首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The seasonal variation in the total nitrogen content of the xylem sap of the lower trunk section was investigated for two middle aged beech tree stands in northern Hessen each containing 130 trees. In addition seasonal changes in the percentage of nitrate in the total nitrogen content are described. The median values of the total nitrogen content of the xylem sap during the spring mobilization period reached 175 and 250 mg/l. During the summer about 35% of the total nitrogen in the xylem sap is in the form of nitrate. Finally, the distribution of NO3 in the xylem sap along the trunk height was studied for two sample trees for each of the four seasons (n = 8).  相似文献   

2.
Phloem loading in peach: Symplastic or apoplastic?   总被引:2,自引:0,他引:2  
Sorbitol and sucrose are the two main soluble carbohydrates in mature peach leaves. Both are translocated in the phloem, in peach as in other rosaceous trees. The respective role of these two soluble carbohydrates in the leaf carbon budget, and their phloem loading pathway, remain poorly documented. Though many studies have been carried out on the compartmentation and export of sucrose in sucrose-transporting species, far less is known about sorbitol in species transporting both sucrose and sorbitol. Sorbitol and sucrose concentrations were measured in several tissues and in sap, in 2-month-old peach (Prunus persica L. Batsch) seedlings, i.e. leaf blade, leaf main vein, petiole, xylem sap collected using a pressure bomb, and phloem sap collected by aphid stylets. The sorbitol to sucrose molar ratio depended on the tissue or sap, the highest value (about 7) found in the leaf main vein. Sorbitol concentration in the phloem sap was about 560 mM, whereas that of sucrose was about 140 mM. The lowest sorbitol and sucrose concentrations were observed in xylem sap collected from the shoot. The volume of the leaf apoplast, estimated by infiltration with 3H-inulin, represented about 17% of the leaf blade water content. This volume was used to calculate a global intracellular concentration for each carbohydrate in the leaf blade. Following these simplifying assumptions, the calculated concentration gradient between the leaf's intracellular compartment and phloem sap is nil for sorbitol and could thus allow for the symplastic loading of the phloem of this alditol. However, infiltration of 14C-labelled source leaves with 2 mMp-chloromercuribenzenesulfonic acid (PC-MBS), a potent inhibitor of the sucrose carrier responsible for phloem loading in sucrose-transporting plants, had a significant effect on the exudation of both labelled sucrose and sorbitol from the phloem. Therefore, in peach, which is a putative symplastic loader according to minor vein anatomy and sorbitol concentration gradients, apoplastic loading may predominate.  相似文献   

3.
  • Positive sap pressures are produced in the xylem of birch trees in boreal conditions during the time between the thawing of the soil and bud break. During this period, xylem embolisms accumulated during wintertime are refilled with water. The mechanism for xylem sap pressurization and its environmental drivers are not well known.
  • We measured xylem sap flow, xylem sap pressure, xylem sap osmotic concentration, xylem and whole stem diameter changes, and stem and root non‐structural carbohydrate concentrations, along with meteorological conditions at two sites in Finland during and after the sap pressurisation period.
  • The diurnal dynamics of xylem sap pressure and sap flow during the sap pressurisation period varied, but were more often opposite to the diurnal pattern after bud burst, i.e. sap pressure increased and sap flow rate mostly decreased when temperature increased. Net conversion of soluble sugars to starch in the stem and roots occurred during the sap pressurisation period. Xylem sap osmotic pressure was small in comparison to total sap pressure, and it did not follow changes in environmental conditions or tree water relations.
  • Based on these findings, we suggest that xylem sap pressurisation and embolism refilling occur gradually over a few weeks through water transfer from parenchyma cells to xylem vessels during daytime, and then the parenchyma are refilled mostly during nighttime by water uptake from soil. Possible drivers for water transfer from parenchyma cells to vessels are discussed. Also the functioning of thermal dissipation probes in conditions of changing stem water content is discussed.
  相似文献   

4.
Nitrogen and Cation Nutrition of Three Ecologically Different Plant Species   总被引:1,自引:0,他引:1  
Apple rootstocks M.7 were given a nitrogen application either in the spring or in the preceding autumn. At the time of the spring application some rootstocks were ringed. During the 50-day experimental period from bud-break, shoot growth and the amount of nitrogen incorporated into the new shoots were slightly reduced in the spring-treated trees and strongly reduced in the ringed trees of both treatments. Roots of unringed autumn-fertilized trees showed higher levels of total and amino nitrogen than those of similar trees in the spring treatment; to a lesser degree, the reverse held for xylem sap from the stem. Ringing increased the amino-nitrogen level in the roots, which suggests a reduced translocation rate. The nitrogen treatments led to marked differences in the percentage composition of the amino-nitrogen fraction of roots and xylem sap. The distribution of amino acids and amides in the roots and that in xylem sap of the same trees was divergent, but arginine and asparagine often were the most important constituents. Aspartic acid was rather abundant in xylem sap. Ringing did not affect the composition of the amino-nitrogen fraction in the roots quantitatively but increased the proportion of arginine in the sap. The possible relationship between the composition of xylem sap and soluble nitrogen in the roots is discussed. It is argued that especially in spring-fertilized trees appreciable amounts of nitrogen must be translocated via the phloem in addition to the transport in the xylem.  相似文献   

5.
To evaluate whether abscisic acid (ABA) in the xylem sap playsan important role in controlling stomatal aperture of field-grownPrunus persica trees under drought conditions, stomatal conductance(g) and xylem ABA concentrations were monitored both in irrigatedand non-irrigated trees, on two consecutive summer days (threetimes a day). Stomata1 conductance of non-irrigated trees hada morning maximum and declined afterwards. The changes in gduring the day, rather than resulting from variations in theconcentrations of ABA in the xylem sap or the delivery rateof this compound to the leaves, were associated with changesin the relationship between g and xylem ABA. The stomata ofwater-stressed trees opened during the first hours of the day,despite the occurrence of a high concentration of ABA in thexylem sap. However, stomatal responsiveness to ABA in the xylemwas enhanced throughout the day. As a result, a tight inverserelationship between g and the logarithm of xylem ABA concentrationwas found both at midday and in the afternoon. A similar relationshipbetween g and ABA was found when exogenous ABA was fed to leavesdetached from well-watered trees. These results indicate thatABA derived from the xylem may account for the differences ing observed between field-grown peach trees growing with differentsoil water availabilities. Several possible explanations forthe apparent low stomatal sensitivity to xylem ABA in the morning,are discussed, such as high leaf water potential, low temperatureand high cytokinin activity. Key words: Prunus persica L., stomata, xylem ABA, water deficits, root-to-shoot communication  相似文献   

6.
Pate  John S.  Jeschke  W. Dieter 《Plant and Soil》1993,155(1):273-276
Xylem sap of sinker (tap) root, cluster feeding roots, lateral roots and from an age series of main stem extensions of 6-year trees of Banksia prionotes was collected and analyzed for principal organic and inorganic solutes. During the phase of root uptake activity in winter and spring, cluster roots were principal xylem donors of malate, phosphate, chloride, sodium, potassium and amino acid N whereas other parts of the root served as major sources to the shoot of other cations, nitrate and sulphate. Sinker root xylem sap was at all times less concentrated in solutes than that of lateral roots into which cluster roots were voiding exported solutes. Phosphate was abstracted from xylem by stem tissue during winter and it and a range of other solutes released back to xylem immediately prior to extension growth of the shoot in summer. Phloem sap collected from mid regions of stems was unusually low in potassium and phosphate relative to chloride and sulphate in comparison with phloem sap of other species, and its low potassium: sodium ratio relative to xylem indicated poor discrimination against sodium during phloem loading. Data are discussed in relation to the asynchronous seasonal cycles of nutrient uptake and shoot growth.  相似文献   

7.
The effects of placing solid implants containing Fe sulfate in branches of Fe-deficient pear and peach trees on the composition of the xylem sap have been studied. Iron sulfate implants are commercially used in northeastern Spain to control iron chlorosis in fruit trees. Implants increased Fe concentrations and decreased organic acid concentrations in the xylem sap, whereas xylem sap pH was only moderately changed. The citrate to Fe ratios decreased markedly after implants, therefore improving the possibility that Fe could be reduced by the leaf plasma membrane enzyme reductase, known to be inhibited by high citrate/Fe ratios. In peach, the effects of the implants could be observed many months post treatment. In pear, some effects were still observed one year after the implants had taken place. Results obtained indicate that solid Fe sulfate implants were capable of significantly changing the chemical composition of the xylem sap in fruit trees.  相似文献   

8.
Abscisic-acid content of xylem sap   总被引:2,自引:0,他引:2  
R. M. Davison  H. Young 《Planta》1973,109(1):95-98
Summary Abscisic acid (ABA) has been identified by gas chromatography in xylem sap of the woody species apple, peach, willow, sugar maple, Tecomaria capensis and Actinidia chinensis. The amounts of ABA present in each species are markedly different, varying from 9 to over 1000 ng/100 ml of sap.  相似文献   

9.
Removal of fruits and treatment with SADH (succinic acid 2,2-dimethylhydrazide) were used to change the balance between sources and sinks for photosynthates in Malus domestica‘Golden Delicious’. Sorbitol and sugar content were measured in bleeding sap, in xylem sap prepared by suction, and in 80% methanol extracts of the roots. Concentration as well as total amount of sorbitol in bleeding sap sampled in July and September were lower in fruiting than in defruited trees, and so was the total amount of sorbitol in xylem sap from the trunk. SADH treatment tended to reduce the sorbitol content. Sorbitol in root extracts, expressed as percentage of methanol (80%) insoluble root dry matter, was highest in fruiting trees; but root dry matter was here less than half of that in defruited trees. Sorbitol content in xylem sap as well as sorbitol + sugar percentage of roots showed a distinct maximum in late winter followed by a heavy decrease during spring. It is suggested that sorbitol in xylem sap during the growth season represents a return transport from the roots, and that the level of sorbitol in this return transport reflects, to a certain degree, the ratio between leaf area and assimilate demand by the tree.  相似文献   

10.
A method for analyzing multiple plant hormone groups in small samples with a complex matrix was developed to initiate a study of the physiology of abnormal vertical growth (AVG) in Macadamia integrifolia (cv. HAES344). Cytokinins (CKs), gibberellins (GAs), abscisic acid (ABA), and auxins were detected in xylem sap and apical and lateral buds using high-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (LC-QToF-MS/MS). The extraction method separated compounds with high sensitivity in positive (CKs) and negative (ABA, auxins, GAs) modes of QToF-MS/MS. CK profiles differed in xylem sap and apical and lateral buds irrespective of AVG symptoms. Trans-zeatin riboside (t-ZR) was dominant in sap of normal and AVG trees (∼4 and 6 pmol g−1 FW, respectively). In apical buds isopentenyl adenine (iP) (∼30 pmol g−1 FW) was the most abundant CK, and in lateral buds trans-zeatin (t-Z) (22–24 pmol g−1 FW) and iP (24–30 pmol g−1 FW) were the most abundant. t-Z levels of AVG trees were higher in apical buds (13.88 vs. 6.6 pmol g−1 FW, p < 0.05) and lower in sap (0.16 vs. 0.51 pmol ml−1, p < 0.005) compared to normal trees. ABA in lateral buds was 1.9 times higher (p < 0.001) in AVG. IAA was below quantification, whereas indole-3-butyric acid (IBA) was consistently present. GA7 was the dominant GA in apical and lateral buds of all trees (100–150 pmol g−1 FW). GA3, 4, & 9 were consistently present at low concentrations (<12 pmol g−1 FW) in buds. GAs1, 3, & 9 were detected in xylem sap at low concentrations (<0.5 pmol g−1 FW). Differences in sap amino acids (AA) were also assessed. In sap from AVG trees, asparagine and glutamine increased significantly (p < 0.05) in their contribution to total AA. Potential AVG hormone correlations are discussed.  相似文献   

11.
Distribution of Nitrogen during Growth of Sunflower (Helianthus annuus L.)   总被引:1,自引:0,他引:1  
The accumulation, distribution and redistribution of dry matterand nitrogen is described for Helianthus annuus L. cv. Hysun21 grown on 6 mM urea in glasshouse culture. Seed dry matterand nitrogen were transferred to seedlings with net efficienciesof 40 and 86 per cent respectively. At flowering, the stem hadmost of the plant's dry matter and the leaves most of its nitrogen.About 35 per cent of the plant's nitrogen accumulated afterthree-row anthesis. The amount of protein in vegetative parts,especially leaves, declined after flowering. Concentrationsof free amino compounds also decreased during growth. Matureseeds had 38 per cent of the total plant dry weight and 68 percent of the total nitrogen. Seeds acquired 33 per cent of theirdry matter and nitrogen from redistribution from above-groundplant parts. The stem was most important for storage of carbohydrate,leaves the most important for nitrogen. Over 50 per cent ofthe nitrogen in the stem and leaves was redistributed. Plantsthat received 6 mM nitrate accumulated more dry matter thanurea-grown plants. Seeds from nitrate-grown plants were heavier(58 mg) than those of urea-grown plants (46 mg), and their percentageoil was greater (50 and 41 respectively). The amount of nitrogenper seed was the same. Little or no urea was detected in xylem sap of plants suppliedwith 5 mM urea, but it was detected in sap of plants which received25 mM. Concentrations of urea and amino compounds in the sapdecreased up the stem. Plants supplied with nitrate had mostof the nitrogen in xylem sap as NO2, suggesting littlenitrate reduction in roots. Plants grown on 6 mM nitrate andchanged to high levels of urea-nitrogen for 14 days still hadhigh levels of nitrate; little nitrate remained in plants receivinglow levels of urea. When urea is applied in irrigation waterto field-grown sunflower, the nitrogen is subsequently takenup as nitrate due to rapid nitrogen transformations in the soil. Helianthus annuus L., sunflower, urea, nitrate, nitrogen transport, xylem sap, nitrogen accumulation nitrogen distribution  相似文献   

12.
Tracheal sap was extracted from sections of stems (0.5 to 1.5 cm in diameter and 7.5 to 15.0 cm in length) of orange trees (Citrus sinensis (L.) Osbeck cv. Washington Navel) by using a combination of the vacuum and liquid displacement methods. The volume of sap obtained and its concentration of nitrogenous compounds were dependent on the volume of displacing liquid used for the extraction. Four ml of water-saturated 1-butanol extracted essentially all of the xylem fluid present in the stem sections without apparent production of artifacts. The time of sampling affected the nitrogen concentration of the tracheal sap, but not the content of xylem nitrogen per volume of stem material. The orientation of the stems in the tree and the diameter of the stems had an effect on their contents of xylem nitrogen, with southeastern orientation and thinner stems showing higher concentrations. We could not detect the presence of ammonium, nitrites or proteins in the tracheal sap of orange trees. Most of the nitrogen was present as amino acids and about 2% of the total in the form of nitrates. The qualitative composition of amino acids, as determined by TLC, was the same both in winter and spring tracheal sap. The main components of the sap were proline and arginine in winter, and these amino acids together with asparagine and aspartic acid in spring.  相似文献   

13.
In the present study, important components of carbon metabolism of mature leaves of young poplar trees (Populus x canescens) were determined. Carbohydrate concentrations in leaves and xylem sap were quantified at five different times during the day and compared with photosynthetic gas exchange measurements (net assimilation, transpiration and rates of isoprene emission). Continuously measured xylem sap flow rates, with a time resolution of 15 min, were used to calculate diurnal balances of carbon metabolism of whole mature poplar leaves on different days. Loss of photosynthetically fixed carbon by isoprene emission and dark respiration amounted to 1% and 20%. The most abundant soluble carbohydrates in leaves and xylem sap were glucose, fructose and sucrose, with amounts of approx. 2 to 12 mmol m(-2) leaf area in leaves and about 0.2 to 15 mM in xylem sap. Clear diurnal patterns of carbohydrate concentration in xylem sap and leaves, however, were not observed. Calculations of the carbon transport rates in the xylem to the leaves were based on carbohydrate concentrations in xylem sap and xylem sap flow rates. This carbon delivery amounted to about 3 micromol C m(-2) s(-1) during the day and approx. 1 micromol C m(-2) s(-1) at night. The data demonstrated that between 9 and 28 % of total carbon delivered to poplar leaves during 24 h resulted from xylem transport and, hence, provide a strong indication for a significant rate of carbon cycling within young trees.  相似文献   

14.
Cytokinins are predominantly root-born phytohormones which are distributed in the shoot via the xylem stream. In the hormone message concept they are considered as root signals mediating the transport of the photosynthates to the various sinks of a plant. In this paper the cytokinin relations of Urtica dioica L., the stinging nettle, are described, based on the daily flux from the roots to the shoot. Trans-zeatin-type cytokinins predominate in the various tissues of Urtica (Wagner and Beck, 1993), and accordingly trans-zeatin riboside and trans-zeatin are the forms transported by the xylem sap. The daily time-course of cytokinin concentration in root pressure exudates and in xylem sap collected from a petiole after pressurizing the root bed showed high concentrations in the morning, followed by a substantial drop to a level of 15–30% of the initial concentration which was then maintained during the afternoon. This time-course is interpreted as resulting from continuous synthesis and exudation of cytokinins into the xylem fluid of the roots whose cytokinin concentration is then modified by the dynamics of the transpiration stream. Loading of cytokinins into the xylem sap could be enhanced several times by increasing the flux rate of the xylem stream to the maximal transpiration rate when a maximum export rate was reached. The total daily cytokinin gain by the shoot depended on the nitrogen status of the plant. Roots of Urtica plants grown on a sufficient nitrogen supply had a significantly higher cytokinin content and exuded more cytokinins into the shoot than those of plants raised under nitrogen shortage. A positive correlation was found between the steady rates of cytokinin export measured during the afternoon and the shoot to root-ratios of biomass which, in turn, corresponded to the nitrogen status of the plants.  相似文献   

15.
The significance of xylem function and metabolic scaling theory begins from the idea that water transport is strongly coupled to growth rate. At the same time, coordination of water transport and growth seemingly should differ between plant functional types. We evaluated the relationships between water transport, growth and species stature in six species of co‐occurring trees and shrubs. Within species, a strong proportionality between plant hydraulic conductance (K), sap flow (Q) and shoot biomass growth (G) was generally supported. Across species, however, trees grew more for a given K or Q than shrubs, indicating greater growth‐based water‐use efficiency (WUE) in trees. Trees also showed slower decline in relative growth rate (RGR) than shrubs, equivalent to a steeper G by mass (M) scaling exponent in trees (0.77–0.98). The K and Q by M scaling exponents were common across all species (0.80, 0.82), suggesting that the steeper G scaling in trees reflects a size‐dependent increase in their growth‐based WUE. The common K and Q by M exponents were statistically consistent with the 0.75 of ideal scaling theory. A model based upon xylem anatomy and branching architecture consistently predicted the observed K by M scaling exponents but only when deviations from ideal symmetric branching were incorporated.  相似文献   

16.
M. R. Bowen  G. V. Hoad 《Planta》1968,81(1):64-70
Summary It is shown that there is one growth inhibitor in the phloem sap and two in the xylem sap of willow (S. viminalis L.). The concentration of the inhibitor in the phloem sap, (+)-abscisic acid, increases as the plants enter dormancy. This is also shown for (+)-abscisic acid in the xylem sap, but the concentration of the second inhibitor decreases in a reciprocal manner.  相似文献   

17.
Thein vivo 14CO2 fixation assay and xylem sap analysis showed that inSesbania rostrata the transport of fixed nitrogen from stem nodules was in the amide form. The majority of nitrogen was transported as asparagine. The close relationship between nodule phosphoenolpyruvate carboxylase and nitrogenase activities suggested that nodule CO2 fixation contributed directly to nitrogen assimilation in stem nodules ofS. rostrata.  相似文献   

18.
Due to anthropogenic activities trees that often occupy nitrogen-poorenvironments are exposed to high loads of atmospheric nitrogen.Nitrogen influx into the leaves by dry and wet deposition maythen contribute a considerable fraction to total nitrogen requiredfor growth and development of trees. This uncontrolled influxdoes not only affect nitrogen, but also sulphur metabolism,because of regulatory interactions of nitrogen and sulphur assimilationby inter-pathway control. To assess the metabolic consequencesof nitrogen influx via the leaves, analysis of its influenceon the uptake of nitrogen and sulphur compounds by the rootsand the distribution of these compounds within the trees arerequired. Techniques that may be used for this purpose underfield conditions include (a) depletion of artificial soil waterfor the analysis of root uptake, (b) xylem sap extraction bypressure and displacement, (c) xylem sap flow analysis by heatbalance methods, and (d) phloem sap exudation by extractionof bark segments. To quantify the contribution of gaseous nitrogeninflux into the leaves to total nitrogen nutrition, additionaltrace gas exchange studies by dynamic chamber techniques arerequired. In the present report, these techniques are discussedwith special emphasis on the application under field conditions. Key words: Dry deposition, nitrogen and sulphur uptake, phloem sap, xylem sap  相似文献   

19.
A new method is described for measuring dissolved gas concentrations in small volumes of xylem sap using membrane inlet mass spectrometry. The technique can be used to determine concentrations of atmospheric gases, such as argon, as reported here, or for any dissolved gases and their isotopes for a variety of applications, such as rapid detection of trace gases from groundwater only hours after they were taken up by trees and rooting depth estimation. Atmospheric gas content in xylem sap directly affects the conditions and mechanisms that allow for gas removal from xylem embolisms, because gas can dissolve into saturated or supersaturated sap only under gas pressure that is above atmospheric pressure. The method was tested for red trumpet vine, Distictis buccinatoria (Bignoniaceae), by measuring atmospheric gas concentrations in sap collected at times of minimum and maximum daily temperature and during temperature increase and decline. Mean argon concentration in xylem sap did not differ significantly from saturation levels for the temperature and pressure conditions at any time of collection, but more than 40% of all samples were supersaturated, especially during the warm parts of day. There was no significant diurnal pattern, due to high variability between samples.  相似文献   

20.
Argon gas was incorporated into the sap flowing through xylem of cut branches, or added to the air in a sealed cuvette surrounding a needle-free portion of the branch to investigate lateral movement of gases in Pinus strobus. Microdialysis was used to sample air in the xylem and evacuated vials were used to collect samples of air from cuvettes attached to branches. Argon concentrations of samples of air were measured by GC-MS. When argon was added through the sap, concentrations of argon in the xylem and in air of chambers enclosing needle stumps was greater than that of controls, but argon concentrations of air in cuvettes enclosing a needle-free portion of the branch were not greater than controls. When argon was added to cuvettes enclosing a needle-free portion of the branch, the argon did not enter the xylem and it was not emitted by needle stumps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号