首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
VIP36 functions as a transport lectin for trafficking certain high mannose type glycoproteins in the secretory pathway. Here we report the crystal structure of VIP36 exoplasmic/luminal domain comprising a carbohydrate recognition domain and a stalk domain. The structures of VIP36 in complex with Ca(2+) and mannosyl ligands are also described. The carbohydrate recognition domain is composed of a 17-stranded antiparallel beta-sandwich and binds one Ca(2+) adjoining the carbohydrate-binding site. The structure reveals that a coordinated Ca(2+) ion orients the side chains of Asp(131), Asn(166), and His(190) for carbohydrate binding. This result explains the Ca(2+)-dependent carbohydrate binding of this protein. The Man-alpha-1,2-Man-alpha-1,2-Man, which corresponds to the D1 arm of high mannose type glycan, is recognized by eight residues through extensive hydrogen bonds. The complex structures reveal the structural basis for high mannose type glycoprotein recognition by VIP36 in a Ca(2+)-dependent and D1 arm-specific manner.  相似文献   

2.
CEL-III is a Ca(2+)-dependent and galactose-specific lectin purified from the sea cucumber, Cucumaria echinata, which exhibits hemolytic and hemagglutinating activities. Six molecules of CEL-III are assumed to oligomerize to form an ion-permeable pore in the cell membrane. We have determined the crystal structure of CELIII by using single isomorphous replacement aided by anomalous scattering in lead at 1.7 A resolution. CEL-III consists of three distinct domains as follows: the N-terminal two carbohydrate-binding domains (1 and 2), which adopt beta-trefoil folds such as the B-chain of ricin and are members of the (QXW)(3) motif family; and domain 3, which is a novel fold composed of two alpha-helices and one beta-sandwich. CEL-III is the first Ca(2+)-dependent lectin structure with two beta-trefoil folds. Despite sharing the structure of the B-chain of ricin, CEL-III binds five Ca(2+) ions at five of the six subdomains in both domains 1 and 2. Considering the relatively high similarity among the five subdomains, they are putative binding sites for galactose-related carbohydrates, although it remains to be elucidated whether bound Ca(2+) is directly involved in interaction with carbohydrates. The paucity of hydrophobic interactions in the interfaces between the domains and biochemical data suggest that these domains rearrange upon carbohydrate binding in the erythrocyte membrane. This conformational change may be responsible for oligomerization of CEL-III molecules and hemolysis in the erythrocyte membranes.  相似文献   

3.
The microbial deconstruction of the plant cell wall is a critical biological process, which also provides important substrates for environmentally sustainable industries. Enzymes that hydrolyze the plant cell wall generally contain non-catalytic carbohydrate binding modules (CBMs) that contribute to plant cell wall degradation. Here we report the biochemical properties and crystal structure of a family of CBMs (CBM60) that are located in xylanases. Uniquely, the proteins display broad ligand specificity, targeting xylans, galactans, and cellulose. Some of the CBM60s display enhanced affinity for their ligands through avidity effects mediated by protein dimerization. The crystal structure of vCBM60, displays a β-sandwich with the ligand binding site comprising a broad cleft formed by the loops connecting the two β-sheets. Ligand recognition at site 1 is, exclusively, through hydrophobic interactions, whereas binding at site 2 is conferred by polar interactions between a protein-bound calcium and the O2 and O3 of the sugar. The observation, that ligand recognition at site 2 requires only a β-linked sugar that contains equatorial hydroxyls at C2 and C3, explains the broad ligand specificity displayed by vCBM60. The ligand-binding apparatus of vCBM60 displays remarkable structural conservation with a family 36 CBM (CBM36); however, the residues that contribute to carbohydrate recognition are derived from different regions of the two proteins. Three-dimensional structure-based sequence alignments reveal that CBM36 and CBM60 are related by circular permutation. The biological and evolutionary significance of the mechanism of ligand recognition displayed by family 60 CBMs is discussed.  相似文献   

4.
Synaptotagmin I has two tandem Ca(2+)-binding C(2) domains, which are essential for fast synchronous synaptic transmission in the central nervous system. We have solved four crystal structures of the C(2)B domain, one of them in the cation-free form at 1.50 A resolution, two in the Ca(2+)-bound form at 1.04 A (two bound Ca(2+) ions) and 1.65 A (three bound Ca(2+) ions) resolution and one in the Sr(2+)-bound form at 1.18 A (one bound Sr(2+) ion) resolution. The side chains of four highly conserved aspartic acids (D303, D309, D363, and D365) and two main chain oxygens (M302:O and Y364:O), together with water molecules, are in direct contact with two bound Ca(2+) ions (sites 1 and 2). At higher Ca(2+) concentrations, the side chain of N333 rotates and cooperates with D309 to generate a third Ca(2+) coordination site (site 3). Divalent cation binding sites 1 and 2 in the C(2)B domain were previously identified from NMR NOE patterns and titration studies, supplemented by site-directed mutation analysis. One difference between the crystal and NMR studies involves D371, which is not involved in coordination with any of the identified Ca(2+) sites in the crystal structures, while it is coordinated to Ca(2+) in site 2 in the NMR structure. In the presence of Sr(2+), which is also capable of triggering exocytosis, but with lower efficiency, only one cation binding site (site 1) was occupied in the crystallographic structure.  相似文献   

5.
The phospholipid-binding specificities of C(2) domains, widely distributed Ca(2+)-binding modules, differ greatly despite similar three-dimensional structures. To understand the molecular basis for this specificity, we have examined the synaptotagmin 1 C(2)A domain, which interacts in a primarily electrostatic, Ca(2+)-dependent reaction with negatively charged phospholipids, and the cytosolic phospholipase A(2) (cPLA(2)) C(2) domain, which interacts by a primarily hydrophobic Ca(2+)-dependent mechanism with neutral phospholipids. We show that grafting the short Ca(2+)-binding loops from the tip of the cPLA(2) C(2) domain onto the top of the synaptotagmin 1 C(2)A domain confers onto the synaptotagmin 1 C(2)A domain the phospholipid binding specificity of the cPLA(2) C(2) domain, indicating that the functional specificity of C(2) domains is determined by their short top loops.  相似文献   

6.
Hata S  Sorimachi H  Nakagawa K  Maeda T  Abe K  Suzuki K 《FEBS letters》2001,501(2-3):111-114
Calpain, a Ca(2+)-dependent cytosolic cysteine protease, proteolytically modulates specific substrates involved in Ca(2+)-mediated intracellular events, such as signal transduction, cell cycle, differentiation, and apoptosis. The 3D structure of m-calpain, in the absence of Ca(2+), revealed that the two subdomains (domains IIa and IIb) of the protease domain (II) have an 'open' conformation, probably due to interactions with other domains. Although the presence of an EF-hand structure was once predicted in the protease domain, no explicit Ca(2+)-binding structure was identified in the 3D structure. Therefore, it is predicted that if the protease domain is excised from the calpain molecule, it will have a Ca(2+)-independent protease activity. In this study, we have characterized a truncated human m-calpain that consists of only the protease domain. Unexpectedly, the proteolytic activity was Ca(2+)-dependent, very weak, and not effectively inhibited by calpastatin, a calpain inhibitor. Ca(2+)-dependent modification of the protease domain by the cysteine protease inhibitor, E-64c, was clearly observed as a SDS-PAGE migration change, indicating that the conformational changes of this domain are a result of Ca(2+) binding. These results suggest that the Ca(2+) binding to domain II, as well as to domains III, IV, and VI, is critical in the process of complete activation of calpain.  相似文献   

7.
A portion of rat mannose-binding protein A (MBP-A), a Ca(2+)-dependent animal lectin, has been overproduced in a bacterial expression system, biochemically characterized, and crystallized. A fragment corresponding to the COOH-terminal 115 residues of native MBP-A, produced by subtilisin digestion of the bacterially expressed protein, contains the carbohydrate-recognition domain (CRD). Gel filtration, chemical cross-linking, and crystallographic self-rotation function analyses indicate that the subtilisin fragment is a dimer, although the complete bacterially expressed fragment, containing the neck and CRD of MBP-A, is a trimer. Crystals of the minimal CRD, obtained only as a complex with a Man6GlcNAc2Asn glycopeptide, diffract to Bragg spacings of at least 1.7 A. Several trivalent lanthanide ions (Ln3+) can substitute for Ca2+, as assessed by their ability to support carbohydrate binding and to protect the CRD from proteolysis in a manner similar to that observed for Ca2+. These assays indicate that Ln2+ binds about 30 times more tightly than Ca2+ to the CRD, and that two Ca2+ or Ln3+ bind to each monomer, a result confirmed by determination of the Ho3+ positions in a Ho(3+)-containing crystal of the CRD. Crystals grown in the presence of Ln3+ belong to different space groups from those obtained with Ca2+ and are therefore not useable for traditional crystallographic phase determination methods, but are well-suited for high resolution structure determination by multiwavelength anomalous dispersion phasing.  相似文献   

8.
In vitro protein binding assays identified two distinct calmodulin (CaM) binding sites within the NH(2)-terminal 30-kDa domain of erythrocyte protein 4.1 (4.1R): a Ca(2+)-independent binding site (A(264)KKLWKVCVEHHTFFRL) and a Ca(2+)-dependent binding site (A(181)KKLSMYGVDLHKAKDL). Synthetic peptides corresponding to these sequences bound CaM in vitro; conversely, deletion of these peptides from a 30-kDa construct reduced binding to CaM. Thus, 4.1R is a unique CaM-binding protein in that it has distinct Ca(2+)-dependent and Ca(2+)-independent high affinity CaM binding sites. CaM bound to 4.1R at a stoichiometry of 1:1 both in the presence and absence of Ca(2+), implying that one CaM molecule binds to two distinct sites in the same molecule of 4.1R. Interactions of 4.1R with membrane proteins such as band 3 is regulated by Ca(2+) and CaM. While the intrinsic affinity of the 30-kDa domain for the cytoplasmic tail of erythrocyte membrane band 3 was not altered by elimination of one or both CaM binding sites, the ability of Ca(2+)/CaM to down-regulate 4. 1R-band 3 interaction was abrogated by such deletions. Thus, regulation of protein 4.1 binding to membrane proteins by Ca(2+) and CaM requires binding of CaM to both Ca(2+)-independent and Ca(2+)-dependent sites in protein 4.1.  相似文献   

9.
CEL-III is a Ca(2+)-dependent hemolytic lectin, isolated from the marine invertebrate Cucumaria echinata. The three-dimensional structure of CEL-III/GalNAc and CEL-III/methyl alpha-galactoside complexes was solved by x-ray crystallographic analysis. In these complexes, five carbohydrate molecules were found to be bound to two carbohydrate-binding domains (domains 1 and 2) located in the N-terminal 2/3 portion of the polypeptide and that contained beta-trefoil folds similar to ricin B-chain. The 3-OH and 4-OH of bound carbohydrate molecules were coordinated with Ca(2+) located at the subdomains 1alpha, 1gamma, 2alpha, 2beta, and 2gamma, simultaneously forming hydrogen bond networks with nearby amino acid side chains, which is similar to carbohydrate binding in C-type lectins. The binding of carbohydrates was further stabilized by aromatic amino acid residues, such as tyrosine and tryptophan, through a stacking interaction with the hydrophobic face of carbohydrates. The importance of amino acid residues in the carbohydrate-binding sites was confirmed by the mutational analyses. The orientation of bound GalNAc and methyl alpha-galactoside was similar to the galactose moiety of lactose bound to the carbohydrate-binding site of the ricin B-chain, although the ricin B-chain does not require Ca(2+) ions for carbohydrate binding. The binding of the carbohydrates induced local structural changes in carbohydrate-binding sites in subdomains 2alpha and 2beta. Binding of GalNAc also induced a slight change in the main chain structure of domain 3, which could be related to the conformational change upon binding of specific carbohydrates to induce oligomerization of the protein.  相似文献   

10.
The Ca(2+)-dependent oligomerization activity of the second C2 (C2B) domain of synaptotagmin I (Syt I) has been hypothesized to regulate neurotransmitter release. We previously showed that the cytoplasmic domains of several other Syt isoforms also show Ca(2+)-dependent oligomerization activity (Fukuda, M., and Mikoshiba, K. (2000) J. Biol. Chem. 275, 28180-28185), but little is known about the involvement of their C2 domains in Ca(2+)-dependent oligomerization. In this study, we analyzed the Ca(2+)-dependent oligomerization properties of the first (C2A) and the second C2 (C2B) domains of Syt VII. Unlike Syt I, both C2 domains of Syt VII contribute to Ca(2+)-dependent homo- and hetero-oligomerization with other isoforms. For instance, the Syt VII C2A domain Ca(2+)-dependently binds itself and the C2A domain of Syt VI but not its C2B domain, whereas the Syt VII C2B domain Ca(2+)-dependently binds itself and the C2B domain of Syt II but not its C2A domain. In addition, we showed by gel filtration that a single Syt VII C2 domain is sufficient to form a Ca(2+)-dependent multimer of very high molecular weight. Because of this "two handed" structure, the Syt VII cytoplasmic domain has been found to show the strongest Ca(2+)-dependent multimerization activity in the Syt family. We also identified Asn-328 in the C2B domain as a crucial residue for the efficient Ca(2+)-dependent switch for multimerization by site-directed mutagenesis. Our results suggest that Syt VII is a specific isoform that can cluster different Syt isoforms with two hands in response to Ca(2+).  相似文献   

11.
12.
The recycling of photosynthetically fixed carbon, by the action of microbial plant cell wall hydrolases, is integral to one of the major geochemical cycles and is of considerable industrial importance. Non-catalytic carbohydrate-binding modules (CBMs) play a key role in this degradative process by targeting hydrolytic enzymes to their cognate substrate within the complex milieu of polysaccharides that comprise the plant cell wall. Family 29 CBMs have, thus far, only been found in an extracellular multienzyme plant cell wall-degrading complex from the anaerobic fungus Piromyces equi, where they exist as a CBM29-1:CBM29-2 tandem. Here we present both the structure of the CBM29-1 partner, at 1.5 A resolution, and examine the importance of hydrophobic stacking interactions as well as direct and solvent-mediated hydrogen bonds in the binding of CBM29-2 to different polysaccharides. CBM29 domains display unusual binding properties, exhibiting specificity for both beta-manno- and beta-gluco-configured ligands such as mannan, cellulose, and glucomannan. Mutagenesis reveals that "stacking" of tryptophan residues in the n and n+2 subsites plays a critical role in ligand binding, whereas the loss of tyrosine-mediated stacking in the n+4 subsite reduces, but does not abrogate, polysaccharide recognition. Direct hydrogen bonds to ligand, such as those provided by Arg-112 and Glu-78, play a pivotal role in the interaction with both mannan and cellulose, whereas removal of water-mediated interactions has comparatively little effect on carbohydrate binding. The interactions of CBM29-2 with the O2 of glucose or mannose contribute little to binding affinity, explaining why this CBM displays dual gluco/manno specificity.  相似文献   

13.
The hallmark of the annexin super family of proteins is Ca(2+)-dependent binding to phospholipid bilayers, a property that resides in the conserved core domain of these proteins. Despite the structural similarity between the core domains, studies reported herein showed that annexins A1, A2, A5, and B12 could be divided into two groups with distinctively different Ca(2+)-dependent membrane-binding properties. The division correlates with the ability of the annexins to form Ca(2+)-dependent membrane-bound trimers. Site-directed spin-labeling and Forster resonance energy transfer experimental approaches confirmed the well-known ability of annexins A5 and B12 to form trimers, but neither method detected self-association of annexin A1 or A2 on bilayers. Studies of chimeras in which the N-terminal and core domains of annexins A2 and A5 were swapped showed that trimer formation was mediated by the core domain. The trimer-forming annexin A5 and B12 group had the following Ca(2+)-dependent membrane-binding properties: (1) high Ca(2+) stoichiometry for membrane binding ( approximately 12 mol of Ca(2+)/mol of protein); (2) binding to membranes was very exothermic (> -60 kcal/ mol of protein); and (3) binding to bilayers that were in the liquid-crystal phase but not to bilayers in the gel phase. In contrast, the nontrimer-forming annexin A1 and A2 group had the following Ca(2+)-dependent membrane-binding properties: (1) lower Ca(2+) stoichiometry for membrane binding (相似文献   

14.
Boraston AB  Ficko-Blean E  Healey M 《Biochemistry》2007,46(40):11352-11360
Myonecrotic isolates of Clostridium perfringens secrete multimodular sialidases, often termed "large sialidases", that contribute to the virulence of this bacterium. NanJ is the largest of the two secreted sialidases at 1173 amino acids and comprises 6 different modules which are, from the N-terminus, a family 32 carbohydrate binding module (CBM), a family 40 CBM, a family 33 glycoside hydrolase, a module of unknown function, a family 82 "X-module" of unknown function, and a module with amino acid similarity to fibronectin type III domains. The hydrolase activity of clostridial sialidases is quite well documented; however, the functions of their accessory domains are entirely uninvestigated. Here we describe the carbohydrate binding activity of the isolated family 32 CBM (CBM32) and the isolated family 40 CBM (CBM40). CBM32 is shown to bind galactose or N-acetylgalactosamine, while CBM40 is sialic acid specific, though both CBMs appear to bind with very low affinities. The crystal structure of CBM32 was determined at 2.25 A in complex with galactose. This revealed what appears to be a very simple galactose binding site. The crystal structure of CBM40 was determined at 2.20 A in complex with a sialic acid containing molecule that it fortuitously crystallized with, revealing the molecular details of the CBM40-sialic acid interaction. Overall, the results indicate that NanJ contains carbohydrate specific binding modules that likely function to target the enzyme to molecules or cells bearing mixed populations of glycans that terminate in either galactose/N-acetylgalactosamine or sialic acid.  相似文献   

15.
The modulation of the local structure and dynamics of domain III of annexin 2 (Anx2), in both the monomeric (p36) and heterotetrameric forms (p90), by calcium and by membrane binding was studied by time-resolved fluorescence intensity and anisotropy measurements of the single tryptophan residue (W212). The results yield the same dominant excited-state lifetime (1.4 ns) in both p36 and p90, suggesting that the conformation and environment of W212 are very similar. The fluorescence anisotropy decay data were analyzed by associative (two-dimensional) as well as nonassociative (one-dimensional) models. Although no statistical criterion is decisive for one model versus the other, only the associative model allows recovery of a physically relevant value of the Brownian rotational correlation of the protein. Using the associative model, a nanosecond flexibility is detectable in p90 but not in p36. When Ca(2+) binds in the millimolar concentration range to both forms of Anx2, a conformational change takes place leading to an increase of the major excited-state lifetime (2.6 ns) and to a suppression of the W212 local flexibility of p90. Binding to membranes of either p36 or p90 in the presence of Ca(2+) does not induce any conformational change other than that provoked by Ca(2+) binding alone. The W212 local flexibility in both proteins increases significantly, however, in their membrane-bound forms. In the presence of membranes, the conformation change of domain III in p90 displays a sensitivity to Ca(2+) 2 orders of magnitude higher than that of p36, reaching intracellular sub-micromolar concentration ranges. This higher Ca(2+) sensitivity correlates with the Ca(2+)-dependent membrane aggregation but not with their Ca(2+)-dependent binding to membranes. The significance of these structural and dynamical changes for the function of the protein is discussed.  相似文献   

16.
Cardiac troponin C (cTnC) is the Ca(2+)-dependent switch for contraction in heart muscle and a potential target for drugs in the therapy of heart failure. Ca(2+) binding to the regulatory domain of cTnC (cNTnC) induces little structural change but sets the stage for cTnI binding. A large "closed" to "open" conformational transition occurs in the regulatory domain upon binding cTnI(147-163) or bepridil. This raises the question of whether cTnI(147-163) and bepridil compete for cNTnC.Ca(2+). In this work, we used two-dimensional (1)H,(15)N-heteronuclear single quantum coherence (HSQC) NMR spectroscopy to examine the binding of bepridil to cNTnC.Ca(2+) in the absence and presence of cTnI(147-163) and of cTnI(147-163) to cNTnC.Ca(2+) in the absence and presence of bepridil. The results show that bepridil and cTnI(147-163) bind cNTnC.Ca(2+) simultaneously but with negative cooperativity. The affinity of cTnI(147-163) for cNTnC.Ca(2+) is reduced approximately 3.5-fold by bepridil and vice versa. Using multinuclear and multidimensional NMR spectroscopy, we have determined the structure of the cNTnC.Ca(2+).cTnI(147-163).bepridil ternary complex. The structure reveals a binding site for cTnI(147-163) primarily located on the A/B interhelical interface and a binding site for bepridil in the hydrophobic pocket of cNTnC.Ca(2+). In the structure, the N terminus of the peptide clashes with part of the bepridil molecule, which explains the negative cooperativity between cTnI(147-163) and bepridil for cNTnC.Ca(2+). This structure provides insights into the features that are important for the design of cTnC-specific cardiotonic drugs, which may be used to modulate the Ca(2+) sensitivity of the myofilaments in heart muscle contraction.  相似文献   

17.
Finley NL  Howarth JW  Rosevear PR 《Biochemistry》2004,43(36):11371-11379
Cardiac troponin C (cTnC) is the Ca(2+)-binding component of the troponin complex and, as such, is the Ca(2+)-dependent switch in muscle contraction. This protein consists of two globular lobes, each containing a pair of EF-hand metal-binding sites, connected by a linker. In the N lobe, Ca(2+)-binding site I is inactive and Ca(2+)-binding site II is primarily responsible for initiation of muscle contraction. The C lobe contains Ca(2+)/Mg(2+)-binding sites III and IV, which bind Mg(2+) with lower affinity and play a structural as well as a secondary role in modulating the Ca(2+) signal. To understand the structural consequences of Ca(2+)/Mg(2+) exchange in the C lobe, we have determined the NMR solution structure of the Mg(2+)-loaded C lobe, cTnC(81-161), in a complex with the N domain of cardiac troponin I, cTnI(33-80), and compared it with a refined Ca(2+)-loaded structure. The overall tertiary structure of the Mg(2+)-loaded C lobe is very similar to that of the refined Ca(2+)-loaded structure as evidenced by the root-mean-square deviation of 0.94 A for all backbone atoms. While metal-dependent conformational changes are minimal, substitution of Mg(2+) for Ca(2+) is characterized by condensation of the C-terminal portion of the metal-binding loops with monodentate Mg(2+) ligation by the conserved Glu at position 12 and partial closure of the cTnI hydrophobic binding cleft around site IV. Thus, conformational plasticity in the Ca(2+)/Mg(2+)-dependent binding loops may represent a mechanism to modulate C-lobe cTnC interactions with the N domain of cTnI.  相似文献   

18.
The C-terminal G3 domains of lecticans mediate crosslinking to diverse extracellular matrix (ECM) proteins during ECM assembly, through their C-type lectin (CLD) subdomains. The structure of the rat aggrecan CLD in a Ca(2+)-dependent complex with fibronectin type III repeats 3-5 of rat tenascin-R provides detailed support for such crosslinking. The CLD loops bind Ca2+ like other CLDs, but no carbohydrate binding is observed or possible. This is thus the first example of a direct Ca(2+)-dependent protein-protein interaction of a CLD. Surprisingly, tenascin-R does not coordinate the Ca2+ ions directly. Electron microscopy confirms that full-length tenascin-R and tenascin-C crosslink hyaluronan-aggrecan complexes. The results are significant for the binding of all lectican CLDs to tenascin-R and tenascin-C. Comparison of the protein interaction surface with that of P-selectin in complex with the PGSL-1 peptide suggests that direct protein-protein interactions of Ca(2+)-binding CLDs may be more widespread than previously appreciated.  相似文献   

19.
The C2 domain acts as a membrane-targeting module in a diverse group of proteins including classical protein kinase Cs (PKCs), where it plays an essential role in activation via calcium-dependent interactions with phosphatidylserine. The three-dimensional structures of the Ca(2+)-bound forms of the PKCalpha-C2 domain both in the absence and presence of 1, 2-dicaproyl-sn-phosphatidyl-L-serine have now been determined by X-ray crystallography at 2.4 and 2.6 A resolution, respectively. In the structure of the C2 ternary complex, the glycerophosphoserine moiety of the phospholipid adopts a quasi-cyclic conformation, with the phosphoryl group directly coordinated to one of the Ca(2+) ions. Specific recognition of the phosphatidylserine is reinforced by additional hydrogen bonds and hydrophobic interactions with protein residues in the vicinity of the Ca(2+) binding region. The central feature of the PKCalpha-C2 domain structure is an eight-stranded, anti-parallel beta-barrel with a molecular topology and organization of the Ca(2+) binding region closely related to that found in PKCbeta-C2, although only two Ca(2+) ions have been located bound to the PKCalpha-C2 domain. The structural information provided by these results suggests a membrane binding mechanism of the PKCalpha-C2 domain in which calcium ions directly mediate the phosphatidylserine recognition while the calcium binding region 3 might penetrate into the phospholipid bilayer.  相似文献   

20.
Factor VIIa (FVIIa) consists of a gamma-carboxyglutamic acid (Gla) domain, two epidermal growth factor-like domains, and a protease domain. FVIIa binds seven Ca(2+) ions in the Gla, one in the EGF1, and one in the protease domain. However, blood contains both Ca(2+) and Mg(2+), and the Ca(2+) sites in FVIIa that could be specifically occupied by Mg(2+) are unknown. Furthermore, FVIIa contains a Na(+) and two Zn(2+) sites, but ligands for these cations are undefined. We obtained p-aminobenzamidine-VIIa/soluble tissue factor (sTF) crystals under conditions containing Ca(2+), Mg(2+), Na(+), and Zn(2+). The crystal diffracted to 1.8A resolution, and the final structure has an R-factor of 19.8%. In this structure, the Gla domain has four Ca(2+) and three bound Mg(2+). The EGF1 domain contains one Ca(2+) site, and the protease domain contains one Ca(2+), one Na(+), and two Zn(2+) sites. (45)Ca(2+) binding in the presence/absence of Mg(2+) to FVIIa, Gla-domainless FVIIa, and prothrombin fragment 1 supports the crystal data. Furthermore, unlike in other serine proteases, the amide N of Gly(193) in FVIIa points away from the oxyanion hole in this structure. Importantly, the oxyanion hole is also absent in the benzamidine-FVIIa/sTF structure at 1.87A resolution. However, soaking benzamidine-FVIIa/sTF crystals with d-Phe-Pro-Arg-chloromethyl ketone results in benzamidine displacement, d-Phe-Pro-Arg incorporation, and oxyanion hole formation by a flip of the 192-193 peptide bond in FVIIa. Thus, it is the substrate and not the TF binding that induces oxyanion hole formation and functional active site geometry in FVIIa. Absence of oxyanion hole is unusual and has biologic implications for FVIIa macromolecular substrate specificity and catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号