首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We constructed phylogenies of snakes from the c-mos and cytochrome b genes using conventional phylogenetic methods as well as the relatively new method of Bayesian inference. For all methods, there was excellent congruence between the c-mos and cytochrome b genes, implying a high level of support for the shared clades. Our results agree with previous studies in two important respects: first, that the scolecophidians and alethinophidians are monophyletic sister clades; and second, that the Colubroidea is a monophyletic group with the Acrochordidae as its sister clade. However, our results differ from previous studies in the finding that Loxocemus and Xenopeltis cluster with pythons. An additional noteworthy result from our data is that the genera Exiliboa and Ungaliophis, often placed with Tropidophis (and Trachyboa, not included in the present study) in the Tropidophiidae, are in reality boids.  相似文献   

2.
Phylogenetic relationships among Syndermata have been extensively debated, mainly because the sister-group of the Acanthocephala has not yet been clearly identified from analyses of morphological and molecular data. Here we conduct phylogenetic analyses on samples from the 4 classes of Acanthocephala (Archiacanthocephala, Eoacanthocephala, Polyacanthocephala, and Palaeacanthocephala) and the 3 Rotifera classes (Bdelloidea, Monogononta, and Seisonidea). We do so using small-subunit (SSU) and large-subunit (LSU) ribosomal DNA and cytochrome c oxidase subunit 1 (cox 1) sequences. These nuclear and mitochondrial DNA sequences were obtained for 27 acanthocephalans, 9 rotifers, and representatives of 6 phyla that were used as outgroups. Maximum parsimony (MP), maximum likelihood (ML), and Bayesian analyses were conducted on the nuclear rDNA(SSU+LSU) and the combined sequence dataset(SSU+LSU+cox 1 genes). Phylogenetic analyses of the combined rDNA and cox 1 data uniformly provided strong support for a clade including rotifers plus acanthocephalans (Syndermata). Strong support was also found for monophyly of Acanthocephala in analyses of the combined dataset or rDNA sequences alone. Within the Acanthocephala the monophyletic grouping of the representatives of each class was strongly supported. Our results depicted Archiacanthocephala as the sister-group to the remaining acanthocephalans. Analyses of the combined dataset recovered a sister-group relationship between Acanthocephala and Bdelloidea by parsimony, likelihood, and Bayesian methods. Support for this clade was generally strong. Alternative topologies that depicted a different rotifer sister-group of Acanthocephala (or monophyly of Rotifera) were significantly worse. In this paraphyletic assemblage of rotifers, the relative positions of Seisonidea and Monogononta to the clade Bdelloidea+Acanthocephala were inconsistent among trees based on different inference methods. These results indicate that Bdelloidea is the free-living sister-group to acanthocephalans, which should prove key for comparative investigations of the morphological, molecular, and ecological changes accompanying the evolution of parasitism.  相似文献   

3.
By a maximum likelihood analysis of mitochondrial DNA sequences, we examine Graur and Higgins' hypothesis of the Ruminantia/Cetacea clade with Suiformes as an outgroup. Graur and Higgins analyzed these sequences by the neighbor-joining and parsimony methods, as well as by the maximum likelihood method under the assumption that the substitution rate is the same for all sites. The Ruminantia/Suiformes clade assumed by the traditional taxonomy was rejected strongly by this analysis and the Ruminantia/Cetacea clade was supported. Adoption of a more realistic model distinguishing among rates at different codon positions in the maximum likelihood analysis of the same data, however, grossly reduces the significance level on the Graur-Higgins hypothesis. Thus, although the Ruminantia/Suiformes grouping is indeed least likely from Graur and Higgins' data set of mitochondrial DNA, this traditional tree cannot be rejected with statistical significance under the new analysis, and more data are needed to settle the issue. In the same way, we examine Irwin and Arnason's suggestion of the Hippopotamus/Cetacea clade by using cytochrome b and hemoglobins alpha and beta, and it turn out that their suggestion is also fragile. This analysis demonstrates the importance of selecting an appropriate model among the alternatives in the maximum likelihood analysis and of using many different genes from many relevant species in order to make reliable phylogenetic inferences.   相似文献   

4.
Phylogenetic utility of the mitochondrial COI (cytochrome oxidase subunit I) and nuclear Gpdh (glycerol-3-phosphate dehydrogenase) genes was studied in the Drosophila melanogaster species group. The rate of substitution was higher in the COI gene than in the Gpdh gene. In addition, multiple substitutions, not only for transitional but also for transversional substitutions, occurred faster in the COI gene. None of the trees obtained using the COI gene supported the well-established monophyly of the ananassae subgroup. In addition, the incongruence length difference test, Templeton test, and partitioned Bremer support revealed that the trees based on the COI data are considerably different from those based on the Gpdh and the combined data set. Thus, the COI gene did not show good phylogenetic performance in the melanogaster group. The present analyses based on the Gpdh gene and the combined data set revealed that the ananassae subgroup branched off first in the melanogaster group followed by the montium subgroup and further by the melanogaster subgroup in contrast to the most recent phylogenetic hypothesis based on Amy multigenes.  相似文献   

5.
6.
The macaques, genus Macaca, represent one of the most successful radiations within the Order Primates, with a geographical distribution that ranks second in size only to that of humans among extant primates. Although the number of macaque species recognized depends on the classification scheme used, most authors currently follow the classifications of either Fooden or Delson, both of whom recognize 19 extant macaque species. These two classifications differ in their placement of macaque species into more inclusive taxa (i.e., species groups). While researchers have attempted to use mitochondrial DNA (mtDNA) to resolve these phylogenetic relationships, different studies have generated conflicting conclusions. Consequently, we screened nuclear DNA sequences of a large number of macaques to determine if such data provide greater insight into the phylogenetic relationships among macaques. The data generated from the comparison of two (noncoding) introns within the natural resistance-associated macrophage protein 1 (NRAMP1) gene generally agree with the classification scheme of Delson. However, the data also support several novel observations. Specifically, the NRAMP1 data demonstrate that M. silenus and M. nemestrina lack nuclear genetic variation, while M. assamensis and M. radiata exhibit the greatest amount of genetic variation. In addition, these data suggest that M. fascicularis may not be as "primitive" (with respect to other members of the fascicularis group) as the mtDNA based data suggest.  相似文献   

7.
8.
The phylogeny and systematic position of Gomphillaceae was reconstructed using a combined Bayesian analysis of nuclear LSU rDNA and mitochondrial SSU rDNA sequences. Twenty-four partial sequences of 12 taxa (11 Gomphillaceae and one Asterothyriaceae) plus two new sequences of Stictis radiata (Ostropales outgroup) were generated and aligned with the corresponding sequences retrieved from GenBank, resulting in an alignment of 82 taxa that was analyzed using a Bayesian approach with Markov chain Monte Carlo (B/MCMC) methods. Our results confirm Gomphillaceae sensu Vezda and Poelt plus Asterothyriaceae to be a monophyletic group, with an unresolved relationship between the two families. Placement of Gomphillaceae and Asterothyriaceae within Ostropales sensu Kauff and Lutzoni, as sister of Thelotremataceae, also is strongly supported. Alternative hypotheses placing Gomphillaceae in Lecanorales (Cladoniaceae), Agyriales (Baeomycetaceae) or within bitunicate Ascomycota (Arthoniomycetes, Chaetothyriomycetes, Dothideomycetes) were rejected with our dataset. After recent synonymization of Dimerella with Coenogonium (Ostropales: Coenogoniaceae), we propose the new combination Coenogonium pineti (one of our Ostropales outgroup taxa in this analysis).  相似文献   

9.
The Colubroidea contains over 85% of all the extant species of snakes and is recognized as monophyletic based on morphological and molecular data. Using DNA sequences (cyt b, c-mos) from 100 species we inferred the phylogeny of colubroids with special reference to the largest family, the Colubridae. Tree inference was obtained using Bayesian, likelihood, and parsimony methods. All analyses produced five major groups, the Pareatidae, Viperidae, Homalopsidae, the Elapidae, and the Colubridae. The specific content of the latter two groups has been altered to accommodate evolutionary history and to yield a more stable taxonomy. We propose an updated classification based on the reallocation of species as indicated by our inferred phylogeny.  相似文献   

10.
The evolutionary relationship of peculiar and poorly known Ganges River dolphin with extinct and extant cetaceans has been in the state of confusion for more than a century. The close resemblance of platanistidae with some of the extinct taxon viz., Dalpiaziniidae and Waipatiidae and their sister group relationship with many of the extant lineages of cetaceans has been reported but none of the alternative hypotheses provide an unambiguous placement for this species. The present study provides insights into the molecular relationships of Platanista with other cetaceans based on comprehensive analyses of the mitochondrial cytochrome b and nuclear interphotoreceptor retinoid-binding protein gene sequences, obtained from 15 specimens of Ganges dolphin from India and Bangladesh. The mean substitution distance analysis of phylogenetically informative characters in the cytochrome b sequences suggested that Platanista gangetica is significantly closer (P<0.001) to Mysticeti than to any other group of toothed whales. However, the conventional methods of phylogenetic reconstruction supported this finding with low to moderate (41-69%) bootstrap values.  相似文献   

11.
Glassfrogs (family Centrolenidae) represent an exceptionally diverse group among Neotropical anurans, but their evolutionary relationships never have been assessed from a molecular perspective. Mitochondrial and nuclear markers were used to develop a novel hypothesis of centrolenid phylogeny. Ingroup sampling included 100 terminals, with 78 (53%) of the named species in the family, representing most of the phenotypic diversity described for the group. Thirty-five species representing taxa traditionally associated with glassfrogs were used as outgroups. Gene sampling consisted of complete or partial sequences of three mitochondrial (12S, 16S, ND1) and three nuclear markers (c-myc exon 2, RAG1, POMC) for a total of 4362 bp. Phylogenies were estimated using maximum parsimony, maximum likelihood, and Bayesian analyses for individual genes and combined datasets. The separate analysis of mitochondrial and nuclear datasets allowed us to clarify the relationships within glassfrogs; also, we corroborate the sister-group relationship between Allophryne ruthveni and glassfrogs. The new phylogeny differs significantly from all previous morphology-based hypotheses of relationships, and shows that hypotheses based on few traits are likely to misrepresent evolutionary history. Traits previously hypothesized as unambiguous synapomorphies are shown to be homoplastic, and all genera in the current taxonomy (Centrolene, Cochranella, Hyalinobatrachium, Nymphargus) are found to be poly- or paraphyletic. The new topology implies a South American origin of glassfrogs and reveals allopatric speciation as the most important speciation mechanism. The phylogeny profoundly affects the traditional interpretations of glassfrog taxonomy, character evolution, and biogeography—topics that now require more extensive evaluation in future studies.  相似文献   

12.
Partial DNA sequences from two mitochondrial (mt) and one nuclear gene (cytochrome b, 12S rRNA, and C-mos) were used to estimate the phylogenetic relationships among the six extant species of skinks endemic to the Cape Verde Archipelago. The species form a monophyletic unit, indicating a single colonization of the islands, probably from West Africa. Mabuya vaillanti and M. delalandii are sister taxa, as indicated by morphological characters. Mabuya fogoensis and M. stangeri are closely related, but the former is probably paraphyletic. Mabuya spinalis and M. salensis are also probably paraphyletic. Within species, samples from separate islands always form monophyletic groups. Some colonization events can be hypothesized, which are in line with the age of the islands. C-mos variation is concordant with the topology derived from mtDNA.  相似文献   

13.
Phylogenetic relationships of species of genus Pseudoxiphophorus have been only tackled in detail based on morphology so far. However, phylogenetic evidence based on molecular data is still lacking. In this study, we have used five molecular markers (mitochondrial cytb, 16S, atp6-8, and nuclear actB and S7) to reconstruct a robust, inclusive phylogeny of Pseudoxiphophorus. Our phylogenetic results strongly disagree with the main morphological hypothesis, and indicate different phylogenetic relationships among the recognized species of Pseudoxiphophorus. Pseudoxiphophorus jonesii is recovered as the sister group of all other Pseudoxiphophorus lineages, and this initial splitting may be associated to the extension of the Mexican Neovolcanic Plateau at the Punta del Morro site (event used to calibrate our dating analysis). The branch leading to all other Pseudoxiphophorus separated subsequently into two major groups, one comprising those lineages occurring in southern Mexico and Guatemala–Belize, and another with those lineages that extended further southwards to Honduras and Nicaragua. This event took place during the Pliocene, and is likely associated with periods of inundation of the Polochic–Motagua fault area. The Isthmus of Tehuantepec also appears to have been a strong biogeographic barrier triggering cladogenesis in Pseudoxiphophorus. Heterandria formosa (traditionally placed as sister to Pseudoxiphophorus) is not sharing the most recent common ancestor with Pseudoxiphophorus, and is recovered as more distantly related to them. Furthermore, Pseudoxiphophorus bimaculatus (the most cosmopolitan species) is also recovered as a polyphyletic assemblage that appears to comprise those Pseudoxiphophorus that have not been assigned to the other eight, more localized species. All this suggests that Pseudoxiphophorus needs a major taxonomic revision as a whole in order to incorporate all existing diversity.  相似文献   

14.
We performed a phylogenetic estimation of the family Mytilidae in the East China Sea based on nuclear internal transcribed spacer (ITS) genes and two mitochondrial genes (COI and 16S RNA). Analysis of five mytilid species based on each of the three genes resulted in mostly congruent trees, although there were some discrepancies in the classification of these species. We combine the results obtained from the three separate analyses to provide a phylogenetic estimation of Mytilidae. We found that the Mytilidae was divided into two major lineages: in one clade, Mytilus galloprovincialis was grouped with Mytilus coruscus; in the second clade, Septifer bilocularis was placed at the basal position in an individual clade, and Perna viridis and Musculista senhousia were recovered as a monophyletic group. Although these finding provide important insights into the taxonomic relationships among the Mytilidae, many aspects of Mytilidae phylogeny remain unresolved. Further analysis based on more molecular information and extensive taxon sampling is necessary to elucidate the phylogenetic relationships among the major lineages within the Mytilidae.  相似文献   

15.
16.
Abstract.  A phylogenetic hypothesis for the tribe Ithomiini (Lepidoptera: Nymphalidae: Danainae) is presented, based on sequences of the mitochondrial cytochrome oxidase subunits I and II (COI–COII) region and regions of the nuclear genes wingless and Elongation factor 1-alpha . Branch support for each clade is assessed, and a partition congruence index is used to explore conflict among gene regions. The monophyly of the clade is strongly supported, as are many of the traditionally recognized subtribes and genera. The data imply paraphyly of some genera and tribes, but largely support recent classifications and phylogenetic hypotheses based on morphological characters.  相似文献   

17.
The dove louse genus Columbicola has become a model system for studying the interface between microevolutionary processes and macroevolutionary patterns. This genus of parasitic louse (Phthiraptera) contains 80 described species placed into 24 species groups. Samples of Columbicola representing 49 species from 78 species of hosts were obtained and sequenced for mitochondrial (COI and 12S) and nuclear (EF-1alpha) genes. We included multiple representatives from most host species for a total of 154 individual Columbicola, the largest molecular phylogenetic study of a genus of parasitic louse to date. These sequences revealed considerable divergence within several widespread species of lice, and in some cases these species were paraphyletic. These divergences correlated with host association, indicating the potential for cryptic species in several of these widespread louse species. Both parsimony and Bayesian maximum likelihood phylogenetic analyses of these sequences support monophyly for nearly all the non-monotypic species groups included in this study. These trees also revealed considerable structure with respect to biogeographic region and host clade association. These patterns indicated that switching of parasites between host clades is limited by biogeographic proximity.  相似文献   

18.
The softshell turtles (Trionychidae) are one of the most widely distributed reptile groups in the world, and fossils have been found on all continents except Antarctica. The phylogenetic relationships among members of this group have been previously studied; however, disagreements regarding its taxonomy, its phylogeography and divergence times are still poorly understood as well. Here, we present a comprehensive mitogenomic study of softshell turtles. We sequenced the complete mitochondrial genomes of 10 softshell turtles, in addition to the GenBank sequence of Dogania subplana, Lissemys punctata, Trionyx triunguis, which cover all extant genera within Trionychidae except for Cyclanorbis and Cycloderma. These data were combined with other mitogenomes of turtles for phylogenetic analyses. Divergence time calibration and ancestral reconstruction were calculated using BEAST and RASP software, respectively. Our phylogenetic analyses indicate that Trionychidae is the sister taxon of Carettochelyidae, and support the monophyly of Trionychinae and Cyclanorbinae, which is consistent with morphological data and molecular analysis. Our phylogenetic analyses have established a sister taxon relationship between the Asian Rafetus and the Asian Palea + Pelodiscus + Dogania + Nilssonia + Amyda, whereas a previous study grouped the Asian Rafetus with the American Apalone. The results of divergence time estimates and area ancestral reconstruction show that extant Trionychidae originated in Asia at around 108 million years ago (MA), and radiations mainly occurred during two warm periods, namely Late Cretaceous–Early Eocene and Oligocene. By combining the estimated divergence time and the reconstructed ancestral area of softshell turtles, we determined that the dispersal of softshell turtles out of Asia may have taken three routes. Furthermore, the times of dispersal seem to be in agreement with the time of the India–Asia collision and opening of the Bering Strait, which provide evidence for the accuracy of our estimation of divergence time. Overall, the mitogenomes of this group were used to explore the origin and dispersal route of Trionychidae and have provided new insights on the evolution of this group.  相似文献   

19.
SQ Liu  RL Mayden  JB Zhang  D Yu  QY Tang  X Deng  HZ Liu 《Gene》2012,508(1):60-72
The superfamily Cobitoidea of the order Cypriniformes is a diverse group of fishes, inhabiting freshwater ecosystems across Eurasia and North Africa. The phylogenetic relationships of this well-corroborated natural group and diverse clade are critical to not only informing scientific communities of the phylogeny of the order Cypriniformes, the world's largest freshwater fish order, but are key to every area of comparative biology examining the evolution of traits, functional structures, and breeding behaviors to their biogeographic histories, speciation, anagenetic divergence, and divergence time estimates. In the present study, two mitochondrial gene sequences (COI, ND4+5) and four single-copy nuclear gene segments (RH1, RAG1, EGR2B, IRBP) were used to infer the phylogenetic relationships of the Cobitoidea as reconstructed from maximum likelihood (ML) and partitioned Bayesian Analysis (BA). Analyses of the combined mitochondrial/nuclear gene datasets revealed five strongly supported monophyletic Cobitoidea families and their sister-group relationships: Botiidae+(Vaillantellidae+(Cobitidae+(Nemacheilidae+Balitoridae))). These recovered relationships are in agreement with previous systematic studies on the order Cypriniformes and/or those focusing on the superfamily Cobitoidea. Using these relationships, our analyses revealed pattern lineage- or ecological-group-specific evolution of these genes for the Cobitoidea. These observations and results corroborate the hypothesis that these group-specific-ancestral ecological characters have contributed in the diversification and/or adaptations within these groups. Positive selections were detected in RH1 of nemacheilids and in RAG1 of nemacheilids and genus Vaillantella, which indicated that evolution of RH1 (related to eye's optic sense) and RAG1 (related to immunity) genes appeared to be important for the diversification of these groups. The balitorid lineage (those species inhabiting fast-flowing riverine habitats) had, as compared with other cobitoid lineages, significantly different dN/dS, dN and dS values for ND4 and IRBP genes. These significant differences are usually indicative of weaker selection pressure, and lineage-specific evolution on genes along the balitorid lineage. Furthermore, within Cobitoidea, excluding balitorids, species living in subtropics had significantly higher dN/dS values in RAG1 and IRBP genes than those living in temperate and tropical zones. Among tropical cobitoids, genes COI, ND5, EGR2B, IRBP and RH1, had a significantly higher mean dS value than those species in subtropical and temperate groups. These findings suggest that the evolution of these genes could also be ecological-group-specific and may have played an important role in the adaptive evolution and diversification of these groups. Thus, we hypothesize that the genes included in the present study were actively involved in lineage- and/or ecological-group-specific evolutionary processes of the highly diverse Cobitoidea. These two evolutionary patterns, both subject to further testing, are hypothesized as integral in the diversification with this major clade of the world's most diverse group of freshwater fishes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号