首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dev 1510 mutant of Dictyostelium discoideum differs from the wild type in that unaggregated cells are capable of differentiating into either spores or stalk cells depending on the culture conditions (12). Taking advantage of this fact, the effects of cyclic AMP (cAMP) on differentiation of the mutant cells were examined under conditions that prevent normal morphogenesis. In the presence of low concentrations of exogenous cAMP, the cells differentiated into only stalk cells, whereas in the presence of high concentrations they differentiated into only spores. Untreated cells formed stalk cells, but this was inhibited by addition of phosphodiesterase, indicating that it was induced by a low concentration of cAMP which they produced themselves. Cyclic GMP and dibutyryl cAMP also induced spore formation though less effectively, while 5'AMP, ADP and ATP had no effect. During development, the cells increased in sensitivity to cAMP in that spore formation was induced at lower concentration of cAMP after 4 hr of starvation. Treatment of cells that had been starved for 6hr with 10−4M cAMP for as short a time as 30 min was enough to induce 8% of the cells to form spores.
The effects on cAMP-induced differentiation of chemicals that are known to influence development of the wild type were also examined. Both NH4Cl and KCl inhibited cAMP-induced stalk formation, but had no effect on spore formation. In the presence of arginine, spore formation was induced at a lower concentration of cAMP with higher efficiency. CaCl2, LiCl and KF had no effect on cAMP-induced differentiation.  相似文献   

2.
A mutant which is capable of differentiating into spores and stalk cells without forming a cell aggregate was isolated from the cellular slime mould, Dictyostelium discoideum. The mutant stopped developing at various stages, before formation of mature fruits, and the cells differentiated into spores and stalk cells at whichever stage the development stopped. Unaggregated cells also differentiated into spores or stalk cells, depending on the culture conditions; differentiation into spores predominated in nutrient rich medium, while differentiation into stalk cells predominated in nutrient poor medium. The ratio of spores to stalk cells or of prespores to total cells in cell masses depended on the terminal structures formed; the ratio was unusually high or unusually low in a structure which stopped developing before papilla formation, while the ratio was normal in a structure formed after that stage. When isolated from a cell mass, prespore cells of the mutant did not dedifferentiate or resumed vegetative growth, indicating that they had lost plasticity of differentiation. The conditioned medium in which the mutant cells had grown was effective in inducing differentiation of wild type slug cells into spore-like or stalk-like cells.  相似文献   

3.
The processes of differentiation of the presumptive cells (prespore and prestalk cens) into mature spores, stalk and basal-disc cells in Dictyotelium discoideum was investigated. The number of stalk and disc cells in pre-labeled culminating cell masses was estimated by determining the radioactivity of the undissociable fraction separated by filtration from the dissociable fraction containing presumptive cells and spores. Changes in the proportion of amoeboid cells stainable with fluorescein-conjugated antispore serum and encapsulated spores were also followed in the dissociable fraction. Formation of stalk and disc cells began at 17 hr of development and was completed at 26 hr, while formation of morphologically identifiable spores began at 18 hr and was completed at 20 hr, long before completion of stalk formation. At the onset of culmination, unstained cells abruptly increased with an accompanying decrease of stained cells, when unstained rear-guard cells appeared in the hind region. Although some of the rear-guard cells soon differentiated into basal-disc cells, the rest remained amoeboid in the upper part of the spore mass (sorus) after complete formation of a fruiting body. Despite the presence of the amoeboid cells in mature sori, the proportion of the sorus to the stalk and disc of a fruiting body was approximately equal to that of stained (prespore) to unstained (prestalk) cells in a migrating slug.  相似文献   

4.
Summary EDTA and ethylurethan specifically interferes with the formation of normalDictyostelium fruiting bodies without inhibiting the cellular differentiation into spores and stalk cells. Thus differentiation is largely independent from the normal culmination process.On the other hand a preferential inhibition of the differentiation has been observed with 2-mercaptoethanol, the spores being more sensitive than the stalk cells.

Herrn Prof. Dr. Dr. W.Weidel danke ich für anregende Diskussionen und großzügige Unterstützung der Arbeit.  相似文献   

5.
 The effect of solution phosphorus (P) concentration upon growth of pregerminated spores of the vesicular-arbuscular mycorrhizal fungus Gigaspora margarita was examined in vitro. P at 1 mM significantly inhibited branching of the primary germ tube. The number of branches and the total hyphal length were both significantly inhibited at 10 mM P. In addition, germinated spores exposed to exudates produced by Ri T-DNA-transformed roots of Daucus carota L. grown in the presence of P showed significantly less hyphal branching than those exposed to exudates produced by P-stressed roots. These phenomena could contribute to the observed inhibition of mycorrhiza formation by high P. Accepted: 31 July 1996  相似文献   

6.
A high calcium concentration is known to induce stalk differentiation of the cellular slime mold D. discoideum. Therefore, the change in the calcium content of this organism during differentiation was studied and found to vary during development, more calcium being found in the anterior prestalk cells of the pseudoplasmodium (slug) than in the posterior prespore cells. It is concluded from the results that calcium is of importance in the cell differentiation of this organism and particularly in stalk formation.  相似文献   

7.
Studies have been carried out to determine the toxicity of zinc and lead ions to germinating spores and hyphal growth of heavy metal accumulating fungus Paecilomyces marquandii (former Verticillium marquandii). Inhibitive concentration (IC50) of zinc and lead ions was assayed by three different methods: image analysis, nephelometric on-line measurement and microcalorimetry. A kinetic model of spore germination and germ tube elongation was formulated and used as an auxiliary tool to determine IC50 values upon image analysis data. The inhibitive effect of Zn2+ and Pb2+ to P. marquandii spores was mathematically described by the Edwards equation. Comparing the obtained IC50 values, lead ions occurred to be more toxic to the germinating spores of P. marquandii than zinc ions (2.80 and 5.20 mM, respectively), although zinc ions induced a more significant delay in the development of the hyphae (13.84 h for 5 mM of Zn2+ and 9.30 h for 5 mM of Pb2+), which was demonstrated by the lengthened lag-phase (spore-swelling phase).  相似文献   

8.
9.
Cellulose is a major and important component of the extracellular matrix during the development of Dictyostelium discoideum. Upon starvation, solitary amoebae of D. discoideum gather and form fruiting bodies in which cells differentiate into stalk cells and spores. The stalk tubes and walls of spores and stalk cells are made of cellulose. In the genus Acytostelium, however, all cells are destined to become spores and the stalks comprise only a cellulose tube, suggesting species‐specific regulation of cellulose synthesis. In this study, we cloned a putative cellulose synthase gene (cesA) of Acytostelium subglobosum and performed comparative analyses with the D. discoideum cellulose synthase gene (dcsA). Although the deduced amino acid sequences were highly conserved between cesA and dcsA, the numbers of transmembrane spans preceding the catalytic domain were dissimilar; 2 and 3, respectively. Since ectopic expression of cesA in dcsA?null cells failed to restore the developmental defects of the mutant, we constructed a series of chimerical genes for complementation analyses and found that the catalytic domain of cesA was functional in D. discoideum cells if the preceding transmembrane region was swapped with dcsA. The non‐functional products that contained the cesA‐derived transmembrane region were localized to lysosomes. These results indicate that the transmembrane region of cellulose synthase is essential for proper accumulation of cellulose during the development of D. discoideum and that its differential localization in A. subglobosum may be related to the characteristic morphogenesis in this species.  相似文献   

10.
In submerged culture, the prespore-specific gene, D19, of Dictyostelium discoideum was found to be expressed in the early stages of development, even in the presence of 1 nM of DIF-1 (stalk differentiation inducing factor). This concentration of DIF-1 later caused the degradation of the previously accumulated D19 mRNA concomitant with the induction of the prestalk-specific genes ecmA/ecmB and eventually 85% of cells differentiated into stalk cells. These results suggest that prespore differentiation occurs at least transiently even in the presence of DIF-1.  相似文献   

11.
A genetic melanotic neoplasm of Drosophila melanogaster   总被引:6,自引:0,他引:6  
The construction of mature fruiting bodies occurs during the culmination stage of development of Dictyostelium discoideum. These contain at least two different cell types, spores and stalks, which originate from an initially homogenous population of vegetative amoebas. As an attempt to identify proteins whose synthesis is regulated in each cell type during differentiation, we have analyzed the two-dimensional profiles of proteins synthesized by spore and stalk cells during the culmination stage. We have identified 5 major polypeptides which are specifically synthesized by spore cells during culmination and 9 which are only made by stalk cells. Furthermore, synthesis of about 20 polypeptides appears to be enriched either in the spore or in the stalk cells. We also show that synthesis of actin, a major protein synthesized during Dictyostelium development, is specifically inhibited in the spore cells during culmination. Synthesis of most of the cell type-specific proteins initiates at 19–20 hr, during culmination. Moreover, the proteins whose synthesis is induced after formation of tight aggregates, the time when the major change in gene expression occurs, are not specifically incorporated into spores or stalk cells, and appear to be synthesized by both cell types. We conclude that a new class of genes is expressed during the culmination stage in Dictyostelium, giving rise to specific patterns of protein synthesis in spore and stalk cells.  相似文献   

12.
Sporogenous mutants of the cellular slime mold Dictyostelium discoideum are defined as mutants which are able to undergo terminal differentiation into spores in monolayer cultures in the presence of millimolar amounts of exogenous cyclic AMP. We describe the morphological development and cellular differentiation of a collection of 12 independently isolated sporogenous mutants of strain V12 M2. All mutants develop more rapidly than do wild-type at an air-water interface, display aberrant morphogenesis, and show overt spore and stalk differentiation as soon as 4 hr after starvation. All mutants differentiate in submerged monolayer culture in the presence of cAMP into variable proportions of spores and stalk cells. A number of the mutants also form both stalk cells and spores in submerged culture in the absence of exogenous cAMP. The spores formed by many of the mutants have a greatly reduced viability. Using parasexual genetics, we have found that two of the 12 mutants analyzed are dominant to wild-type and the remaining ten fall into a minimum of four complementation groups, the overall analysis thus yielding a minimum of four and a maximum of seven complementation groups. Intracellular cAMP levels in vegetative cells are significantly elevated in the two dominant mutants but are similar to wild type in all the other mutants.  相似文献   

13.
The toxic effects of copper on resting spore formation and viability in the marine diatom Chaetoceros protuberans Lauder were determined both with and without silicic acid added to the medium. With silicic acid available, partial inhibition of resting spore formation occurred only at the highest cupric ion activity (pCu 8.6), while the percentage of cells forming spores at pCu's 10.2 and 11.3 was nearly the same as in the controls. Without silicic acid added to the medium, sporulation was completely inhibited at pCu 8.6 and greatly inhibited, at pCu 10.2. At pCu 11.3 and in the controls, the rate of spore formation was less than 50%. The results indicate that the inhibition of resting spore formation by copper is related to the concentration of silicic acid available to cells of C protuberans. This is consistent with previous studies which show that copper toxicity during vegetative growth involves interference with silicification in diatoms and is a Junction of the silicic acid concentration of the medium. Viable resting spores of C. protuberans were still present in cultures following exposure to elevated copper concentrations during a 100-day incubation period. This indicates that resting spores can serve to enhance diatom survival in areas polluted by heavy metals.  相似文献   

14.
 Shortly after initiation of Dictyostelium fruiting body formation, prespore cells begin to differentiate into non-motile spores. Although these cells lose their ability to move, they are, nevertheless, elevated to the tip of the stalk. Removal of the amoeboid anterior-like cells, located above the differentiating spores in the developing fruiting body, prevents further spore elevation although the stalk continues to elongate. Furthermore, replacement of the anterior-like cells with anterior-like cells from another fruiting body largely restores the ability to lift the spores to the top of the stalk. However, if amoeboid prestalk cells are used to replace the anterior-like cells, there is no restoration of spore elevation. Finally, when a droplet of mineral oil replaces differentiating spores, it is treated as are the spores: the mineral oil is elevated in the presence of anterior-like cells and becomes arrested on the stalk in the absence of anterior-like cells. Because a similar droplet of mineral oil is totally ignored by slug tissue, it appears that there is a dramatic transformation in the treatment of non-motile matter at this point in Dictyostelium development. Received: 26 January 1998 / Accepted: 27 May 1998  相似文献   

15.
Large vacuoles are characteristic of plant and fungal cells, and their origin has long attracted interest. The cellular slime mould provides a unique opportunity to study the de novo formation of vacuoles because, in its life cycle, a subset of the highly motile animal-like cells (prestalk cells) rapidly develops a single large vacuole and cellulosic cell wall to become plant-like cells (stalk cells). Here we describe the origin and process of vacuole formation using live-imaging of Dictyostelium cells expressing GFP-tagged ammonium transporter A (AmtA-GFP), which was found to reside on the membrane of stalk-cell vacuoles. We show that stalk-cell vacuoles originate from acidic vesicles and autophagosomes, which fuse to form autolysosomes. Their repeated fusion and expansion accompanied by concomitant cell wall formation enable the stalk cells to rapidly develop turgor pressure necessary to make the rigid stalk to hold the spores aloft. Contractile vacuoles, which are rich in H+-ATPase as in plant vacuoles, remained separate from these vacuoles. We further argue that AmtA may play an important role in the control of stalk-cell differentiation by modulating the pH of autolysosomes.  相似文献   

16.
17.
Morrissey JH  Loomis WF 《Genetics》1981,99(2):183-196
Eight independently isolated mutants of Dictyostelium discoideum that differentiate exclusively into stalk cells make up one complementation group and carry single recessive mutations at the stalky locus, stkA, located on linkage group II. KY19, a previously described strain that differentiates into spores, but not stalk cells, was found to possess a recessive mutation defining the stalkless locus, stlA, located on linkage group VI. An analysis of the properties of these mutants, together with the phenotype of a haploid double mutant carrying stkA and stlA indicates that stlA results in poorly organized stalk tubes and incomplete stalk cell differentiation, while stkA causes all of the cells to differentiate into stalk cells, even when not enclosed in the stalk tube. The significance of these results is discussed in relation to current theories of pattern formation in D. discoideum.  相似文献   

18.
A. Amagai  Y. Maeda 《Protoplasma》1992,167(3-4):159-168
Summary The cellular slime moldDictyostelium mucoroides-7 (Dm 7) and its mutant (MF 1) exhibit sexual or asexual development depending upon culture conditions. During the sexual cycle macrocyst formation occurs, whereas sorocarps containing spores and stalk cells are asexually formed. As previously reported, the macrocyst formation is marked by the emergence of true zygotes, and is induced by a potent plant hormone, ethylene. The concentration of ethylene required for macrocyst induction was determined to establish the similarity of ethylene action between this organism and higher plants. Macrocysts are induced by low (1 l/l) exogenous concentrations of ethylene. Higher concentrations (10–1,000 ul/l) also gave essentially the same inductive activity. Ethionine, an analogue of methionine, was found to inhibit zygote formation during sexual development through its interference with ethylene production by Dm 7 and MF 1 cells. In fact, the inhibitory effect of ethionine was mostly nullified by the application of ethylene, S-adenosyl-L-methionine, or 1-aminocyclopropane-1-carboxylic acid. Taken together these results suggest that both the effective concentration of ethylene and the pathway of ethylene biosynthesis inD. mucoroides may be similar to those in higher plants. Ethylene was also found to be produced in various species and strains of cellular slime molds, even during the asexual process. The possible functions of ethylene in the asexual development are discussed in relation to cell aggregation and differentiation.Abbreviations SAM S-adenosyl-L-methionine - ACC 1-aminocyclopropane-1-carboxylic acid - AOA (aminooxy) acetic acid - BSS Bonner's salt solution - DAPI 4,6-diamidino-2-phenylindole  相似文献   

19.
The differentiation processes of Dictyostelium discoideum cells under the conditions which favored either stalk or spore cell formation were examined by the use of prestalk- and prespore-specific antibodies. In stalk cell-forming conditions, cells reactive with prestalk-specific monoclonal antibody (C1) increased rapidly early in development and later differentiated into stalk cells. No or only a few cells became reactive with prespore-specific monoclonal (B6) and polyclonal (antispore) antibodies. Despite the fact that most cells terminally became spores under spore cell-forming conditions, cells were first stained with the C1 antibody before becoming reactive with the B6 antibody. Unlike the case of normal development where cells coincidentally become reactive with the B6 and antispore antibodies, the appearance of the cells reactive with the latter was either delayed or suppressed. In conclusion, under either spore or stalk cell-forming conditions, the appearance of the prestalk antigen preceded that of the prespore one, which is consistent with normal development.  相似文献   

20.
The release of the prostaglandins E2 and D2, induced by zymosan and phorbol ester in cultured rat Kupffer cells, was found to depend on the extracellular concentration of Na+. Eicosanoid formation following the administration of the Ca2+ ionophore A23187 or of arachidonic acid, however, did not require the presence of sodium ions in the medium. A half-maximal rate of prostaglandin release by zymosan-treated Kupffer cells was obtained between 4 mM and 5 mM Na+; and a Na+ concentration of greater than or equal to 30 mM was required to maximally stimulate prostaglandin E2 and D2 formation in the cultured liver macrophages. In contrast, the superoxide production following the administration of zymosan or of phorbol ester was quite independent of extracellular Na+. The zymosan and phorbol-ester-stimulated release of prostaglandins E2 and D2 was inhibited by amiloride. Artificial intracellular alkalization enhanced the prostanoid production of unstimulated and of zymosan-stimulated cells whereas artificial intracellular acidification inhibited the zymosan-elicited prostaglandin synthesis. In contrast, the superoxide formation was independent of the pH changes. The data presented here suggest that the prostaglandin production elicited by zymosan or phorbol ester in cultured rat Kupffer cells requires an activated Na+/H+ exchange.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号