized. Sequence analysis showed that Tn5 is inserted into an argC-homologous gene. Unlike its wild-type parent (strain CE3), the mutant strain CTNUX5 had an absolute dependency on arginine to grow. The argC gene was cloned from the wild-type strain CE3, and the resulting plasmid, pAR207, after transformation was shown to relieve the arginine auxotrophy of strain CTNUX5. Unlike strain CE3 or CTNUX5-pAR207, strain CTNUX5 showed undetectable levels of N-acetyl-gamma-glutamylphosphate reductase activity. Unless arginine was added to the growth medium, strain CTNUX5 was unable to produce flavonoid-inducible lipo-chitin oligosaccharides (nodulation factors) and to induce nodules or nodulelike structures on the roots of Phaseolus vulgaris.  相似文献   

10.
A mutant strain (CTNUX4) of Rhizobium etli carrying Tn5 unable to grow with ammonium as the sole nitrogen source was isolated and characterized. Sequence analysis showed that Tn5 is inserted into a trpB (tryptophan synthase)-homologous gene. When tested on the roots of Phaseolus vulgaris, strain CTNUX4 was able to induce only small, slightly pink, ineffective (Fix-) nodules. However, under free-living conditions, strain CTNUX4 was unable to produce flavonoid-inducible lipo-chitin oligosaccharides (Nod factors) unless tryptophan was added to the growth medium. These data and histological observations indicate that the lack of tryptophan biosynthesis affects the symbiotic behavior of R. etli.  相似文献   

11.
Plant and Soil - Homospermidine is known to be the most abundant polyamine in root nodules of Phaseolus vulgaris induced by Rhizobium tropici. In addition, homospermidine is involved in the stress...  相似文献   

12.
A chromosomal gene, required for nodule development on Phaseolus bean, was characterized from Rhizobium etli strain TAL182. MLC640 is a Tn5 insertion mutant of TAL182 which shows decreased motility in soft TY agar and is defective in nodule development. The site of Tn5 insertion in MLC640 mapped to a 3.6-kb EcoRI chromosomal fragment. The 3.6-kb fragment was subcloned from the cosmid pUHR80 which complemented MLC640. Further subcloning and site-directed Tn5 mutagenesis localized the gene for nodule development to a 1.7-kb region within the 3.6-kb EcoRI fragment. Southern hybridization using the 3.6-kb EcoRI fragment as the probe against genomic DNA of several Rhizobium spp. indicated that this gene is conserved in different rhizobia.The authors are with the Department of Plant Molecular Physiology, University of Hawaii, 3050 Maile Way, Gimore 402, Honolulu, Hawaii 96822. USA;  相似文献   

13.
Proteomics techniques were used to identify the underlying mechanism of the early stage of symbiosis between the common bean (Phaseolus vulgaris L.) and bacteria. Proteins from roots of common beans inoculated with bacteria were separated using two-dimensional polyacrylamide gel electrophoresis and identified using mass spectrometry. From 483 protein spots, 29 plant and 3 bacterial proteins involved in the early stage of symbiosis were identified. Of the 29 plant proteins, the expression of 19 was upregulated and the expression of 10 was downregulated. Upregulated proteins included those involved in protein destination/storage, energy production, and protein synthesis; whereas the downregulated proteins included those involved in metabolism. Many upregulated proteins involved in protein destination/storage were chaperonins and proteasome subunits. These results suggest that defense mechanisms associated with induction of chaperonins and protein degradation regulated by proteasomes occur during the early stage of symbiosis between the common bean and bacteria.  相似文献   

14.
The genetic structure of Rhizobium etli biovar phaseoli was determined for five populations in three different locations in the state of Morelos, Mexico, by using starch gel electrophoresis for five to nine polymorphic loci. Two populations were sampled during two different years from nodules of cultivated and wild common bean plants (Phaseolus vulgaris). The three other populations were associated with wild runner beans (P. coccineus) and sampled during 1988. The Rhizobium populations differ genetically both among sites and among populations within the same site in different years, as shown by differences in allelic frequencies, genetic differentiation analysis, and differences in electrotypes. The total genetic diversity for the five populations during 1988 was H = 0.487; there were also high levels of genetic variation within each population. We found the highest linkage disequilibrium in a global analysis for all the populations. At a local scale, we also found significant linkage disequilibrium in two populations, although the distribution of the D' suggest some recombination at a local scale. The other three rhizobium populations exhibit low linkage disequilibrium. A cluster analysis (UPGMA) of pairwise genetic distances showed that bacteria isolated from most wild Phaseolus spp. are grouped by population, whereas those obtained from cultivated P. vulgaris are very heterogeneous. The analysis of the genetic structure of Rhizobium strains may allow the identification of strains that are naturally well adapted to a wide range of different environments, which may be useful for agricultural purposes or as a starting point for developing improved Rhizobium strains.  相似文献   

15.
16.
17.
18.
The stability of the genetic structure of rhizobial populations nodulating Phaseolus vulgaris cultivated in a traditionally managed milpa plot in Mexico was studied over three consecutive years. The set of molecular markers analyzed (including partial rrs, glnII, nifH, and nodB sequences), along with host range experiments, placed the isolates examined in Rhizobium etli bv. phaseoli and Rhizobium gallicum bv. gallicum. Cluster analysis of multilocus enzyme electrophoresis and plasmid profile data separated the two species and identified numerically dominant clones within each of them. Population genetic analyses showed that there was high genetic differentiation between the two species and that there was low intrapopulation differentiation of the species over the 3 years. The results of linkage disequilibrium analyses are consistent with an epidemic genetic structure for both species, with frequent genetic exchange taking place within conspecific populations but not between the R. etli and R. gallicum populations. A subsample of isolates was selected and used for 16S ribosomal DNA PCR-restriction fragment length polymorphism analysis, nifH copy number determination, and host range experiments. Plasmid profiles and nifH hybridization patterns also revealed the occurrence of lateral plasmid transfer among distinct multilocus genotypes within species but not between species. Both species were recovered from nodules of the same plants, indicating that mechanisms other than host, spatial, or temporal isolation may account for the genetic barrier between the species. The biogeographic implications of finding an R. gallicum bv. gallicum population nodulating common bean in America are discussed.  相似文献   

19.
The stability of the genetic structure of rhizobial populations nodulating Phaseolus vulgaris cultivated in a traditionally managed milpa plot in Mexico was studied over three consecutive years. The set of molecular markers analyzed (including partial rrs, glnII, nifH, and nodB sequences), along with host range experiments, placed the isolates examined in Rhizobium etli bv. phaseoli and Rhizobium gallicum bv. gallicum. Cluster analysis of multilocus enzyme electrophoresis and plasmid profile data separated the two species and identified numerically dominant clones within each of them. Population genetic analyses showed that there was high genetic differentiation between the two species and that there was low intrapopulation differentiation of the species over the 3 years. The results of linkage disequilibrium analyses are consistent with an epidemic genetic structure for both species, with frequent genetic exchange taking place within conspecific populations but not between the R. etli and R. gallicum populations. A subsample of isolates was selected and used for 16S ribosomal DNA PCR-restriction fragment length polymorphism analysis, nifH copy number determination, and host range experiments. Plasmid profiles and nifH hybridization patterns also revealed the occurrence of lateral plasmid transfer among distinct multilocus genotypes within species but not between species. Both species were recovered from nodules of the same plants, indicating that mechanisms other than host, spatial, or temporal isolation may account for the genetic barrier between the species. The biogeographic implications of finding an R. gallicum bv. gallicum population nodulating common bean in America are discussed.  相似文献   

20.
Screening of derivatives of Rhizobium etli KIM5s randomly mutagenized with mTn5SSgusA30 resulted in the identification of strain KIM-G1. Its rough colony appearance, flocculation in liquid culture, and Ndv(-) Fix(-) phenotype were indicative of a lipopolysaccharide (LPS) defect. Electrophoretic analysis of cell-associated polysaccharides showed that KIM-G1 produces only rough LPS. Composition analysis of purified LPS oligosaccharides from KIM-G1 indicated that it produces an intact LPS core trisaccharide (alpha-D-GalA-1-->4[alpha-D-GalA-1-->5]-Kdo) and tetrasaccharide (alpha-D-Gal-1-->6[alpha-D-GalA-1-->4]-alpha-D-Man-1-->5Kdo), strongly suggesting that the transposon insertion disrupted a locus involved in O-antigen biosynthesis. Five monosaccharides (Glc, Man, GalA, 3-O-Me-6-deoxytalose, and Kdo) were identified as the components of the repeating O unit of the smooth parent strain, KIM5s. Strain KIM-G1 was complemented with a 7.2-kb DNA fragment from KIM5s that, when provided in trans on a broad-host-range vector, restored the smooth LPS and the full capacity of nodulation and fixation on its host Phaseolus vulgaris. The mTn5 insertion in KIM-G1 was located at the N terminus of a putative alpha-glycosyltransferase, which most likely had a polar effect on a putative beta-glycosyltransferase located downstream. A third open reading frame with strong homology to sugar epimerases and dehydratases was located upstream of the insertion site. The two glycosyltransferases are strain specific, as suggested by Southern hybridization analysis, and are involved in the synthesis of the variable portion of the LPS, i.e., the O antigen. This newly identified LPS locus was mapped to a 680-kb plasmid and is linked to the lpsbeta2 gene recently reported for R. etli CFN42.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号