首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrogen (N) is a fundamental component of nucleotides and amino acids and is often a limiting nutrient in natural ecosystems. Thus, study of the N content of biomolecules may establish important connections between ecology and genomics. However, while significant differences in the elemental composition of whole organisms are well documented, how the flux of nutrients in the cell has shaped the evolution of different cellular processes remains poorly understood. By examining the elemental composition of major functional classes of proteins in four multicellular eukaryotic model organisms, we find that the catabolic machinery shows substantially lower N content than the anabolic machinery and the rest of the proteome. This pattern suggests that ecological selection for N conservation specifically targets cellular components that are highly expressed in response to nutrient limitation. We propose that the RNA component of the anabolic machineries is the mechanistic force driving the elemental imbalance we found, and that RNA functions as an intracellular nutrient reservoir that is degraded and recycled during starvation periods. A comparison of the elemental composition of the anabolic and catabolic machineries in species that have experienced different levels of N limitation in their evolutionary history (animals versus plants) suggests that selection for N conservation has preferentially targeted the catabolic machineries of plants, resulting in a lower N content of the proteins involved in their catabolic processes. These findings link the composition of major cellular components to the environmental factors that trigger the activation of those components, suggesting that resource availability has constrained the atomic composition and the molecular architecture of the biotic processes that enable cells to respond to reduced nutrient availability.  相似文献   

2.
Wang X 《Tissue & cell》2006,38(1):43-51
Energy dispersive X-ray microanalysis (EDXMA) is a widely used tool employed to detect elemental composition and its spatial distribution in a sample without causing damage. Charcoalified cytoplasm is a new type of fossil material that came to people's attention only recently. In this paper, EDXMA is used for the first time to detect the spatial elemental distribution in charcoalified cytoplasm of two fossil plants that are more than 100 million years old. The results demonstrate certain elemental distribution patterns within charcoalified cytoplasm and the surrounding cell walls. Based on the results from cytological studies of extant material, the heterogeneous spatial elemental distribution within the charcoalified cytoplasm has the potential to be related to the maturation of cells, the presence of certain organelles, and the physiology of these organelles. This is the first chemical signal detected in cytoplasm residue that can possibly be related to plant physiology. This paves the way for further research on fossil cytoplasm, which will better our understanding on the physiology of fossil plants.  相似文献   

3.
Critical tissue concentrations of potentially toxic elements   总被引:9,自引:0,他引:9  
Summary Tissue concentrations of young plants, or of young leaves, of crop plants or species used as test plants offer some promise as simple and approximate indicators of toxic levels of elemental pollution of the soil environment.Theupper critical level of an element is the lowest tissue concentration at which it has toxic effects. The results of an extensive survey to extract critical levels from published work are presented for 29 elements.  相似文献   

4.
H Zhao  L Wu  T Chai  Y Zhang  J Tan  S Ma 《Journal of plant physiology》2012,169(13):1243-1252
Synchrotron radiation X-ray fluorescence (SRXRF) and inductively coupled plasma mass spectrometry were used to estimate major, minor and trace elements in Cu-, Zn- and Mn-treated Phytolacca americana. The effects of the addition of Cu, Zn and Mn on morphological parameters, such as root length, shoot height, and fresh and dry weights of shoots and roots, were also examined. In addition, the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidases (GPX) and catalase (CAT) and the expression of Fe-SOD, Cu/Zn-SOD, metallothionein-2 and glutathione S-transferase (GST) exposed to the highest amounts of Cu, Zn or Mn were detected. Our results confirmed the following: (1) Zn supplementation leads to chlorosis, disturbed elemental homeostasis and decreased concentrations of micro- and macroelements such as Fe, Mg, Mn, Ca and K. Cu competed with Fe, Mn and Zn uptake in plants supplemented with 25μM Cu. However, no antagonistic interactions took place between Cu, Zn, Mn and Fe uptake in plants supplemented with 100μM Cu. Mn supplementation at various concentrations had no negative effects on elemental deficits. Mn was co-located with high concentrations of Fe and Zn in mature leaves and the concentrations of macro elements were unchanged. (2) P. americana supplemented with increased concentrations of Zn and Cu exhibited lower biomass production and reduced plant growth. (3) When plants were supplemented with the highest Zn and Cu concentrations, symptoms of toxicity corresponded to decreased SOD or CAT activities and increased APX and GPX activities. However, Mn tolerance corresponded to increased SOD and CAT activities and decreased POD and APX activities. Our study revealed that heavy metals partially exert toxicity by disturbing the nutrient balance and modifying enzyme activities that induce damage in plants. However, P. americana has evolved hyper accumulating mechanisms to maintain elemental balance and redox homeostasis under excess Mn.  相似文献   

5.
Breeding mercury-breathing plants for environmental cleanup   总被引:12,自引:0,他引:12  
In an elegant study, Richard Meagher's research group has succeeded in introducing a bacterial mercury detoxification pathway into plants. The resulting plants show enhanced mercury tolerance and can convert highly toxic forms of organic mercury to less toxic elemental mercury, which is volatile. The significance of this study is that it could lead to the more efficient and affordable cleanup of environmental mercury pollution, and in a broader context, it proves the power of genetic engineering for phytoremediation.  相似文献   

6.
Ecological stoichiometry postulates that differential nutrient recycling of elements such as nitrogen and phosphorus by consumers can shift the element that limits plant growth. However, this hypothesis has so far considered the effect of consumers, mostly herbivores, out of their food-web context. Microbial decomposers are important components of food webs, and might prove as important as consumers in changing the availability of elements for plants. In this theoretical study, we investigate how decomposers determine the nutrient that limits plants, both by feeding on nutrients and organic carbon released by plants and consumers, and by being fed upon by omnivorous consumers. We show that decomposers can greatly alter the relative availability of nutrients for plants. The type of limiting nutrient promoted by decomposers depends on their own elemental composition and, when applicable, on their ingestion by consumers. Our results highlight the limitations of previous stoichiometric theories of plant nutrient limitation control, which often ignored trophic levels other than plants and herbivores. They also suggest that detrital chains play an important role in determining plant nutrient limitation in many ecosystems.  相似文献   

7.
The process of nutrient retranslocation from plant leaves during senescence subsequently affects both plant growth and soil nutrient cycling; changes in either of these could potentially feed back to climate change. Although elemental nutrient resorption has been shown to respond modestly to temperature and precipitation, we know remarkably little about the influence of increasing intensities of drought and warming on the resorption of different classes of plant metabolites. We studied the effect of warming and altered precipitation on the production and resorption of metabolites in Quercus rubra. The combination of warming and drought produced a higher abundance of compounds that can help to mitigate climatic stress by functioning as osmoregulators and antioxidants, including important intermediaries of the tricarboxylic acid (TCA) cycle, amino acids including proline and citrulline, and polyamines such as putrescine. Resorption efficiencies (REs) of extractable metabolites surprisingly had opposite responses to drought and warming; drought treatments generally increased RE of metabolites compared to ambient and wet treatments, while warming decreased RE. However, RE of total N differed markedly from that of extractable metabolites such as amino acids; for instance, droughted plants resorbed a smaller fraction of elemental N from their leaves than plants exposed to the ambient control. In contrast, plants in drought treatment resorbed amino acids more efficiently (>90%) than those in ambient (65–77%) or wet (42–58%) treatments. Across the climate treatments, the RE of elemental N correlated negatively with tissue tannin concentration, indicating that polyphenols produced in leaves under climatic stress could interfere with N resorption. Thus, senesced leaves from drier conditions might have a lower nutritive value to soil heterotrophs during the initial stages of litter decomposition despite a higher elemental N content of these tissues. Our results suggest that N resorption may be controlled not only by plant demand, but also by climatic influences on the production and resorption of plant metabolites. As climate–carbon models incorporate increasingly sophisticated nutrient cycles, these results highlight the need to adequately understand plant physiological responses to climatic variables.  相似文献   

8.
The use of plants to clean-up soils contaminated with trace elements could provide a cheap and sustainable technology for bioremediation. Field trials suggested that the rate of contaminant removal using conventional plants and growth conditions is insufficient. The introduction of novel traits into high biomass plants in a transgenic approach is a promising strategy for the development of effective phytoremediation technologies. This has been exemplified by generating plants able to convert organic and ionic forms of mercury into the less toxic, volatile, elemental mercury, a trait that occurs naturally only in some bacteria and not at all in plants. The engineering of a phytoremediator plant requires the optimization of a number of processes, including trace element mobilization in the soil, uptake into the root, detoxification and allocation within the plant. A number of transgenic plants have been generated in an attempt to modify the tolerance, uptake or homeostasis of trace elements. The phenotypes of these plants provide important insights for the improvement of engineering strategies. A better understanding, both of micronutrient acquisition and homeostasis, and of the genetic, biochemical and physiological basis of metal hyperaccumulation in plants, will be of key importance for the success of phytoremediation.  相似文献   

9.
Variation in the elemental content of Eichhornia crassipes   总被引:1,自引:1,他引:0  
Summary The elemental composition of E. crassipes falls within the range of elemental values reported for other aquatic and terrestrial plants. Concentrations of macronutrients in water hyacinth biomass were not correlated with environmental levels of these nutrients. E. crassipes produces large, dense stands and dominates biogeochemical cycles in many aquatic ecosystems.This research is supported by Contract AT (38-1)-310 between the University of Georgia and the U. S. Atomic Energy Commission.  相似文献   

10.
We determined the effectiveness of Ni as an elemental defence of Streptanthus polygaloides (Brassicaceae) against a crucifer specialist folivore, diamondback moth (DBM), Plutella xylostella. An oviposition experiment used arrays of S. polygaloides grown on Ni-amended (high-Ni) soil interspersed with plants grown on unamended (low-Ni) soil and eggs were allowed to hatch and larvae fed freely among plants in the arrays. We also explored oviposition preference by allowing moths to oviposit on foil sheets coated with high- or low-Ni plant extract. This was followed by an experiment using low-Ni plant extract to which varying amounts of Ni had been added and an experiment using sheets coated with sinigrin (allyl glucosinolate) as an oviposition stimulant. Diamondback moths laid 2.5-fold more eggs on low-Ni plants than on high-Ni plants and larval feeding was greater on low-Ni plants. High-Ni plants grew twice as tall, produced more leaves, and produced almost 3.5-fold more flowers. Low-Ni plants contained more allyl glucosinolate than high-Ni plants and moths preferred to oviposit on foil sheets dipped in low-Ni plant extract. Moths showed no preference when Ni concentration of low-Ni extract was varied and overwhelmingly preferred sinigrin coated sheets. We conclude that Ni hyperaccumulation is an effective elemental defence against this herbivore, increasing plant fitness through a combination of toxicity to DBM larvae and decreased oviposition by adults.  相似文献   

11.
Revealing the uptake, transport, localization and speciation of both essential and toxic elements in plants is important for understanding plant homeostasis and metabolism, subsequently, providing information for food and nutrient studies, agriculture activities, as well as environmental research. In the last decade, emerging techniques for elemental imaging and speciation analysis allowed us to obtain increasing knowledge of elemental distribution and availabilities in plants. Chemical imaging techniques include mass spectrometric methods such as secondary ionization mass spectrometry (SIMS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and synchrotron-based techniques such as X-ray fluorescence spectroscopy (SRXRF), and so forth. On the other hand, X-ray absorption spectroscopy (XAS) based on synchrotron radiation is capable of in situ investigation of local atomic structure around the central element of interest. This technique can also be operated in tandem with SRXRF to image each element species of interest within plant tissue. In this review, the principles and state-of-the-art of these techniques regarding sample preparation, advantages and limitations, and improvement of sensitivity and spatial resolution are discussed. New results with respect to elemental distribution and speciation in plants revealed by these techniques are presented.  相似文献   

12.
Carbon, nitrogen, and phosphorus (C, N, P) stoichiometry influences the growth of plants and nutrient cycling within ecosystems. Indeed, elemental ratios are used as an index for functional differences between plants and their responses to natural or anthropogenic variations in nutrient supply. We investigated the variation in growth and elemental content of the rootless terrestrial bromeliad Tillandsia landbeckii, which obtains its moisture, and likely its nutrients, from coastal fogs in the Atacama Desert. We assessed (1) how fog nutrient supply influences plant growth and stoichiometry and (2) the response of plant growth and stoichiometry to variations in nutrient supply by using reciprocal transplants. We hypothesized that T. landbeckii should exhibit physiological and biochemical plastic responses commensurate with nutrient supply from atmospheric deposition. In the case of the Atacama Desert, nutrient supply from fog is variable over space and time, which suggests a relatively high variation in the growth and elemental content of atmospheric bromeliads. We found that the nutrient content of T. landbeckii showed high spatio-temporal variability, driven partially by fog nutrient deposition but also by plant growth rates. Reciprocal transplant experiments showed that transplanted individuals converged to similar nutrient content, growth rates, and leaf production of resident plants at each site, reflecting local nutrient availability. Although plant nutrient content did not exactly match the relative supply of N and P, our results suggest that atmospheric nutrient supply is a dominant driver of plant growth and stoichiometry. In fact, our results indicate that N uptake by T. landbeckii plants depends more on N supplied by fog, whereas P uptake is mainly regulated by within-plant nutrient demand for growth. Overall, these findings indicate that variation in fog nutrient supply exerts a strong control over growth and nutrient dynamics of atmospheric plants, which are ubiquitous across fog-dominated ecosystems.  相似文献   

13.
植物离子组学及其研究方法与应用进展   总被引:1,自引:0,他引:1  
植物离子组学是一门研究植物体内元素组成、分布与累积以及这些元素随植物生理状况、生物与非生物刺激、发育阶段、生境和遗传等因素的变化及其机制的新兴学科。离子组学在数量遗传性状定位、生理状况判别以及植物体内调控元素吸收、运输和贮藏的潜在基因鉴别等方面至关重要。该文综述了离子组学的基本概念、研究方法和主要研究进展,并就离子组学的研究热点、面临的挑战和未来发展趋势作了简要评述。  相似文献   

14.
Controlling elemental composition is critical for plant growth and development as well as the nutrition of humans who utilize plants for food. Uncovering the genetic architecture underlying mineral ion homeostasis in plants is a critical first step towards understanding the biochemical networks that regulate a plant''s elemental composition (ionome). Natural accessions of Arabidopsis thaliana provide a rich source of genetic diversity that leads to phenotypic differences. We analyzed the concentrations of 17 different elements in 12 A. thaliana accessions and three recombinant inbred line (RIL) populations grown in several different environments using high-throughput inductively coupled plasma- mass spectroscopy (ICP-MS). Significant differences were detected between the accessions for most elements and we identified over a hundred QTLs for elemental accumulation in the RIL populations. Altering the environment the plants were grown in had a strong effect on the correlations between different elements and the QTLs controlling elemental accumulation. All ionomic data presented is publicly available at www.ionomicshub.org.  相似文献   

15.
In order to grow on soils that vary widely in chemical composition, plants have evolved mechanisms for regulating the elemental composition of their tissues to balance the mineral nutrient and trace element bioavailability in the soil with the requirements of the plant for growth and development. The biodiversity that exists within a species can be utilized to investigate how regulatory mechanisms of individual elements interact and to identify genes important for these processes. We analyzed the elemental composition (ionome) of a set of 96 wild accessions of the genetic model plant Arabidopsis thaliana grown in hydroponic culture and soil using inductively coupled plasma mass spectrometry (ICP-MS). The concentrations of 17-19 elements were analyzed in roots and leaves from plants grown hydroponically, and leaves and seeds from plants grown in artificial soil. Significant genetic effects were detected for almost every element analyzed. We observed very few correlations between the elemental composition of the leaves and either the roots or seeds. There were many pairs of elements that were significantly correlated with each other within a tissue, but almost none of these pairs were consistently correlated across tissues and growth conditions, a phenomenon observed in several previous studies. These results suggest that the ionome of a plant tissue is variable, yet tightly controlled by genes and gene × environment interactions. The dataset provides a valuable resource for mapping studies to identify genes regulating elemental accumulation. All of the ionomic data is available at www.ionomicshub.org.  相似文献   

16.
Although substantial and ecologically significant differences in elemental composition are well documented for whole organisms, little is known about whether such differences extend to lower levels of biological organization, such as the elemental composition of major molecules. In a proteome-scale investigation of 9 plant genomes and 9 animal genomes, we find that the nitrogen (N) content of plant proteins is lower than that in animal proteins. Furthermore, protein N content declines with the intensity of gene expression for plants, whereas the N content of animal proteins shows no consistent pattern with expression. Additional analyses indicate that the differences in N content between plant and animal proteomes and in plant proteins as a function of gene expression cannot be attributed to protein size, GC content, gene function, or amino acid properties. These patterns suggest that ecophysiological selection has operated to conserve N in plants via decreased reliance on N-rich amino acids. This inference was supported by an analysis of conserved and variable sites indicating that the N content of plant amino acids coded by variable sites is similar to that of the sites conserved between plant and animal genomes and shows no association with expression level. In contrast, in animals, the N content of amino acids coded by variable sites is significantly higher than that for conserved sites, suggesting relaxation of selective constraints for N usage in the animal lineage. This constitutes the first evidence for an influence of environmental resource availability on proteomes of multicellular organisms.  相似文献   

17.
Plant and Soil - For plants, elemental nutrients are important belowground resources that sustain growth and survival. To understand how tropical plant nutrient status responds to environmental...  相似文献   

18.
The role of rhizosphere yeasts as plant nutrient‐scavenging microsymbionts in resource‐limited Mediterranean‐type heathlands is unknown. This study, therefore, focused on quantitative elemental distribution within the roots of a medicinal sclerophyll, Agathosma betulina (Berg.) Pillans, grown under nutrient‐poor conditions, and colonized by Cryptococcus laurentii. Micro‐particle‐induced X‐ray emission (PIXE) was used to assess quantitative elemental distribution within the roots of A. betulina inoculated with viable C. laurentii, as well as within roots of control plants that received autoclaved yeast. To aid in the interpretation of heterogeneous elemental distribution patterns, apoplastic barriers (Casparian bands) in root tissues were located using fluorescence microscopy. In addition, root cross‐sections were examined for endophytic C. laurentii using light and transmission electron microscopy (TEM). The average concentrations of P, Fe and Mn were significantly (P < 0.05) higher in roots of yeast‐inoculated plants, compared to control plants. Casparian bands were observed in the exodermal cells of both treatments, and the presence of these bands was correlated with elemental enrichment in the epi/exodermal‐outer cortical tissues. Light and TEM micrographs revealed that the yeast was not a root endophyte. This is the first report describing the role of a soil yeast as a plant nutrient‐scavenging microsymbiont.  相似文献   

19.
Russian Journal of Bioorganic Chemistry - The development of biotechnological methods for producing medicinal plants, preserving the valuable elemental and chemical composition of the group, is one...  相似文献   

20.
Sodium is unique among abundant elemental nutrients, because most plant species do not require it for growth or development, whereas animals physiologically require sodium. Foliar sodium influences consumption rates by animals and can structure herbivores across landscapes. We quantified foliar sodium in 201 locally abundant, herbaceous species representing 32 families and, at 26 sites on four continents, experimentally manipulated vertebrate herbivores and elemental nutrients to determine their effect on foliar sodium. Foliar sodium varied taxonomically and geographically, spanning five orders of magnitude. Site‐level foliar sodium increased most strongly with site aridity and soil sodium; nutrient addition weakened the relationship between aridity and mean foliar sodium. Within sites, high sodium plants declined in abundance with fertilisation, whereas low sodium plants increased. Herbivory provided an explanation: herbivores selectively reduced high nutrient, high sodium plants. Thus, interactions among climate, nutrients and the resulting nutritional value for herbivores determine foliar sodium biogeography in herbaceous‐dominated systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号