首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Relationships between post-treatment temperature and toxicity of four synthetic pyrethroids, bioallethrin,d-phenothrin, fenvalerate and cypermethrin, to the fruit-tree false spider mite,Cenopalpus pulcher (Canestrini and Fanzago) were determined in the laboratory. Pyrethroids were evaluated by the slide-dip technique at three post-treatment temperatures, 15, 25 and 35°C.Bioallethrin,d-phenothrin and fenvalerate exhibited positive temperature coefficients againstC. pulcher at all temperature ranges tested. On the other hand, cypermethrin displayed a neutral temperature coefficient at 25–35°C and negative temperature coefficients at 15–25°C and 15–35°C temperature ranges.  相似文献   

2.
The biology of Phytoseiulus macropilis (Banks) fed on Tetranychus urticae Koch was studied at different temperatures. The total development times averaged 7.5, 5.7, 4.2, 4.2 and 5.6 days at 20, 25, 28, 30 and 32°C, respectively at 78 ± 2% RH and 16 h photoperiod daily. The intrinsic rate of natural increase (r m) and the net reproduction (R o) reached maximum values 0.47 and 88.9, respectively, at 28°C. The mean generation time decreased (20.0-8.8 days) with increasing temperature 20-28°C.  相似文献   

3.
There was no difference in the direct toxicity of fluvalinate and esfenvalerate to twospotted spider mite (TSSM), Tetranychus urticae Koch. adults. The residual toxicity LC50 of esfenvalerate was lower. Neither pyrethroid was toxic (<10% mortality) to TSSM eggs or adults at their recommended field concentrations. Fluvalinate was twice as toxic (45% mortality) than esfenvalerate to TSSM larvae at 0.01 g.a.i L-1. The toxicity of the pyrethroids to TSSM protonymphs and deutonymphs was similar (16–28% mortality at 0.1 g a.i. L-1). Dispersal from the treated surface was the main response to both pyrethroids by TSSM protonymphs, deutonymphs and adults. Maximum run-off by TSSM adults from fluvalinate and esfenvalerate treated surfaces was found with 0.01 and 0.005 g a.i. L-1 respectively. Spin-down from pyrethroid treated surfaces was positively correlated with concentration. Oviposition was negatively correlated with concentration. Fluvalinate caused greater reductions in oviposition than esfenvalerate. Both pyrethroids reduced TSSM development rate from larval, protonymph and deutonymph stages, but fluvalinate caused larger reductions. Both pyrethroids prevented mating: for ten days oviposition 93% and 98% of offspring were male for esfenvalerate and fluvalinate respectively at 0.1 g a.i. L-1. These findings are discussed with respect to the incidence of pyrethroid induced mite outbreaks.  相似文献   

4.
Effects of temperature on the activity of flucycloxuron on larval stages of Panonychus ulmi (Koch), based on LC50 values, were highly significant (P < 0.001) with temperature coefficients of-1.7 in both the ranges of 15° to 25°C and 20° to 30°C. The slopes of probit regression lines at 15° and 20°C were significantly steeper than those at 25° and 30°C. As a consequence the temperature coefficients based on LC90 values were-4.4 and-2.2, for the 2 temperature ranges. The ovicidal activity of flucycloxuron on P. ulmi was low and was only statistically detectable at 20°C (LC90 of 84 mg a.i./l). In studies with larvae of Aedes aegypti (Linnaeus), Leptinotarsa decemlineata (Say), Plutella xylostella (Linnaeus), Spodeptera exigua (Hübner) and Spodoptera littoralis (Boisduval) probit regression lines were parallel over temperature. The activity of flucycloxuron on these five insect species was not affected by temperature. Based on LC50 values, diflubenzuron showed positive temperature coefficients on P. xylostella of + 2.1 at 15° to 25°C and + 2.5 at 20° to 30°C. For S. littoralis the temperature coefficient was positive (+ 2.4) at 15° to 25°C but negative (-1.9) at the 20° to 30°C range. Temperature coefficients of diflubenzuron were neutral for A. aegypti, L. decemlineata and S. exigua. In the design and analysis of these studies special allowance was made for date effects and variation in natural mortality over temperature.  相似文献   

5.
Static bioassays with copper (as CuSO4 · 5H2O) were conducted in laboratory with a freshwater pond snailViviparus bengalensis, at different environmental temperatures. The 96 hr LC50 values in ppm of Cu were 0.060 at 32.5 °C; 0.066 at 24 °C; 0.09 at 27.3 °C and 0.39 at 20.3 °C. In higher copper concentrations some behavioural changes such as secretion of mucus, discharge of eggs and embryos were noted. The results indicate that toxicity to copper increases with temperature increase.  相似文献   

6.
Summary A study was made of the effect of temperature on accumulation of glucosamine and 2-aminoisobutyrate by Candida utilis NCYC 321 grown at 30° C or 10° C. Exponential-phase cells contained greater proportions of C16:1 and C18:3 acids, and smaller proportions of C13:1 and C18:2 acids, when grown in a defined medium at 10° C compared with 30° C. Cells grown at 30° C or 10° C were able to accumulate extracellular (10 mM) glucosamine and 2-aminoisobutyrate against concentration gradients. 2-Aminoisobutyrate was not metabolised by the cells; glucosamine was accumulated probably as a mixture of glucosamine 1- and 6-phosphates. Rates of accumulation of glucosamine and 2-aminoisobutyrate by cells grown at 30° C or 10° C decreased markedly when the test temperature was decreased from 30° C to 15° C. The rate of accumulation of glucosamine by cells grown at 10° C was considerably lower at each of the test temperatures compared with the corresponding rates for cells grown at 30° C; the rate of accumulation of 2-aminoisobutyrate was much less affected by the temperature at which the cells were grown and then only when measured at temperatures below about 20° C. Apparent K m values for accumulation of glucosamine by cells grown at 30° C or 10° C decreased considerably when the test temperature was lowered from 20° C to 15° C. The extent of the decrease in K m value was approximately the same for cells grown at 30° C or 10° C. Apparent K m values for accumulation of 2-aminoisobutyrate were hardly affected by test temperature. Apparent V max values for accumulation of glucosamine or 2-aminoisobutyrate were much lower when measured at 15° C than at 30° C. When measured at 30° C, apparent V max values for accumulation of either solute were slightly lower with cells grown at 10° C compared with cells grown at 30° C; when measured at 15° C, the values were slightly greater with cells grown at 10° C. Net accumulation of glucosamine, at 30° C or 20° C, by cells grown at 30° C or 10° C ceased after 4–6 h. Cells grown at either temperature continued to accumulate 2-aminoisobutyrate at 30° C or 20° C for at least 12 h. The rate of efflux of glucosamine by cells grown at 30° C was slower when measured at 20° C compared with 30° C. With cells grown at 10° C, the rate of efflux at 30° C was slower than with cells grown at 30° C; when measured at 20° C, the rates were about equal. The temperature at which the cells were grown did not affect the ability of d-glucose, d-mannose or d-ribose to compete with d-glucosamine, or with the ability of l-alanine to compete with 2-aminoisobutyrate, when tested at 30° C or 20° C. Cells grown 30° C or 10° C had very similar ATP contents. The results are discussed in relation to the effect of temperature on the rate of solute accumulation by micro-organisms.Abbreviation AIB 2-Aminoisobutyrate  相似文献   

7.
Physiological variables of torpor are strongly temperature dependent in placental hibernators. This study investigated how changes in air temperature affect the duration of torpor bouts, metabolic rate, body temperature and weight loss of the marsupial hibernator Burramys parvus (50 g) in comparison to a control group held at a constant air temperature of 2°C. The duration of torpor bouts was longest (14.0±1.0 days) and metabolic rate was lowest (0.033±0.001 ml O2·g-1·h-1) at2°C. At higher air temperatures torpor bouts were significantly shorter and the metabolic rate was higher. When air temperature was reduced to 0°C, torpor bouts also shortened to 6.4±2.9 days, metabolic rate increased to about eight-fold the values at 2°C, and body temperature was maintained at the regulated minimum of 2.1±0.2°C. Because air temperature had such a strong effect on hibernation, and in particular energy expenditure, a change in climate would most likely increase winter mortality of this endangered species.Abbreviationst STP standard temperature and pressure - T a air temperature - T b body temperature - VO2 rate of oxygen consumption  相似文献   

8.
The effect of post-treatment temperature on the toxicity of cyhexatin to cyhexatin-susceptible (S) and resistant (R) strains ofTetranychus urticae Koch was investigated. Females and developmental stages of both strains showed a positive temperature-toxicity coefficient with wettable powder (WP) and emulsifiable concentrate (EC) formulations of cyhexatin. Females of the S strain were 3.0× and 2.9× less susceptible at 15°C than at 28°C with the EC and WP formulations respectively, while females of the R strain were 5.2× and 23.6× less susceptible at 15°C with these formulations.  相似文献   

9.
Stethorus japonicusKamiya (Coleoptera: Coccinellidae) is an indigenous ladybird beetle in Japan, which feeds on many spider mite species. We evaluated the development, survivorship and life-history parameters of this lady beetle on a diet of eggs of the two-spotted spider mite, Tetranychus urticae Koch (red form) (Acari: Tetranychidae). In addition, the effect of short photoperiod on its reproduction was assessed. Survival rates from egg to adult were more than 71% at temperatures between 17.5 and 30 °C. The highest immature mortality was 100% at 35 °C followed by 76% at 15 °C and 52% at 32.5 °C. The lower threshold temperature for development from egg to egg-laying adult was 13.0 °C and the thermal constant was calculated as 238.7° days. Based on these data, the maximum number of generations that could complete development in a year under field conditions in Ibaraki, central Japan, would be between five and seven. The intrinsic rates of natural increase (rm) were 0.093 at 20 °C, 0.156 at 25 °C and 0.241 at 30 °C. Reproductive diapause was induced at photoperiods with light phases shorter than 13 h at 18 °C.  相似文献   

10.
The growth characteristics of an obligately psychrophilic Vibrio sp. have been studied in a chemostat with glucose or lactose as the limiting substrate over a temperature range 0–23°C. Vibrio AF-1 has an optimum growth temperature of 15°C and maximum growth temperature which is dependent upon the carbon source. On glucose growth ceases at 20°C whereas on lactose growth continues to 23°C. Growth rate is also a function of the carbon source provided. When grown on glucose, fructose, sucrose, maltose and galactose max values of 0.046 h-1 at 15°C were recorded whereas on lactose, mannose, ribose and xylose max values of 0.020 h-1 were obtained. Substrate affinities (K s ) for the 9 sugars also fall into 2 divisions as for max and are temperature dependent. Those sugars which support a high growth rate have highest K s values at 0°C whereas these which give a low growth rate show maximum affinities at 15°C. Vibrio AF-1 produces the maximum cell yield (0.6 g/g sugar consumed) at temperature <8°C irrespective of the carbon source utilised and correlated with maximum rates of sugar uptake and minimum O2 consumption. Maintenance energy determination on glucose grown cells show that at 2° C 2% of the carbon input is used for maintenance whereas at 20°C the requirement increases to 10% of the carbon input.  相似文献   

11.
The phosphorylation state and the malate sensitivity of phosphoenolpyruvate carboxylase (PEPCase, EC 4.1.1.31) in Bryophyllum fedtschenkoi Hamet et Perrier are altered by changes in the ambient temperature. These effects, in turn alter the in-vivo activity of the enzyme. Low temperature (3 °C or less), stabilizes the phosphorylated form of the enzyme, while high temperature (30 °C) promotes its dephosphorylation. The catalytic activity of the phosphorylated and dephosphorylated forms of PEPCase increases with temperature, but the apparent K i values for malate of both forms of the enzyme decrease. Results of experiments with detached leaves maintained in darkness in normal air indicate that the changes in malate sensitivity and phosphorylation state of PEPCase with temperature are of physiological significance. When the phosphorylated form of PEPCase is stabilized by reducing the temperature of leaves 9 h after transfer to constant darkness at 15 °C, a prolonged period of CO2 fixation follows. When leaves are maintained in constant darkness at 15 °C until CO2 output reaches a low steady-state level and the PEPCase is dephosphorylated, reducing the temperature to 3 °C results in a further period of CO2 fixation even though the phosphorylation state of PEPCase does not change.Abbreviations CAM Crassulacean acid metabolism - PEP phosphoenolpyruvate - PEPCase phosphoenolpyruvate carboxylase We thank the Agricultural and Food Research Council for financial support for this work.  相似文献   

12.
Summary The contractile properties of swimming muscles have been investigated in marine teleosts from Antarctic (Trematomus lepidorhinus, Pseudochaenichthys georgianus), temperate (Pollachius virens, Limanda limanda, Agonis cataphractus, Callionymus lyra), and tropical (Abudefduf abdominalis, Thalassoma duperreyi) latitudes. Small bundles of fast twitch fibres were isolated from anterior myotomes and/or the pectoral fin adductor profundis muscle (m. add. p). Live fibre preparations were viable for several days at in vivo temperatures, but became progressively inexcitable at higher or lower temperatures. The stimulation frequency required to produce fused isometric tetani increased from 50 Hz in Antarctic species at 0°C to around 400 Hz in tropical species at 25°C. Maximum isometric tension (Po) was produced at the normal body temperature (NBT) of each species (Antarctic, 0–2°C; North Sea and Atlantic, 8–10°C; Indo-West Pacific, 23–25°C). P0 values at physiological temperatures (200–300 kN·m–2) were similar for Antarctic, temperate, and tropical species. A temperature induced tension hysteresis was observed in muscle fibres from some species. Exposure to <0°C in Antarctic and <2°C in temperate fish resulted in the temporary depression of tension over the whole experimental range, an effect reversed by incubation at higher temperatures. At normal body temperatures the half-times for activation and relaxation of twitch and tetanic tension increased in the order Antarctic>temperate>tropical species. Relaxation was generally much slower at temperatures <10°C in fibres from tropical than temperate fish. Q10 values for these parameters at NBTs were 1.3 2.1 for tropical species, 1.7–2.6 for temperate species, and 1.6–3.5 for Antarctic species. The forcevelocity (P-V) relationship was studied in selected species using iso-velocity releases and the data below 0.8 P0 iteratively fitted to Hill's equation. The P-V relation at NBT was found to be significantly less curved in Antarctic than temperate species. The unloaded contraction velocity (Vmax) of fibres was positively correlated with NBT increasing from about 1 muscle fibre length·s–;1 in an Antarctic fish (Trematomus lepidorhinus) at 1°C to around 16 muscle fibre lengths·s–1 in a tropical species (Thalassoma duperreyi) at 24°C. It is concluded that although muscle contraction in Antarctic fish shows adaptations for low temperature function, the degree of compensation achieved in shortening speed and twitch kinetics is relatively modest.Abbreviations ET environmental temperature - m. add. p major adductor profundis - m. add. s. major adductor superficialis - NBT normal body temperature - P 0 maximum isometric tension - P-V force velocity - SR sarcoplasmic reticulum - T 1/2 a half activation time - T 1/2 r half relaxation time - V max unloaded contraction  相似文献   

13.
The CO2/O2 specificity of ribulose 1,5-bisphosphate carboxylase/oxygenase   总被引:1,自引:0,他引:1  
The substrate specificity factor, V cKo/VoKc, of spinach (Spinacia oleracea L.) ribulose 1,5-bisphosphate carboxylase/oxygenase was determined at ribulosebisphosphate concentrations between 0.63 and 200 M, at pH values between 7.4 and 8.9, and at temperatures in the range of 5° C to 40° C. The CO2/O2 specificity was the same at all ribulosebisphosphate concentrations and largely independent of pH. With increasing temperature, the specificity decreased from values of about 160 at 5° C to about 50 at 40° C. The primary effects of temperature were on K c [Km(CO2)] and V c [Vmax (CO2)], which increased by factors of about 10 and 20, respectively, over the temperature range examined. In contrast, K o [Ki (O2)] was unchanged and V o [Vmax (O2)] increased by a factor of 5 over these temperatures. The CO2 compensation concentrations () were calculated from specificity values obtained at temperatures between 5° C and 40° C, and were compared with literature values of . Quantitative agreement was found for the calculated and measured values. The observations reported here indicate that the temperature response of ribulose 1,5-bisphosphate carboxylase/oxygenase kinetic parameters accounts for two-thirds of the temperature dependence of the photorespiration/photosynthesis ratio in C3 plants, with the remaining one-third the consequence of differential temperature effects on the solubilities of CO2 and O2.Abbreviations RuBPC/O(ase) ribulose 1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose 1,5-bisphosphate - CO2 compensation concentration  相似文献   

14.
Summary The capacity for sustained, terrestrial locomotion in the cockroach. Blaberus discoidalis, was determined in relation to running speed, metabolic cost, aerobic capacity, and ambient temperature (T a=15, 23, and 34°C; acclimation temperature=24°C). Steady-state thoracic temperature (T tss) increased linearly with speed at each T a.The difference between T tss and T awas similar at each experimental temperature with a maximum increase of 7°C. Steady-state oxygen consumption (VO2ss) increased linearly with speed at each T aand had a low thermal dependence (Q10=1.0-1.4). The minimum cost of locomotion (the slope of the VO2ss versus speed function) was independent of T a.Cockroaches attained a maximal oxygen consumption (VO2max). increased with T afrom 2.1 ml O2·g-1·h-1 at 15°C to 4.9 ml O2·g-1·h-1 at 23°C, but showed no further increase at 34°C, VO2max increased 23-fold over resting VO2 at 23°C, 10-fold at 34°C, and 15-fold at 15°C. Endurance correlated with the speed at which VO2max was attained (MAS, maximal aerobic speed). Temperature affected the kinematics of locomotion. compared to cockroaches running at the same speed, but higher temperatures (23–34°C), low temperature (15°C) increased protraction time, reduced stride frequency, and reduced stability by increasing body pitching. The thermal independence of the minimum cost of locomotion (Cmin), the low thermal dependence of VO2ss (i.e., y-intercept of the VO2ss versus speed function), and a typical Q10 of 2.0 for VO2max combined to increase MAS and endurance in B. discoidalis when T awas increased from 15 to 23°C. Exerciserelated endothermy enabled running cockroaches to attain a greater VO2max, metabolic scope, and endurance capacity at 23°C than would be possible if T tss remained equal to T a. The MAS of B. discoidalis was similar to that of other arthropods that use trachea, but was 2-fold greater than ectotherms, such as salamanders, frogs, and crabs of a comparable body mass.Abbreviations T a ambient temperature - T t thoracic temperature - T tss steady state thoracic temperature during exercise - T trest thoracic temperature during rest - VO2 oxygen consumption - VO2rest oxygen consumption during rest - VO2ss steady-state oxygen consumption during exercise - VO2max maximal oxygen consumption; MAS maximum aerobic speed - C min minimum cost of locomotion - t end endurance time  相似文献   

15.
Eight water monitor lizards, Varanus s. salvator, were captured; four individuals from an oil palm estate on the Malayan peninsula, and four from fresh water-deficient Tulai island 65 km off-shore in the South China Sea. They were fitted with a radio transmitter attached to a thermistor which was inserted into the cloaca of the animals and released. The heating rate during basking was measured as 0.117 and 0.118 °C·min-1 while the daily cloacal temperature fluctuated between 29.5–37.3 °C. Cloacal temperature was measured on other individuals caught at random times during the day, which revealed a considerable daily and individual variation. The average cloacal temperature during activity was 30.4 °C. The peak activity appeared when body temperature was 31 °C. Thermoregulation by behavioural means included cooling in water and reducing heat loss at night by sleeping in burrows. The cooling rate for two individuals when submerged in 29 °C water was 0.308 and 0.340 °C·min-1. There appeared to be a strong correlation between ambient temperature and cloacal temperature.Abbreviations bw body weight - T a ambient temperature - T a body temperature - T c cloacal temperature - TOP Timor Oil Palm Estate - TUL Tulai Island  相似文献   

16.
Twenty-three isolates of Metarhizium anisopliae (Metschnikoff) Sokorin and three isolates of Beauveria bassiana (Balsamo) Vuillemin (Ascomycota: Hypocreales: Clavicipitaceae) were assessed for their virulence against the two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae). Based on the screening results, nine isolates of M. anisopliae and two isolates of B. bassiana were tested for their virulence against young adult (1- to 2-day-old) female T. urticae at constant temperatures of 20, 25, 30 and 35°C. At all temperatures tested, all the fungal isolates were pathogenic to T. urticae but mortality varied with isolates and temperatures. Fungal isolates were more virulent at 25, 30 and 35°C than at 20°C. The lethal time to 50% mortality (LT50) and lethal time to 90% mortality (LT90) values decreased with increased temperature. There were no significant differences in virulence between fungal isolates at 30 and 35°C; however, significant differences were observed at 20 and 25°C.  相似文献   

17.
Thermoregulatory responses to egg cooling in incubating bantam hens   总被引:1,自引:1,他引:0  
Summary O2 consumption, electromyographic activity (EMG), heart rate (HR), cloacal temperature (T b) and broodpatch temperature (T sb) were measured in bantam hens incubating eggs of different temperatures (T e). For comparison, the metabolic response to low ambient temperature (T a) was measured in non-incubating hens.O2 consumption increased nearly linearly with decreasingT e down to 30°C. At this temperature O2 consumption was about 3.5 x the resting level. Below 30°C O2 consumption increased non-linearly, and reached 4.6 x the resting consumption at 15°C. Eggs of 10 and 0°C gave no further increase. Pectoral muscle EMG and HR also increased in response to egg cooling. The onset of egg cooling was associated with a decrease inT b andT sb. Hens exposed to lowT a showed a lower critical temperature of about 24°C.It is concluded that heat loss from the brood-patch during incubation of cold eggs is compensated by shivering thermogenesis. AtT e below 15°C heat production is at a maximum level, corresponding to the expected O2 consumption at exposure to an ambient temperature of –65°C.Abbrevations EMG electromyography - T a ambient temperature - T b cloacal temperature - T e egg temperature - T sb brood-patch skin temperature  相似文献   

18.
The influence of temperature and light regime on the feeding intensity of Tetranychus urticae (Koch) (Acari: Tetranychidae) was studied on bean plants. A nonlinear relationship was found between temperature and feeding activity of T. urticae. The feeding intensity increased from 10 °C to 35 °C. At 10 °C there was practically no feeding, whereas at 35 °C maximum feeding occurred. above 35 °C the activity of the mites decreased. No difference could be found in the feeding intensity of mites kept at permanent darkness or permanent light. Based on the observed relationship between temperature and feeding activity and intensity of damage symptoms, respectively, we propose the use of a mite-load function to define the mite stress imposed on the plant.
Zusammenfassung Wir untersuchten den Einfluss von Temperatur und Licht auf die Saugtätigkeit von Tetranychus urticae auf Bohnenpflanzen und fanden eine nicht-lineare Beziehung zwischen Temperatur und Saugaktivität. Die Saugintensität stieg bei Temperaturen über 10 °C an bis zum Saugmaximum bei 35 °C und sank dann relativ rasch ab. Permanentes Licht- oder Dunkelregime übte keinen Einfluss auf die Saugleistung aus. Aufgrund der beobachteten Zusammenhänge zwischen Temperatur, Saugintensität und Intensität der Ausbildung der Schadsymptome entwickelten wir ein verbessertes Mass (mite-load) für die Erfassung des Spinnmilbenstresses auf die Wirtspflanze. Die präsentierten Daten zeigen, dass mit der mite-load Funktion die Saugschäden von T. urticae präziser erfasst werden können als mit den bisher gebräuchlichen Milbendichten pro Blatt oder Milbentagen.
  相似文献   

19.
The effect of temperatureon conidial germination, mycelial growth, andsusceptibility of adults of three tephritidfruit flies, Ceratitis capitata(Wiedemann), C. fasciventris (Bezzi) andC. cosyra (Walker) to six isolatesof Metarhizium anisopliae were studied inthe laboratory. There were significantdifferences among the isolates in the effect oftemperature on both germination and growth.Over 80% of conidia germinated at 20, 25 and30°C, while between 26 and 67% conidiagerminated at 35°C and less than 10% at15°C within 24 hours. Radial growth was slowat 15°C and 35°C with all of theisolates. The optimum temperature forgermination and mycelial growth was 25°C. Mortality caused by the six fungal isolatesagainst the three fruit fly species varied withtemperature, isolate, and fruit fly species.Fungal isolates were more effective at 25, 30and 35°C than at 20°C. The LT90values decreased with increasing temperature upto the optimum temperature of 30°C. Therewere significant differences in susceptibilitybetween fly species to fungal infection at allthe temperatures tested.  相似文献   

20.
Marisol Castrillo 《Oecologia》1995,101(2):193-196
The ribulose-1,5-bis-phosphate (RBPC) 14CO2 fixation rate was measured at four different temperatures, 5°, 15°, 25° and 35° C, in three populations of Espeletia schultzii at different altitudes, 3100, 3550 and 4200 ma.s.l. The fixation rate increased with temperature increase in the populations studied. The population at 4200 m showed the higher rate at any temperature, followed by those at 3550 and 3100 m. The Km(CO2) increased with temperature increase, but the values were similar among populations. The V max values increased with temperature and were higher for the 4200-m population. These results suggest that the RBPC enzyme is more activated in the highland population and that the enzyme kinetics are not similar among populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号