首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
为丰富大豆种质资源,改良大豆品质,对现有的大豆品种进行改良,以获得新的大豆品系。大豆品种高蛋白东农42和高脂肪东农163经NaN3诱变处理后,分别在其M6代品系中取32份和54份材料进行实验,对它们的农艺性状(株高、百粒重等)和部分品质(脂肪、水溶蛋白和碱溶蛋白)进行了分析。结果表明:(1)所有品系的品质性状的变异系数差别较大,说明在后代中进行品质性状筛选是有效的;(2)突变品系内脂肪含量与水溶性蛋白含量呈显著负相关。  相似文献   

2.
Following drought stress at supraoptimal temperature the increase in proline (Pro) content in transgenic (T) soybean [Glycine max (L.) Merr. cv. Ibis] plants overexpressing the gene coding for the last enzyme of Pro biosynthesis, L-Δ1-pyrroline-5-carboxylate reductase, was much greater than in wild type (W) plants (105-fold versus 19-fold after 7 d). Under control conditions arginine accounted for nearly 60 % of the total free amino acid content. After stress treatment the content of Pro was more than 50 % in both T and W genotypes, and at the end of recovery the γ-aminobutyrate content reached 27 and 53 % in the W and T plants, respectively. Without stress treatment there was only a 2-fold difference between T and W in the tyrosine content. However, during the stress period and the subsequent recovery a similar difference was found for many amino acids. The present results indicate that manipulating of the content of a single amino acid influences the whole free amino acid composition in soybean.  相似文献   

3.
4.
A strong oxidative stress-inducible peroxidase (POD) promoter was cloned from sweetpotato (Ipomoea batatas) and characterized in transgenic tobacco plants and cultured cells in terms of environmental stress. A POD genomic clone (referred to as SWPA2) consisted of 1824 bp of sequence upstream of the translation start site, two introns (743 bp and 97 bp), and a 1073 bp coding region. SWPA2 had previously been found to encode an anionic POD which was highly expressed in response to oxidative stress. The SWPA2 promoter contained several cis-element sequences implicated in oxidative stress such as GCN-4, AP-1, HSTF, SP-1 reported in animal cells and a plant specific G-box. Employing a transient expression assay in tobacco protoplasts, with five different 5-deletion mutants of the SWPA2 promoter fused to the -glucuronidase (GUS) reporter gene, the 1314 bp mutant deletion mutant showed about 30 times higher GUS expression than the CaMV 35S promoter. The expression of GUS activity in transgenic tobacco plants under the control of the –1314 SWPA2 promoter was strongly induced in response to environmental stresses including hydrogen peroxide, wounding and UV treatment. Furthermore, GUS activity in suspension cultures of transgenic cells derived from transgenic tobacco leaves containing the –1314 bp SWPA2 promoter-GUS fusion was strongly expressed after 15 days of subculture compared to other deletion mutants. We anticipate that the –1314 bp SWPA2 promoter will be biotechnologically useful for the development of transgenic plants with enhanced tolerance to environmental stress and particularly transgenic cell lines engineered to produce key pharmaceutical proteins.  相似文献   

5.
6.
A number of independently derived transgenic soybean plants expressing a chimeric β-glucuronidase (GUS) gene under the control of the 355 CaMV promoter and a nopaline synthase polyadenylation signal were recovered using direct DNA transfer via electric discharge particle acceleration. Expression of GUS in R, plants was localized using thin tissue sections. Many tissue types expressed GUS at various levels. Pericycle cells in root, parenchyma cells in xylem, and phloem tissues of stem and leaf had high levels of enzyme activity. Procambium, phloem, and cortex cells in root, vascular cambium cells in stem, and the majority of cortex cells in leaf midrib, expressed low or no GUS activity. Intermediate levels of GUS activity were detected in leaf mesophyll cells, certain ground tissue cells in stem and leaf midrib, and in trichome and epidermal guard cells. Thus, we conclude that the 35S CaMV promoter is cell-type specific and is developmentally regulated in soybean.  相似文献   

7.
8.
野大豆种群转座子和转录因子的多样性和分子适应   总被引:1,自引:0,他引:1       下载免费PDF全文
对环境变化的适应机理一直是进化生物学和生态学长期争论的核心课题。根据适应逆境的生态学和分子生理的最新进展,设想逆境诱导转座子的转座,影响转录因子的表达,随即改变一系列抗性基因的表达水平,抗性种群快速适应形成;由此可能建立一个统一的进化理论。从黄河入海口野生大豆(Glycine soja)盐渍种群植株DNA扩增到一段干旱应答元件结合蛋白基因(DREB)序列,称为GsDREB1。克隆了一个全长的类Gypsy逆转录转座子整合酶基因序列,称为GsINT。种群内各植株该序列有多个拷贝,植株间存在限制片段长度多态性。根据所得的这两个序列,设计并合成包括GsINT 5'上游保守序列的Gs-1等若干引物,试图检测野大豆基因组中GsDREB1的5'上游是否存在逆转录转座子整合酶序列。将GsDREB1标记为探针,Southern杂交表明用Gs-1为正向引物GmDR1为逆向引物所扩增的产物既是多拷贝而又与GsDREB1高度同源。这一对引物扩增和部分测序的结果暗示逆转录转座子有的插入DREB的5'上游,种群内外植株间显现两基因间隔长度的多样性。据此提出抗性种群形成即适应进化分子机理的下列假说。正常种群主要由非抗性普通植株组成。当环境发生变化处于逆境条件时,种群内植株转座频率大大增加。转座子非定向地插入基因组。多数突变中性,不影响表型。少数插入到转录因子的5'上游或其编码区,可促进或阻抑其表达,由此引发转录因子所控制的抗性基因网络表达的增加或减少,抗性相应增加或降低。总的结果是在短时间内就能积累包括高抗性植株在内的有各种抗性水平的个体;对逆境敏感的个体不断地被自然选择所淘汰,但逆境不断诱导其产生,少数植株有可能利用逆境减弱的较短时间完成发育得以生存下来。此假说可以解释逆境条件下的植物种群为什么能快速形成而有更高的遗传多样性;又为什么抗性种群在高抗性植株产生的同时有时存在敏感植株。逆境促进的转座改变转录因子基因表达可能是植物生理和形态快速进化的一般分子机理。  相似文献   

9.
Soybean plants show diversity in stem-growth habit which ranges from the determinate type to the indeterminate type. Stem growth of determinate plants abruptly terminate near the beginning of flowering. The possible involvement of jasmonic acid (JA) in the control of the stem growth-habit was examined in indeterminate and determinate isolines of soybean [ Glycine max (L.) Merril cv. Harosoy]. JA-like activities in leaves of both isolines were very low 20 days before the commencement of flowering. The activity increased rapidly thereafter and reached a maximum near the time of flowering. Although the activities in leaves of both isolines fluctuated in a similar manner, the activity in the determinate isoline was much higher than that in the indeterminate isoline after flowering. The presence of JA in the leaves of the determinate isoline was confirmed by purification by high-performance liquid chromatography and by mass spectrometry. Exogenous application of JA to cultured shoot apices of the indeterminate isoline strongly inhibited growth. These results suggest that jasmonic acid is a major endogenous factor that controls the growth habit of soybean plants.  相似文献   

10.
The effects of short-term NaCl-salinity on nodules of soybean ( Glycine max L. cv. Kingsoy) were studied on hydroponically-grown plants. Both acetylene reducing activity (ARA) and nodule respiration (O2 uptake and CO2 evolution) were immediately inhibited, and the stimulation of them by rising the external partial pressure of O2 (pO2) was diminished by the application of 0.1 M NaCl in the nutrient solution. The permeability of the nodule to O2 diffusion, estimated by O2 consumption or CO2 evolution, was significantly lower in the stressed nodules than in the cootrol ones. The respiratory quotient of intact nodules and the ethanol production of excised nodules were increased by low pO2 and by salt stress. These data confirm that in salt-stressed soybean nodules, O2 availability is reduced and fermentative pathways are stimulated.  相似文献   

11.
12.
A 40–50% reduction in soybean [ Glycine max (L.) Merr. cv. Century 84] hypocotyl elongation occurred 24 h after application of mechanical stress. Exogenous at 10 m M inhibited growth by 28% if applied with the Ca2+ ionophore A23187 to the zone of maximum hypocotyl elongation. La3+ was even more inhibitory than Ca2+, especially above 5 m M . Treatment with ethyleneglycol-bis-(β3-aminoethylether)-N, N, N', N'-tetraacetic acid (EGTA) alone had no effect on growth of non-stressed seedlings at the concentrations used but negated stress-induced growth reduction by 36% at 4 m M when compared to non-treated, stressed controls. Treatment with EDTA was ineffective in negating stress-induced growth inhibition. Calmodulin antagonists calmidazolium, chlorpromazine, and 48/80 also negated stress-induced growth reduction by 23, 50, and 35%, respectively.  相似文献   

13.
We performed whole-genome Illumina resequencing of 198 accessions to examine the genetic diversity and facilitate the use of soybean genetic resources and identified 10 million single nucleotide polymorphisms and 2.8 million small indels. Furthermore, PacBio resequencing of 10 accessions was performed, and a total of 2,033 structure variants were identified. Genetic diversity and structure analysis congregated the 198 accessions into three subgroups (Primitive, World, and Japan) and showed the possibility of a long and relatively isolated history of cultivated soybean in Japan. Additionally, the skewed regional distribution of variants in the genome, such as higher structural variations on the R gene clusters in the Japan group, suggested the possibility of selective sweeps during domestication or breeding. A genome-wide association study identified both known and novel causal variants on the genes controlling the flowering period. Novel candidate causal variants were also found on genes related to the seed coat colour by aligning together with Illumina and PacBio reads. The genomic sequences and variants obtained in this study have immense potential to provide information for soybean breeding and genetic studies that may uncover novel alleles or genes involved in agronomically important traits.  相似文献   

14.
Virus-induced gene silencing (VIGS) is a powerful tool for functional analysis of genes in plants. A wide-host-range VIGS vector, which was developed based on the Cucumber mosaic virus (CMV), was tested for its ability to silence endogenous genes involved in flavonoid biosynthesis in soybean. Symptomless infection was established using a pseudorecombinant virus, which enabled detection of specific changes in metabolite content by VIGS. It has been demonstrated that the yellow seed coat phenotype of various cultivated soybean lines that lack anthocyanin pigmentation is induced by natural degradation of chalcone synthase ( CHS ) mRNA. When soybean plants with brown seed coats were infected with a virus that contains the CHS gene sequence, the colour of the seed coats changed to yellow, which indicates that the naturally occurring RNA silencing is reproduced by VIGS. In addition, CHS VIGS consequently led to a decrease in isoflavone content in seeds. VIGS was also tested on the putative flavonoid 3'-hydroxylase ( F3'H ) gene in the pathway. This experiment resulted in a decrease in the content of quercetin relative to kaempferol in the upper leaves after viral infection, which suggests that the putative gene actually encodes the F3'H protein. In both experiments, a marked decrease in the target mRNA and accumulation of short interfering RNAs were detected, indicating that sequence-specific mRNA degradation was induced. The present report is a successful demonstration of the application of VIGS for genes involved in flavonoid biosynthesis in plants; the CMV-based VIGS system provides an efficient tool for functional analysis of soybean genes.  相似文献   

15.
16.
17.
缺硼对大豆根瘤结构和功能的影响   总被引:2,自引:1,他引:2  
在营养液培养条件下以普通结结瘤大豆Braggcv.「Glycinemax(L.)Merr」及其超结瘤突变体nts382为实验材料,运用光学显微方法研究了硼对大豆根瘤结构的影响,并测定了根瘤固氮酶活性结果表明,缺硼使根瘤结构受到严重破坏,并使固氮酶活性显著下降,缺硼使根瘤结构受到破坏是导致固氮酶活性下降的可能原因。  相似文献   

18.
Hydrogen sulfide (H2S) is emerging as an important signalling molecule that regulates plant growth and abiotic stress responses. However, the roles of H2S in symbiotic nitrogen (N) assimilation and remobilization have not been characterized. Therefore, we examined how H2S influences the soybean (Glycine max)/rhizobia interaction in terms of symbiotic N fixation and mobilization during N deficiency-induced senescence. H2S enhanced biomass accumulation and delayed leaf senescence through effects on nodule numbers, leaf chlorophyll contents, leaf N resorption efficiency, and the N contents in different tissues. Moreover, grain numbers and yield were regulated by H2S and rhizobia, together with N accumulation in the organs, and N use efficiency. The synergistic effects of H2S and rhizobia were also demonstrated by effects on the enzyme activities, protein abundances, and gene expressions associated with N metabolism, and senescence-associated genes (SAGs) expression in soybeans grown under conditions of N deficiency. Taken together, these results show that H2S and rhizobia accelerate N assimilation and remobilization by regulation of the expression of SAGs during N deficiency-induced senescence. Thus, H2S enhances the vegetative and reproductive growth of soybean, presumably through interactions with rhizobia under conditions of N deficiency.  相似文献   

19.
连作障碍因素对大豆养分吸收和固氮作用的影响   总被引:33,自引:2,他引:33  
采用分室装置,利用不同孔径的膜研究大豆连作条件下,化感物质、土壤有害生物和大豆胞囊线虫等因素不断累加对植株生长、生物固氮作用和矿质养分吸收和分配的影响。结果表明,随着各因素不断累加,植株的地上部、根系和根瘤干重逐渐降低;除Ca元素外,植株组织的P、K等矿质元素单位含量下降,吸收总量下降,地上部分配的养分比例下降。在化感物质和土壤有害生物因素的基础上接种线虫,对生物固氮和矿质养 分的吸收和分配影响明显。  相似文献   

20.
大豆(Glycine max)含硫氨基酸合成途径中的酶基因是含硫氨基酸组分的重要调控基因,发掘相关酶基因对高含硫氨基酸分子育种具有重要意义。文章采用大豆物理与遗传整合图谱,通过BioMercator2.1将113个含硫氨基酸合成途径酶基因及33个控制含硫氨基酸含量的QTL整合到遗传图谱Consensus Map 4.0上,依据酶基因位点与QTL的一致性以及QTL的效应值,初步筛选到16个与含硫氨基酸合成相关的候选基因。通过生物信息学方法对候选基因进行拷贝数、SNP、表达谱等分析,鉴定到12个相关酶基因,分别位于D1a、M、A2、K和G等8个连锁群上。生物信息学分析显示这些基因所在QTL可解释含硫氨基酸遗传变异的6.0%~38.5%,其中9个基因的间接效应值超过10%。12个相关酶基因参与含硫氨基酸代谢的重要途径,且多在子叶、花中高丰度表达,存在丰富的SNP。这些基因可作为候选基因进行功能标记开发,将为大豆分子设计育种奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号