共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Erwinia amylovora secretes harpin via a type III pathway and contains a homolog of yopN of Yersinia spp. 总被引:2,自引:2,他引:2
下载免费PDF全文

Type III secretion functions in flagellar biosynthesis and in export of virulence factors from several animal pathogens, and for plant pathogens, it has been shown to be involved in the export of elicitors of the hypersensitive reaction. Typified by the Yop delivery system of Yersinia spp., type III secretion is sec independent and requires multiple components. Sequence analysis of an 11.5-kb region of the hrp gene cluster of Erwinia amylovora containing hrpI, a previously characterized type III gene, revealed a group of eight or more type III genes corresponding to the virB or lcrB (yscN-to-yscU) locus of Yersinia spp. A homolog of another Yop secretion gene, yscD, was found between hrpI and this group downstream. Immediately upstream of hrpI, a homolog of yopN was discovered. yopN is a putative sensor involved in host-cell-contact-triggered expression and transfer of protein, e.g., YopE, to the host cytoplasm. In-frame deletion mutagenesis of one of the type III genes, designated hrcT, was nonpolar and resulted in a Hrp- strain that produced but did not secrete harpin, an elicitor of the hypersensitive reaction that is also required for pathogenesis. Cladistic analysis of the HrpI (herein renamed HrcV) or LcrD protein family revealed two distinct groups for plant pathogens. The Yersinia protein grouped more closely with the plant pathogen homologs than with homologs from other animal pathogens; flagellar biosynthesis proteins grouped distinctly. A possible evolutionary history of type III secretion is presented, and the potential significance of the similarity between the harpin and Yop export systems is discussed, particularly with respect to a potential role for the YopN homolog in pathogenesis of plants. 相似文献
3.
4.
Peteris Zikmanis Inara Andersone Martina Baltkalne 《Central European Journal of Biology》2006,1(1):124-136
The amino acid composition of sequences and structural attributes (α-helices, β-sheets) of C-and N-terminal fragments (50 amino acids) were compared to annotated (SWISS-PROT/ TrEMBL) type I (20 sequences)
and type III (22 sequences) secreted proteins of Gram-negative bacteria.
The discriminant analysis together with the stepwise forward and backward selection of variables revealed the frequencies
of the residues Arg, Glu, Gly, Ile, Met, Pro, Ser, Tyr, Val as a set of strong (1-P < 0.001) predictor variables to discriminate
between the sequences of type I and type III secreted proteins with a cross-validated accuracy of 98.6–100 %. The internal
and external validity of discriminant analysis was confirmed by multiple (15 repeats) test-retest procedures using a randomly
split original set of proteins; this validation method demonstrated an accuracy of 100 % for 191 non-selected (retest) sequences.
The discriminant analysis was also applied using selected variables from the propensities for β-sheets and polarity of C-terminal fragments. This approach produced the next highest and comparable cross-validated classification
accuracy for randomly selected and retest proteins (85.4–86.0 % and 82.4–84.5 %, respectively).
The proposed sets of predictor variables could be used to assess the compatibility between secretion substrates and secretion
pathways of Gram-negative bacteria by means of discriminant analysis. 相似文献
5.
Reboutier D Frankart C Briand J Biligui B Laroche S Rona JP Barny MA Bouteau F 《Molecular plant-microbe interactions : MPMI》2007,20(1):94-100
Erwinia amylovora is a gram-negative necrogenic bacterium causing fire blight of the Maloideae subfamily of Rosaceae such as apple and pear. It provokes progressive necrosis in aerial parts of susceptible host plants (compatible interaction) and a hypersensitive reaction (HR) when infiltrated in nonhost plants (incompatible interaction). The HrpN(ea) harpin is a type three secretion system effector secreted by E. amylovora. This protein is involved in pathogenicity and HR-eliciting capacity of E. amylovora. In the present study, we showed that, in nonhost Arabidopsis thaliana cells, purified HrpN(ea) induces cell death and H2O2 production, two nonhost resistance responses, but failed to induce such responses in host MM106 apple cells. Moreover, HrpN(ea) induced an increase in anion current in host MM106 apple cells, at the opposite of the decrease of anion current previously shown to be necessary to induce cell death in nonhost A. thaliana cells. These results suggest that HrpN(ea) induced different signaling pathways, which could account for early induced compatible or incompatible interaction development. 相似文献
6.
7.
8.
Derouazi M Toussaint B Quénée L Epaulard O Guillaume M Marlu R Polack B 《Applied and environmental microbiology》2008,74(11):3601-3604
The Escherichia coli system is the system of choice for recombinant protein production because it is possible to obtain a high protein yield in inexpensive media. The accumulation of protein in an insoluble form in inclusion bodies remains a major disadvantage. Use of the Pseudomonas aeruginosa type III secretion system can avoid this problem, allowing the production of soluble secreted proteins. 相似文献
9.
Pseudomonas syringae HrpJ is a type III secreted protein that is required for plant pathogenesis, injection of effectors, and secretion of the HrpZ1 Harpin
下载免费PDF全文

The bacterial plant pathogen Pseudomonas syringae requires a type III protein secretion system (TTSS) to cause disease. The P. syringae TTSS is encoded by the hrp-hrc gene cluster. One of the genes within this cluster, hrpJ, encodes a protein with weak similarity to YopN, a type III secreted protein from the animal pathogenic Yersinia species. Here, we show that HrpJ is secreted in culture and translocated into plant cells by the P. syringae pv. tomato DC3000 TTSS. A DC3000 hrpJ mutant, UNL140, was greatly reduced in its ability to cause disease symptoms and multiply in Arabidopsis thaliana. UNL140 exhibited a reduced ability to elicit a hypersensitive response (HR) in nonhost tobacco plants. UNL140 was unable to elicit an AvrRpt2- or AvrB1-dependent HR in A. thaliana but maintained its ability to secrete AvrB1 in culture via the TTSS. Additionally, UNL140 was defective in its ability to translocate the effectors AvrPto1, HopB1, and AvrPtoB. Type III secretion assays showed that UNL140 secreted HrpA1 and AvrPto1 but was unable to secrete HrpZ1, a protein that is normally secreted in culture in relatively large amounts, into culture supernatants. Taken together, our data indicate that HrpJ is a type III secreted protein that is important for pathogenicity and the translocation of effectors into plant cells. Based on the failure of UNL140 to secrete HrpZ1, HrpJ may play a role in controlling type III secretion, and in its absence, specific accessory proteins, like HrpZ1, may not be extracellularly localized, resulting in disabled translocation of effectors into plant cells. 相似文献
10.
Emadeldeen Ismail Jochen Blom Alain Bultreys Milan Ivanović Aleksa Obradović Joop van Doorn Maria Bergsma-Vlami Martine Maes Anne Willems Brion Duffy Virginia O. Stockwell Theo H. M. Smits Joanna Puławska 《Archives of microbiology》2014,196(12):891-899
Recent genome analysis of Erwinia amylovora, the causal agent of fire blight disease on Rosaceae, has shown that the chromosome is highly conserved among strains and that plasmids are the principal source of genomic diversity. A new circular plasmid, pEA68, was found in E. amylovora strain 692 (LMG 28361), isolated in Poland from Sorbus (mountain ash) with fire blight symptoms. Annotation of the 68,763-bp IncFIIa-type plasmid revealed that it contains 79 predicted CDS, among which two operons (tra, pil) are associated with mobility. The plasmid is maintained stably in E. amylovora and does not possess genes associated with antibiotic resistance or known virulence genes. Curing E. amylovora strain 692 of pEA68 did not influence its virulence in apple shoots nor amylovoran synthesis. Of 488 strains of E. amylovora from seventeen countries, pEA68 was only found in two additional strains from Belgium. Although the spread of pEA68 is currently limited to Europe, pEA68 comprises, together with pEA72 and pEA78 both found in North America, a new plasmid family that spans two continents. 相似文献
11.
The Fourier transform (FT) method was applied to specify the distribution of 14 predefined groups of amino acids (64 residues) at both termini of annotated type III and type I secreted proteins from proteobacteria. Type I proteins displayed a higher occurrence of significant periodicities at both C-and N-termini, indicating potent features to discriminate between secretion types, particularly by the use of variables selected from the full periodicity profiles at 19 orders of FT. The Fishers linear discriminant analysis, together with the stepwise selection of variables throughout equal pairs of combinations for all predefined groups of residues, revealed the C-terminal harmonics of aromatic (HFWY) and aliphatic (VLIA) residues as a set of strong predictor variables to classify both types of secreted proteins with an accuracy of 100% for original grouped cases and 96.4% for cross-validated grouped cases. The prediction accuracy of proposed discriminant function was estimated by repeated k-fold cross-validation procedures where the original data set was randomly divided into k subsets, with one of the k-subsets serving as the test set and the remaining data forming the training set. The average error rate computed across all k-trials and repeats did not exceed that of leave-one-out procedure. The proposed set of predictor variables could be used to assess the compatibility between secretion pathways and secretion substrates of proteobacteria by means of discriminant analysis. 相似文献
12.
Cellular locations of Pseudomonas syringae pv. syringae HrcC and HrcJ proteins, required for harpin secretion via the type III pathway
下载免费PDF全文

The complete hrp-hrc-hrmA cluster of Pseudomonas syringae pv. syringae 61 encodes 28 polypeptides. A saprophytic bacterium carrying this cluster is capable of secreting HrpZ-a harpin encoded by hrpZ-in an hrp-dependent manner, which suggests that this cluster contains sufficient components to assemble functional type III secretion machinery. Sequence data show that HrcJ and HrcC are putative outer membrane proteins, and nonpolar mutagenesis demonstrates they are all required for HrpZ secretion. In this study, we investigated the cellular localization of the HrcC and HrcJ proteins by Triton solubilization, sucrose-gradient isopycnic centrifugation, and immunogold labeling of the bacterial cell surface. Our results indicate that HrcC is indeed an outer membrane protein and that HrcJ is located between both membranes. Their membrane localization suggests that they might be involved in the formation of a supramolecular structure for protein secretion. 相似文献
13.
R. Riekki T. Palomäki O. Virtaharju H. Kokko M. Romantschuk H. T. Saarilahti 《Molecular genetics and genomics : MGG》2000,263(6):1031-1037
A cellulase-producing clone was isolated from a genomic library of the Erwinia rhapontici (Millard) Burkholder strain NCPPB2989. The corresponding gene, named celA, encodes an endoglucanase (EC?3.2.1.4) with the extremely low pH optimum of 3.4 and a temperature optimum between 40 and 50?°C. A single ORF of 999?nt was found to be responsible for the Cel activity. The corresponding protein, named CelA, showed 67% identity to the endoglucanase Y of E. chrysanthemi and 51.5% identity to the endoglucanase of Cellulomonas uda, and thus belongs to the glycosyl hydrolase family?8. The celA gene, or its homologue, was found to be present in all E. rhapontici isolates analysed, in E. chrysanthemi, and in E. amylovora. The presence of plant cell wall-degrading enzymes in the amylovora group of Erwinia spp. had not previously been established. Furthermore, the DNA of both E. rhapontici and E. amylovora was found to exhibit homology to genes encoding the type?II (GSP) secretion pathway, which is known to be responsible for extracellular targeting of cellulases and pectinases in Erwinia spp. that cause soft rotting, such as E. carotovora and E. chrysanthemi. Secretion of the CelA protein by E. rhapontici could not be verified. However, the CelA protein itself was found to include the information necessary for heterologous secretion by E. chrysanthemi. 相似文献
14.
15.
The RcsA and RcsB proteins of Erwinia amylovora and Escherichia coli were expressed in E. coli and purified. Their DNA-binding activity was examined using a 1-kb DNA region containing the putative promoter of the ams operon of Ew. amylovora, which is responsible for the biosynthesis of the exopolysaccharide amylovoran. Mobility shift assays indicated specific binding of RcsA and RcsB to a region of 78?bp spanning nucleotide positions ?578 to ?501 relative to the translational start of the first open reading frame of the operon. This region includes stretches of homology to E. coliσ 70 promoter consensus sequences and to the E. coli cps promoter region. Binding of the Rcs proteins was not found at a JUMPstart consensus, typical for various promoters of polysaccharide gene clusters. DNA-binding activity was not detected for RcsA alone and only high concentrations of RcsB were able to interact with the ams promoter in our assay. The two proteins bind cooperatively at the indicated region of the ams promoter and further evidence is provided showing that the DNA-protein complex formed involves a heterodimer of RcsA and RcsB. The specific activity of RcsA, but not of RcsB, was enhanced when the protein was expressed in E. coli at 28°?C, relative to expression at 37°?C. In addition, DNA-protein complex formation is affected by temperature. The E. coli RcsA/RcsB proteins bind to the same region of the ams promoter and are able to interact with the Rcs proteins from Ew. amylovora. 相似文献
16.
r.k. taylor and c.n. hale. 2003. AIMS: To determine the effect of cold storage on the survival of Erwinia amylovora. METHODS AND RESULTS: The survival of E. amylovora was assessed during storage at 2 degrees C. Populations of E. amylovora inoculated into phosphate-buffered saline remained static, whereas in nutrient media populations increased at low temperatures. In contrast, populations of E. amylovora on tissue in the apple calyx decreased during cold storage. CONCLUSIONS: Erwinia amylovora has the ability, in nutrient media, to multiply at low temperatures. However, populations of E. amylovora on tissue in the apple calyx decrease with the time spent in cold storage. SIGNIFICANCE AND IMPACT OF THE STUDY: Cold storage of apples will provide assurance that mature fruit from orchards, free of fire blight, or even with low levels of fire blight, may be exported with a negligible risk of introducing the disease into countries free of fire blight. 相似文献
17.
Riekki R Palomäki T Virtaharju O Kokko H Romantschuk M Saarilahti HT 《Molecular & general genetics : MGG》2000,263(6):1031-1037
A cellulase-producing clone was isolated from a genomic library of the Erwinia rhapontici (Millard) Burkholder strain NCPPB2989. The corresponding gene, named celA, encodes an endoglucanase (EC 3.2.1.4) with the extremely low pH optimum of 3.4 and a temperature optimum between 40 and
50 °C. A single ORF of 999 nt was found to be responsible for the Cel activity. The corresponding protein, named CelA, showed
67% identity to the endoglucanase Y of E. chrysanthemi and 51.5% identity to the endoglucanase of Cellulomonas uda, and thus belongs to the glycosyl hydrolase family 8. The celA gene, or its homologue, was found to be present in all E. rhapontici isolates analysed, in E. chrysanthemi, and in E. amylovora. The presence of plant cell wall-degrading enzymes in the amylovora group of Erwinia spp. had not previously been established. Furthermore, the DNA of both E. rhapontici and E. amylovora was found to exhibit homology to genes encoding the type II (GSP) secretion pathway, which is known to be responsible for
extracellular targeting of cellulases and pectinases in Erwinia spp. that cause soft rotting, such as E. carotovora and E. chrysanthemi. Secretion of the CelA protein by E. rhapontici could not be verified. However, the CelA protein itself was found to include the information necessary for heterologous secretion
by E. chrysanthemi.
Received: 4 November 1999 / Accepted: 14 April 2000 相似文献
18.
Rojas CM Ham JH Schechter LM Kim JF Beer SV Collmer A 《Molecular plant-microbe interactions : MPMI》2004,17(6):644-653
Erwinia chrysanthemi is a host-promiscuous plant pathogen that possesses a type III secretion system (TTSS) similar to that of the host-specific pathogens E. amylovora and Pseudomonas syringae. The regions flanking the TTSS-encoding hrp/hrc gene clusters in the latter pathogens encode various TTSS-secreted proteins. DNA sequencing of the complete E. chrysanthemi hrp/hrc gene cluster and approximately 12 kb of the flanking regions (beyond the previously characterized hecA adhesin gene in the left flank) revealed that the E. chrysanthemi TTSS genes were syntenic and similar (>50% amino-acid identity) with their E. amylovora orthologs. However, the hrp/hrc cluster was interrupted by a cluster of four genes, only one of which, a homolog of lytic transglycosylases, is implicated in TTSS functions. Furthermore, the regions flanking the hrp/hrc cluster lacked genes that were likely to encode TTSS substrates. Instead, some of the genes in these regions predict ABC transporters and methyl-accepting chemotaxis proteins that could have alternative roles in virulence. Mutations affecting all of the genes in the regions flanking or interrupting the hrp/hrc cluster were constructed in E. chrysanthemi CUCPB5047, a mutant whose reduced pectolytic capacity can enhance the phenotype of minor virulence factors. Mutants were screened in witloof chicory leaves and then in potato tubers and Nicotiana clevelandii seedlings. Mu dII1734 insertion in one gene, designated virA, resulted in strongly reduced virulence in all three tests. virA is immediately downstream of hecA, has an unusually low G+C content of 38%, and predicts an unknown protein of 111 amino acids. The E. chrysanthemi TTSS was shown to be active by its ability to translocate AvrPto-Cya (a P. syringae TTSS effector fused to an adenylate cyclase reporter that is active in the presence of eukaryote calmodulin) into N. benthamiana leaf cells. However, VirA(1-61)-Cya was not translocated into plant cells, and virA expression was not affected by mutations in E. chrysanthemi Hrp regulator genes hrpL and hrpS. Thus, the 44-kb region of the E. chrysanthemi EC16 genome that is centered on the hrplhrc cluster encodes a potpourri of virulence factors, but none of these appear to be a TTSS effector. 相似文献
19.
Boureau T Siamer S Perino C Gaubert S Patrit O Degrave A Fagard M Chevreau E Barny MA 《Molecular plant-microbe interactions : MPMI》2011,24(5):577-584
Erwinia amylovora is responsible for fire blight of apple and pear trees. Its pathogenicity depends on a type III secretion system (T3SS) mediating the translocation of effectors into the plant cell. The DspA/E effector suppresses callose deposition on apple leaves. We found that E. amylovora and Pseudomonas syringae DC3000 tts mutants or peptide flg22 do not trigger callose deposition as strongly as the dspA/E mutant on apple leaves. This suggests that, on apple leaves, callose deposition is poorly elicited by pathogen-associated molecular patterns (PAMPs) such as flg22 or other PAMPs harbored by tts mutants and is mainly elicited by injected effectors or by the T3SS itself. Callose elicitation partly depends on HrpW because an hrpW-dspA/E mutant elicits lower callose deposition than a dspA/E mutant. Furthermore, an hrpN-dspA/E mutant does not trigger callose deposition, indicating that HrpN is required to trigger this plant defense reaction. We showed that HrpN plays a general role in the translocation process. Thus, the HrpN requirement for callose deposition may be explained by its role in translocation: HrpN could be involved in the translocation of other effectors inducing callose deposition. Furthermore, HrpN may also directly contribute to the elicitation process because we showed that purified HrpN induces callose deposition. 相似文献
20.
Specific interaction between OutD, an Erwinia chrysanthemi outer membrane protein of the general secretory pathway, and secreted proteins. 总被引:6,自引:0,他引:6
下载免费PDF全文

OutD is an outer membrane component of the main terminal branch of the general secretory pathway (GSP) in Erwinia chrysanthemi. We analyzed the interactions of OutD with other components of the GSP (Out proteins) and with secreted proteins (PelB, EGZ and PemA). OutD is stabilized by its interaction with another GSP component, OutS. The 62 C-terminal amino acids of OutD are necessary for this interaction. In vivo formation of OutD multimers, up to tetramers, was proved after the dissociation in mild conditions of the OutD aggregates formed in the outer membrane. Thus, OutD could form a channel-like structure in the outer membrane. We showed that OutD is stabilized in vivo when co-expressed with Out-secreted proteins. This stabilization results from the formation of complexes that were detected in experiments of co-immunoprecipitation and co-sedimentation in sucrose density gradients. The presence of the N-terminal part of OutD is required for this interaction. The interaction between OutD and the secreted protein PelB was confirmed in vitro, suggesting that no other component of the GSP is required for this recognition. No interaction was observed between the E. carotovora PelC and the E. chrysanthemi OutD. Thus, the interaction between GspD and the secreted proteins present in the periplasm could be the key to the specificity of the secretion machinery and a trigger for that process. 相似文献