首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immunoassays were developed to measure DNA damage retained by UV-irradiated whole bacterial cells. Active Mycobacterium parafortuitum and Serratia marcescens cells were fixed and incubated with cyclobutane pyrimidine dimer-binding antibodies after being exposed to known UV doses (254 nm). When both fluorescent (Alexa Fluor 488) and radiolabeled (125I) secondary antibodies were used as reporters, indirect whole-cell assays were sensitive enough to measure intracellular UV photoproducts in M. parafortuitum and S. marcescens cells as well as photoenzymatic repair responses in S. marcescens cells. For the same UV dose, fluorescent DNA photoproduct detection limits in whole-cell assays (immunofluorescent microscopy) were similar to those in fluorescent assays performed on membrane-bound DNA extracts (immunoslot blot). With either fluorescent or radiolabeled reporters, the intracellular cyclobutane pyrimidine dimer content of UV-irradiated whole bacterial cells could be reliably quantified after undergoing a <0.5-order-of-magnitude decrease in culturability. Immunofluorescent microscopy results showed that photoenzymatic repair competence is not uniformly distributed among exponential-growth UV-irradiated pure cultures.  相似文献   

2.
The loss of stratospheric ozone and the accompanying increase in solar UV flux have led to concerns regarding decreases in global microbial productivity. Central to understanding this process is determining the types and amounts of DNA damage in microbes caused by solar UV irradiation. While UV irradiation of dormant Bacillus subtilis endospores results mainly in formation of the “spore photoproduct” 5-thyminyl-5,6-dihydrothymine, genetic evidence indicates that an additional DNA photoproduct(s) may be formed in spores exposed to solar UV-B and UV-A radiation (Y. Xue and W. L. Nicholson, Appl. Environ. Microbiol. 62:2221–2227, 1996). We examined the occurrence of double-strand breaks, single-strand breaks, cyclobutane pyrimidine dimers, and apurinic-apyrimidinic sites in spore DNA under several UV irradiation conditions by using enzymatic probes and neutral or alkaline agarose gel electrophoresis. DNA from spores irradiated with artificial 254-nm UV-C radiation accumulated single-strand breaks, double-strand breaks, and cyclobutane pyrimidine dimers, while DNA from spores exposed to artificial UV-B radiation (wavelengths, 290 to 310 nm) accumulated only cyclobutane pyrimidine dimers. DNA from spores exposed to full-spectrum sunlight (UV-B and UV-A radiation) accumulated single-strand breaks, double-strand breaks, and cyclobutane pyrimidine dimers, whereas DNA from spores exposed to sunlight from which the UV-B component had been removed with a filter (“UV-A sunlight”) accumulated only single-strand breaks and double-strand breaks. Apurinic-apyrimidinic sites were not detected in spore DNA under any of the irradiation conditions used. Our data indicate that there is a complex spectrum of UV photoproducts in DNA of bacterial spores exposed to solar UV irradiation in the environment.  相似文献   

3.
A collection of 75 putative mutants with alterations in leaf pigmentation was visually selected from Arabidopsis thaliana plants (M2 generation) grown at 26°C from seeds treated with the mutagen ethylmethanesulfonate. Fifty-eight of the plants were found to have chlorophyll contents decreased by at least 10% from the parental Columbia ecotype. These plants were screened for chlorophyll content and the ratio of chlorophyll b/a after growth at 20 or 26°C. Relative to the parental type, a significant number of individuals in which the chlorophyll-deficient phenotype was exacerbated at one of the growth temperatures were identified. We conclude that temperature-sensitive phenotypic plasticity for chlorophyll content is relatively common in mutant populations of higher plants.  相似文献   

4.
Based on deduced amino-acid sequence similarities to class-I photolyases, the open reading frame ORF90 was identified from the genome sequence of Rhodobacter capsulatus SB1003. Photoreactivation activity is not detectable in an ORF90 deletion mutant of R. capsulatus SB1003. The phenotype of R. capsulatus wild-type cells was restored by plasmid borne ORF90 of R. capsulatus DeltaORF90. Furthermore, we detected an ORF90-related CPD-specific photoreactivation activity in R. capsulatus cell extracts. The results show that the gene product of ORF90 is involved in photoreactivation and encodes a class-I cyclobutane pyrimidine dimer photolyase.  相似文献   

5.
UV inactivation, photoreactivation, and dark repair of Escherichia coli and Cryptosporidium parvum were investigated with the endonuclease sensitive site (ESS) assay, which can determine UV-induced pyrimidine dimers in the genomic DNA of microorganisms. In a 99.9% inactivation of E. coli, high correlation was observed between the dose of UV irradiation and the number of pyrimidine dimers induced in the DNA of E. coli. The colony-forming ability of E. coli also correlated highly with the number of pyrimidine dimers in the DNA, indicating that the ESS assay is comparable to the method conventionally used to measure colony-forming ability. When E. coli were exposed to fluorescent light after a 99.9% inactivation by UV irradiation, UV-induced pyrimidine dimers in the DNA were continuously repaired and the colony-forming ability recovered gradually. When kept in darkness after the UV inactivation, however, E. coli showed neither repair of pyrimidine dimers nor recovery of colony-forming ability. When C. parvum were exposed to fluorescent light after UV inactivation, UV-induced pyrimidine dimers in the DNA were continuously repaired, while no recovery of animal infectivity was observed. When kept in darkness after UV inactivation, C. parvum also showed no recovery of infectivity in spite of the repair of pyrimidine dimers. It was suggested, therefore, that the infectivity of C. parvum would not recover either by photoreactivation or by dark repair even after the repair of pyrimidine dimers in the genomic DNA.  相似文献   

6.
Cyclobutane type pyrimidine dimers are the most common product of UV irradiation of DNA. This potentially lethal damage is reversed by photolyase enzymes, which cleave the cyclobutane ring of the pyrimidine dimer by electron transfer from excited state of the flavin cofactor of the enzyme to the dimer. Several studies have suggested that the energy-wasting revers electron transfer process may be kinetically competitive with a ring-opening. One of the principal factors governing the rates of the splitting reaction is the degree of strain in the cyclobutane ring, which is directly reflected in the enthalpy of the splitting process. Hence, the present work utilizes the MNDO-PM3 method to examine the influence of base composition and stereochemistry on the enthalpy of cleavage of the cyclobutane ring of various pyrimidine dimers.  相似文献   

7.
Three temperature-sensitive mutants of Arabidopsis thaliana that were defective in the redifferentiation of shoots were isolated as tools for the study of organogenesis. M3 lines were constructed by harvesting M3 seeds separately from each M2 plant. Comparative examination of shoot redifferentiation in root explants of 2700 M3 lines at 22[deg]C (permissive temperature) and at 27[deg]C (restrictive temperature) led to the identification of seven temperature-sensitive mutant lines. Genetic tests of three of the seven mutant lines indicated that temperature-sensitive redifferentiation of shoots in these three lines resulted from single, nuclear, recessive mutations in three different genes, designated SRD1, SRD2, and SRD3. The morphology of root explants of srd mutants cultured at the restrictive temperature suggests that the products of these SRD genes function at different stages of the redifferentiation of shoots.  相似文献   

8.
There is increasing evidence that UVA radiation, which makes up ∼95% of the solar UV light reaching the Earth's surface and is also commonly used for cosmetic purposes, is genotoxic. However, in contrast to UVC and UVB, the mechanisms by which UVA produces various DNA lesions are still unclear. In addition, the relative amounts of various types of UVA lesions and their mutagenic significance are also a subject of debate. Here, we exploit atomic force microscopy (AFM) imaging of individual DNA molecules, alone and in complexes with a suite of DNA repair enzymes and antibodies, to directly quantify UVA damage and reexamine its basic mechanisms at a single-molecule level. By combining the activity of endonuclease IV and T4 endonuclease V on highly purified and UVA-irradiated pUC18 plasmids, we show by direct AFM imaging that UVA produces a significant amount of abasic sites and cyclobutane pyrimidine dimers (CPDs). However, we find that only ∼60% of the T4 endonuclease V-sensitive sites, which are commonly counted as CPDs, are true CPDs; the other 40% are abasic sites. Most importantly, our results obtained by AFM imaging of highly purified native and synthetic DNA using T4 endonuclease V, photolyase, and anti-CPD antibodies strongly suggest that CPDs are produced by UVA directly. Thus, our observations contradict the predominant view that as-yet-unidentified photosensitizers are required to transfer the energy of UVA to DNA to produce CPDs. Our results may help to resolve the long-standing controversy about the origin of UVA-produced CPDs in DNA.  相似文献   

9.
Pyrimidine Dimers in the DNA of Paramecium aurelia   总被引:1,自引:0,他引:1       下载免费PDF全文
The production and fate of thymine-containing pyrimidine dimers in Paramecium aurelia DNA was investigated in three experimental series: production of dimers by UV irradiation, fate of dimers in the dark, and “loss of photoreactivability of dimers.” It is shown that cyclobutyl dimers are made by UV irradiation of Paramecium DNA in vivo, that because of cytoplasmic absorption the number of dimers made in DNA irradiated in vivo is much lower than in DNA irradiated in vitro, that dimers are lost from animals incubated in the dark after irradiation, and that all the dimers that remain in the animals can be destroyed by photoreactivating illumination. Since mutation induction is photoreactivable, these and previous photoreactivation data suggest that pyrimidine dimers are important in mutation induction in P. aurelia.  相似文献   

10.
环丁烷嘧啶二聚体累积与水稻UV—B敏感性的关系   总被引:6,自引:0,他引:6  
利用单克隆抗体ELISA ,研究了UV_B对水稻DNA中环丁烷嘧啶二聚体 (CPD)的诱导形成及其光、暗修复 ,并对CPD累积与水稻UV_B敏感性的关系进行了分析。结果表明 ,我国南方的 5个水稻 (OryzasativaL .)品种经13.6kJ·m-2 ·d-1UV_B处理 15d后 ,在株高、生物量、光合作用等方面表现出明显的品种间差异。不同品种水稻的DNA中CPD累积比对照明显增加 ,且敏感品种CPD的累积比抗性品种显著提高。统计分析证实 ,CPD的累积与生物量的抑制呈显著正相关 (r2 =0 .6 2 2 )。UV_B诱导的水稻DNA中CPD的清除以光修复为主 ,不同品种CPD暗修复能力相似 ,而光修复能力存在明显差异。根据以上结果推测 ,不同水稻品种UV_B敏感性与CPD光修复能力的差异有关。  相似文献   

11.
A Southern-blot-based, site-specific assay for ultraviolet (UV)-induced cyclobutyl pyrimidine dimers (CPDs), employing the CPD-specific enzyme T4 endonuclease V, was used to follow the repair of this lesion in particular DNA sequences in 5- to 6-d-old Arabidopsis thaliana seedlings. CPDs, measured as enzyme-sensitive sites, in nuclear sequences were removed rapidly in the light but were repaired slowly, if at all, in the dark. This result was identical to that obtained in prior analyses of CPDs in total cellular DNA. Assay of representative chloroplast and mitochondrial sequences in the same DNA preparations revealed that, in contrast to nuclear sequences, enzyme-sensitive sites are inefficiently eliminated in both the presence and absence of visible light. These observations suggest that Arabidopsis seedlings possess little or no capacity for the repair of CPDs in the organellar genomes. Given the fact that the UV dose employed only marginally affected the growth of the seedlings, we suggest that Arabidopsis seedlings must possess very efficient mechanism(s) for the tolerance of UV-induced DNA damage.  相似文献   

12.
Tissue culture cells of Drosophila melanogaster were given various doses of ultraviolet light. The results indicate that Drosophila cells do have a dark-repair excision mechanism which is not sensitive to caffeine. Pyrimidine dimers were destroyed by photoreactivating illumination in these cells and this destruction probably represents monomerization of the pyrimidine dimers.  相似文献   

13.
14.
15.
16.
17.
Biological rhythms are ubiquitous in eukaryotes, and the best understood of these occur with a period of approximately a day – circadian rhythms. Such rhythms persist even when the organism is placed under constant conditions, with a period that is close, but not exactly equal, to 24 h, and are driven by an endogenous timer – one of the many 'biological clocks'. In plants, research into circadian rhythms has been driven forward by genetic experiments using Arabidopsis . Higher plant genomes include a particularly large number of genes involved in metabolism, and circadian rhythms may well provide the necessary coordination for the control of these – for example, around the diurnal rhythm of photosynthesis – to suit changing developmental or environmental conditions. The endogenous timer must be flexible enough to support these requirements. Current research supports this notion most strongly for the input pathway, in which multiple photoreceptors have been shown to mediate light input to the clock. Both input and output components are now related to putative circadian oscillator mechanisms by sequence homology or by experimental observation. It appears that the pathways linking some domains of the basic clock model may be very short indeed, or the mechanisms of these domains may overlap. Components of the first plant circadian output pathway to be identified unequivocally will help to determine exactly how many output pathways control the various phases of overt rhythms in plants.  相似文献   

18.
Plastid transformation in Arabidopsis thaliana   总被引:33,自引:0,他引:33  
Plastid transformation is reported in Arabidopsis thaliana following biolistic delivery of transforming DNA into leaf cells. Transforming plasmid pGS31A carries a spectinomycin resistance (aadA) gene flanked by plastid DNA sequences to target its insertion between trnV and the rps12/7 operon. Integration of aadA by two homologous recombination events via the flanking ptDNA sequences and selective amplification of the transplastomes on spectinomycin medium yielded resistant cell lines and regenerated plants in which the plastid genome copies have been uniformly altered. The efficiency of plastid transformation was low: 2 in 201 bombarded leaf samples. None of the 98 plants regenerated from the two lines were fertile. Received: 13 February 1998 / Revision received: 24 April 1998 / Accepted: 5 June 1998  相似文献   

19.
The nucleus is a definitive feature of eukaryotic cells, comprising twin bilamellar membranes, the inner and outer nuclear membranes, which separate the nucleoplasmic and cytoplasmic compartments. Nuclear pores, complex macromolecular assemblies that connect the two membranes, mediate communication between these compartments. To explore the morphology, topology, and dynamics of nuclei within living plant cells, we have developed a novel method of confocal laser scanning fluorescence microscopy under time-lapse conditions. This is used for the examination of the transgenic expression in Arabidopsis thaliana of a chimeric protein, comprising the GFP (Green-Fluorescent Protein of Aequorea victoria) translationally fused to an effective nuclear localization signal (NLS) and to beta-glucuronidase (GUS) from E. coli. This large protein is targeted to the nucleus and accumulates exclusively within the nucleoplasm. This article provides online access to movies that illustrate the remarkable and unusual properties displayed by the nuclei, including polymorphic shape changes and rapid, long-distance, intracellular movement. Movement is mediated by actin but not by tubulin; it therefore appears distinct from mechanisms of nuclear positioning and migration that have been reported for eukaryotes. The GFP-based assay is simple and of general applicability. It will be interesting to establish whether the novel type of dynamic behavior reported here, for higher plants, is observed in other eukaryotic organisms.  相似文献   

20.
Cold Acclimation in Arabidopsis thaliana   总被引:14,自引:13,他引:14       下载免费PDF全文
The abilities of two races of Arabidopsis thaliana L. (Heyn), Landsberg erecta and Columbia, to cold harden were examined. Landsberg, grown at 22 to 24°C, increased in freezing tolerance from an initial 50% lethal temperature (LT50) of about −3°C to an LT50 of about −6°C after 24 hours at 4°C; LT50 values of −8 to −10°C were achieved after 8 to 9 days at 4°C. Similar increases in freezing tolerance were obtained with Columbia. In vitro translation of poly(A+) RNA isolated from control and cold-treated Columbia showed that low temperature induced changes in the population of translatable mRNAs. An mRNA encoding a polypeptide of about 160 kilodaltons (isoelectric point about 4.5) increased markedly after 12 to 24 h at 4°C, as did mRNAs encoding four polypeptides of about 47 kilodaltons (isoelectric points ranging from 5-5.5). Incubation of Columbia callus tissue at 4°C also resulted in increased levels of the mRNAs encoding the 160 kilodalton polypeptide and at least two of the 47 kilodalton polypeptides. In vivo labeling experiments using Columbia plants and callus tissue indicated that the 160 kilodalton polypeptide was synthesized in the cold and suggested that at least two of the 47 kilodalton polypeptides were produced. Other differences in polypeptide composition were also observed in the in vivo labeling experiments, some of which may be the result of posttranslational modifications of the 160 and 47 kilodalton polypeptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号