首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extracellular purines, principally adenosine triphosphate and adenosine, are among the oldest evolutionary and widespread chemical messengers. The integrative view of purinergic signaling as a multistage coordinated cascade involves the participation of nucleotides/nucleosides, their receptors, enzymes metabolizing extracellular nucleosides and nucleotides as well as several membrane transporters taking part in the release and/or uptake of these molecules. In view of the emerging data, it is evident and widely accepted that an extensive network of diverse enzymatic activities exists in the extracellular space. The enzymes regulate the availability of nucleotide and adenosine receptor agonists, and consequently, the course of signaling events. The current data indicate that mesenchymal stem cells (MSCs) and cells induced to differentiate exhibit different sensitivity to purinergic ligands as well as a distinct activity and expression profiles of ectonucleotidases than mature cells. In the proposed review, we postulate for a critical role of these enzymatic players which, by orchestrating a fine-tune regulation of nucleotides concentrations, are integrally involved in modulation and diversification of purinergic signals. This specific hallmark of the MSC purinome should be linked with cell-specific biological potential and capacity for tissue regeneration. We anticipate this publication to be a starting point for scientific discussion and novel approach to the in vitro and in vivo regulation of the MSC properties.  相似文献   

2.
It is known that thyroid hormones play pivotal roles in a wide variety of pathological and physiological events. Thyroid diseases, mainly including hyperthyroidism, hypothyroidism, and thyroid cancer, are highly prevalent worldwide health problems and frequently associated with severe clinical manifestations. However, etiology of hyperthyroidism, hypothyroidism, and thyroid cancer is not fully understood. Purinergic signaling accounts for a complex network of receptors and extracellular enzymes responsible for the recognition and degradation of extracellular nucleotides and adenosine. It has been established that purinergic signaling modulates pathways in a wide range of physiopathological conditions including hypertension, diabetes, hepatic diseases, psychiatric and neurodegeneration, rheumatic immune diseases, and cancer. More recently, the purinergic system is found to exist in thyroid gland and play an important role in the pathophysiology of thyroid diseases. Therefore, throughout this review, we focus on elaborating the changes in purinergic receptors, extracellular enzymes, and extracellular nucleotides and adenosine in hyperthyroidism, hypothyroidism, and thyroid cancer. Profound understanding of the relationship between the purinergic signaling with thyroid diseases provides a promising research area for insights into the molecular basis of thyroid diseases and also develops new and exciting insights into the treatment of thyroid diseases, especially thyroid cancer.Supplementary InformationThe online version contains supplementary material available at 10.1007/s11302-022-09858-2.  相似文献   

3.

Geoffrey Burnstock will be remembered as the scientist who set up an entirely new field of intercellular communication, signaling via nucleotides. The signaling cascades involved in purinergic signaling include intracellular storage of nucleotides, nucleotide release, extracellular hydrolysis, and the effect of the released compounds or their hydrolysis products on target tissues via specific receptor systems. In this context ectonucleotidases play several roles. They inactivate released and physiologically active nucleotides, produce physiologically active hydrolysis products, and facilitate nucleoside recycling. This review briefly highlights the development of our knowledge of two types of enzymes involved in extracellular nucleotide hydrolysis and thus purinergic signaling, the ectonucleoside triphosphate diphosphohydrolases, and ecto-5′-nucleotidase.

  相似文献   

4.
Ecto-nucleotidases play a pivotal role in purinergic signal transmission. They hydrolyze extracellular nucleotides and thus can control their availability at purinergic P2 receptors. They generate extracellular nucleosides for cellular reuptake and salvage via nucleoside transporters of the plasma membrane. The extracellular adenosine formed acts as an agonist of purinergic P1 receptors. They also can produce and hydrolyze extracellular inorganic pyrophosphate that is of major relevance in the control of bone mineralization. This review discusses and compares four major groups of ecto-nucleotidases: the ecto-nucleoside triphosphate diphosphohydrolases, ecto-5'-nucleotidase, ecto-nucleotide pyrophosphatase/phosphodiesterases, and alkaline phosphatases. Only recently and based on crystal structures, detailed information regarding the spatial structures and catalytic mechanisms has become available for members of these four ecto-nucleotidase families. This permits detailed predictions of their catalytic mechanisms and a comparison between the individual enzyme groups. The review focuses on the principal biochemical, cell biological, catalytic, and structural properties of the enzymes and provides brief reference to tissue distribution, and physiological and pathophysiological functions.  相似文献   

5.
Amazon fish are vulnerable to climate change. Several lines of evidence suggest that the temperature of Amazonian rivers will increase in the coming years. Elevated temperature disturbs homeostasis and subjects fish to physiological stress; however, the effects of temperature on immunity remain poorly understood, particularly those effects involving purinergic signaling. This system fine-tunes the inflammatory and immune responses triggered by stress. Therefore, the aims of this study were to determine whether acute heat stress induces the release of nucleotides into extracellular compartment and to determine whether purinergic enzymes modulate the proinflammatory effects of adenosine triphosphate (ATP) in plasma and spleen of matrinxã (Brycon amazonicus) exposed to acute heat stress. We exposed juvenile matrinxã to four temperature regimes (28 °C as control, 30, 32 and 34 °C) for 72 h and observed the effects on purinergic signaling. Plasma cortisol levels were significantly higher in fish exposed to 34 °C than in the control group, while spleen ATP, adenosine diphosphate (ADP) and adenosine monophosphate (AMP) levels were significantly higher in this group than in controls. Activities of spleen nucleoside triphosphate diphosphohydrolase (NTPDase) and 5′-nucleotidase were significantly higher in fish exposed to 34 °C than those of the control group, while spleen interleukin-1 (IL-1) and interleukin-6 (IL-6) levels were higher in this same group than in the control group. No significant differences were observed between the groups regarding plasma parameters. Based on these data, we concluded that acute heat stress at 34 °C caused physiological stress in matrinxã, manifesting as elevated plasma cortisol levels. The most important finding is that purinergic enzymes were modulated, though not efficiently, in response to the excessive release of nucleotides into the extracellular space. In summary, the purinergic signaling pathway may be involved in the impairment of immune and inflammatory responses in matrinxã exposed acutely to 34 °C.  相似文献   

6.
Summary: In humans, purinergic signaling plays an important role in the modulation of immune responses through specific receptors that recognize nucleoside tri- and diphosphates as signaling molecules. Ecto-nucleoside triphosphate diphosphohydrolases (ecto-NTPDases) have important roles in the regulation of purinergic signaling by controlling levels of extracellular nucleotides. This process is key to pathophysiological protective responses such as hemostasis and inflammation. Ecto-NTPDases are found in all higher eukaryotes, and recently it has become apparent that a number of important parasitic pathogens of humans express surface-located NTPDases that have been linked to virulence. For those parasites that are purine auxotrophs, these enzymes may play an important role in purine scavenging, although they may also influence the host response to infection. Although ecto-NTPDases are rare in bacteria, expression of a secreted NTPDase in Legionella pneumophila was recently described. This ecto-enzyme enhances intracellular growth of the bacterium and potentially affects virulence. This discovery represents an important advance in the understanding of the contribution of other microbial NTPDases to host-pathogen interactions. Here we review other progress made to date in the characterization of ecto-NTPDases from microbial pathogens, how they differ from mammalian enzymes, and their association with organism viability and virulence. In addition, we postulate how ecto-NTPDases may contribute to the host-pathogen interaction by reviewing the effect of selected microbial pathogens on purinergic signaling. Finally, we raise the possibility of targeting ecto-NTPDases in the development of novel anti-infective agents based on potential structural and clear enzymatic differences from the mammalian ecto-NTPDases.  相似文献   

7.
Abstract

Extracellular nucleotides and nucleosides mediate diverse signaling effects in virtually all organs and tissues. Most models of purinergic signaling depend on functional interactions between distinct processes, including (i) the release of endogenous ATP and other nucleotides, (ii) triggering of signaling events via a series of nucleotide-selective ligand-gated P2X and metabotropic P2Y receptors as well as adenosine receptors and (iii) ectoenzymatic interconversion of purinergic agonists. The duration and magnitude of purinergic signaling is governed by a network of ectoenzymes, including the enzymes of the nucleoside triphosphate diphosphohydrolase (NTPDase) family, the nucleotide pyrophosphatase/phosphodiesterase (NPP) family, ecto-5′-nucleotidase/CD73, tissue-nonspecific alkaline phosphatase (TNAP), prostatic acid phosphatase (PAP) and other alkaline and acid phosphatases, adenosine deaminase (ADA) and purine nucleoside phosphorylase (PNP). Along with “classical” inactivating ectoenzymes, recent data provide evidence for the co-existence of a counteracting ATP-regenerating pathway comprising the enzymes of the adenylate kinase (AK) and nucleoside diphosphate kinase (NDPK/NME/NM23) families and ATP synthase. This review describes recent advances in this field, with special emphasis on purine-converting ectoenzymes as a complex and integrated network regulating purinergic signaling in such (patho)physiological states as immunomodulation, inflammation, tumorigenesis, arterial calcification and other diseases. The second part of this review provides a comprehensive overview and basic principles of major approaches employed for studying purinergic activities, including spectrophotometric Pi-liberating assays, high-performance liquid chromatographic (HPLC) and thin-layer chromatographic (TLC) analyses of purine substrates and metabolites, capillary electrophoresis, bioluminescent, fluorometric and electrochemical enzyme-coupled assays, histochemical staining, and further emphasizes their advantages, drawbacks and suitability for assaying a particular catalytic reaction.  相似文献   

8.
Extracellular ATP and related nucleotides promote a wide range of pathophysiological responses via activation of cell surface purinergic P2 receptors. Almost every cell type expresses P2 receptors and/or exhibit regulated release of ATP. In this review, we focus on the purinergic receptor distribution in inflammatory cells and their implication in diverse immune responses by providing an overview of the current knowledge in the literature related to purinergic signaling in neutrophils, macrophages, dendritic cells, lymphocytes, eosinophils, and mast cells. The pathophysiological role of purinergic signaling in these cells include among others calcium mobilization, actin polymerization, chemotaxis, release of mediators, cell maturation, cytotoxicity, and cell death. We finally discuss the therapeutic potential of P2 receptor subtype selective drugs in inflammatory conditions.  相似文献   

9.
Cancer comprises a collection of diseases that occur in almost any tissue and it is characterized by an abnormal and uncontrolled cell growth that results in tumor formation and propagation to other tissues, causing tissue and organ malfunction and death. Despite the undeniable improvement in cancer diagnostics and therapy, there is an urgent need for new therapeutic and preventive strategies with improved efficacy and fewer side effects. In this context, purinergic signaling emerges as an interesting candidate as a cancer biomarker or therapeutic target. There is abundant evidence that tumor cells have significant changes in the expression of purinergic receptors, which comprise the G-protein coupled P2Y and AdoR families of receptors and the ligand-gated ion channel P2X receptors. Tumor cells also exhibit changes in the expression of nucleotidases and other enzymes involved in nucleotide metabolism, and the concentrations of extracellular nucleotides are significantly higher than those observed in normal cells. In this review, we will focus on the potential role of purinergic signaling in the ten most lethal cancers (lung, breast, colorectal, liver, stomach, prostate, cervical, esophagus, pancreas, and ovary), which together are responsible for more than 5 million annual deaths.  相似文献   

10.
11.
Extracellular nucleotides and purinergic receptors participate in numerous cellular processes during viral infection. Despite their positive role in the immune response, purinergic signals can also favor the infection of cells by viruses and the pathogeny of viral diseases. Here, we highlight the multiple ambiguous roles of purinergic receptors in viral infections.  相似文献   

12.
Purinergic signaling has considerable impact on the functioning of the nervous system, including the special senses. Purinergic receptors are expressed in various cell types in the retina, cochlea, taste buds, and the olfactory epithelium. The activation of these receptors by nucleotides, particularly adenosine-5′-triphosphate (ATP) and its breakdown products, has been shown to tune sensory information coding to control the homeostasis and to regulate the cell turnover in these organs. While the purinergic system of the retina, cochlea, and taste buds has been investigated in numerous studies, the available information about purinergic signaling in the olfactory system is rather limited. Using functional calcium imaging, we identified and characterized the purinergic receptors expressed in the vomeronasal organ of larval Xenopus laevis. ATP-evoked activity in supporting and basal cells was not dependent on extracellular Ca2+. Depletion of intracellular Ca2+ stores disrupted the responses in both cell types. In addition to ATP, supporting cells responded also to uridine-5′-triphosphate (UTP) and adenosine-5′-O-(3-thiotriphosphate) (ATPγS). The response profile of basal cells was considerably broader. In addition to ATP, they were activated by ADP, 2-MeSATP, 2-MeSADP, ATPγS, UTP, and UDP. Together, our findings suggest that supporting cells express P2Y2/P2Y4-like purinergic receptors and that basal cells express multiple P2Y receptors. In contrast, vomeronasal receptor neurons were not sensitive to nucleotides, suggesting that they do not express purinergic receptors. Our data provide the basis for further investigations of the physiological role of purinergic signaling in the vomeronasal organ and the olfactory system in general.  相似文献   

13.
The concept of a purinergic theory for the regulation of the release of neurotransmitters is mainly based on the release of ATP, related nucleotides and adenosine concomitantly with the classical neurotransmitters (Ach and NA) after nerve stimulation, together with the inhibitory effects induced by those substances on the release of those neurotransmitters. As neuromodulators, ATP, related nucleotides and adenosine are in accordance with the classical criteria fulfilled by a neurotransmitter plus the absence of tachyphylaxis to the inhibitory action of purinergic substances, the impossibility to obtain complete blockade of the transmission by using the purinergic compounds and the involvement of Cat2+ as a step on the dynamics of the release of neurotransmitters. Furthermore ATP can be responsible for the Wedenski inhibition.  相似文献   

14.
Nucleotides are released from all cells through regulated pathways or as a result of plasma membrane damage or cell death. Outside the cell, nucleotides act as signalling molecules triggering multiple responses via specific plasma membrane receptors of the P2 family. In the nervous system, purinergic signalling has a key function in neurotransmission. Outside the nervous system, purinergic signalling is one of the major modulators of basal tissue homeostasis, while its dysregulation contributes to the pathogenesis of various disease, including inflammation and cancer. Pre-clinical and clinical evidence shows that selective P2 agonists or antagonists are effective treatments for many pathologies, thus highlighting the relevance of extracellular nucleotides and P2 receptors as therapeutic targets.  相似文献   

15.
Cardiovascular complications in diabetes are the leading causes for high morbidity and mortality. It has been shown that alteration of purinergic signaling contributes to diabetes-associated cardiovascular complications. Red blood cells (RBCs) and platelets play a fundamental role in regulation of oxygen transport and hemostasis, respectively. Of note, these cells undergo purinergic dysfunction in diabetes. Recent studies have established a novel function of RBCs as disease mediators for the development of endothelial dysfunction in type 2 diabetes (T2D). RBC-released ATP is defective in T2D, which has implication for induction of vascular dysfunction by dysregulating purinergic signaling. Platelets are hyperactive in diabetes. ADP-mediated P2Y1 and P2Y12 receptor activation contributes to platelet aggregation and targeting P2Y receptors particularly P2Y12 receptor in platelets is effective for the treatment of cardiovascular events. In contrast to other P2Y12 receptor antagonists, platelet-targeting drug ticagrelor has potential to initiate purinergic signaling in RBCs for the beneficial cardiovascular outcomes. It is increasingly clear that altered vascular purinergic signaling mediated by various nucleotides and nucleoside contributes to diabetes-associated vascular dysfunction. However, the contribution of complex purinergic networks between RBCs and platelets to the vascular dysfunction in diabetes remains unclear. This study discusses the possible interplay of RBCs and platelets via the purinergic network for diabetes-associated vascular dysfunction.  相似文献   

16.
It is well accepted that G protein-coupled receptors (GPCRs) arrange into dimers or higher-order oligomers that may modify various functions of GPCRs. GPCR-type purinergic receptors (i.e. adenosine and P2Y receptors) tend to form heterodimers with GPCRs not only of the different families but also of the same purinergic receptor families, leading to alterations in functional properties. In the present review, we focus on current knowledge of the formation of heterodimers between metabotropic purinergic receptors that activate novel functions in response to extracellular nucleosides/nucleotides, revealing that the dimerization seems to be employed for ‘fine-tuning’ of purinergic signaling. Thus, the relationship between adenosine and adenosine triphosphate is likely to be more and more intimate than simply being a metabolite of the other.  相似文献   

17.
Atherosclerosis is a consequence of diverse pathologies that could be affected by signaling mediated by nucleotides and their metabolites. Concentration of specific nucleotide derivatives in the proximity of purinergic receptors is controlled by extracellular enzymes such as ecto-nucleoside triphopsphate diphosphohydrolase (eNTPD), ecto-5′-nucleotidase (e5NT), and ecto-adenosine deaminase (eADA). To estimate changes in metabolism of extracellular nucleotides in the atherosclerotic vessel wall, aortoiliac bifurcation of ApoE/LDLr (–/–) mice was perfused with solution containing adenosine-5′-triphosphate (ATP), adenosine-5′-monophosphate (AMP) or adenosine. Formation of the product of eNTPD, e5NT or eADA was measured by high performance liquid chromatography (HPLC). The most significant difference between ApoE/LDLr (–/–) and wild-type mice was several times higher rate of conversion of adenosine to inosine catalyzed by eADA activity. This highlights potential decrease in intravascular adenosine concentration in atherosclerosis.  相似文献   

18.
Purinergic receptors comprise a family of transmembrane receptors that are activated by extracellular nucleosides and nucleotides. The two major classes of purinergic receptors, P1 and P2, are expressed widely in the gastrointestinal tract as well as immune cells. The purinergic receptors serve a variety of functions from acting as neurotransmitters, to autocoid and paracrine signaling, to cell activation and immune response. Nucleosides and nucleotide agonist of purinergic receptors are released by many cell types in response to specific physiological signals, and their levels are increased during inflammation. In the past decade, the advent of genetic knockout mice and the development of highly potent and selective agonists and antagonists for the purinergic receptors have significantly advanced the understanding of purinergic receptor signaling in health and inflammation. In fact, agonist/antagonists of purinergic receptors are emerging as therapeutic modalities to treat intestinal inflammation. In this article, the distribution of the purinergic receptors in the gastrointestinal tract and their physiological and pathophysiological role in intestinal inflammation will be reviewed.  相似文献   

19.
Extracellular ATP is known to affect the maturation of monocyte-derived dendritic cells mainly by regulation of cytokines and costimulatory molecules. The present study describes the inhibition of MCP-1 (CCL2) and MIP-1alpha (CCL3) release by human monocyte-derived dendritic cells in response to adenine nucleotides. Our pharmacological data support the involvement of P2Y11 and P2Y1 purinergic receptors in the downregulation of these major monocyte recruiters. Migration assays have demonstrated that supernatants of dendritic cells treated with adenine nucleotides or anti-MCP-1/MIP-1alpha blocking antibodies display a strongly reduced capacity to attract monocytes and immature dendritic cells.  相似文献   

20.

Background  

Brain-derived ectonucleoside triphosphate diphosphohydrolases (NTPDases) have been known as plasma membrane-incorporated enzymes with their ATP-hydrolyzing domain outside of the cell. As such, these enzymes are thought to regulate purinergic intercellular signaling by hydrolyzing ATP to ADP-AMP, thus regulating the availability of specific ligands for various P2X and P2Y purinergic receptors. The role of NTPDases in the central nervous system is little understood. The two major reasons are the insufficient knowledge of the precise localization of these enzymes in neural structures, and the lack of specific inhibitors for the various NTPDases. To fill these gaps, we recently studied the presence of neuron-specific NTPDase3 in the mitochondria of hypothalamic excitatory neurons by morphological and functional methods. Results from those studies suggested that intramitochondrial regulation of ATP levels may play a permissive role in the neural regulation of physiological functions by tuning the level of ATP-carried energy that is needed for neuronal functions, such as neurotransmission and/or intracellular signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号