首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A cDNA fragment coding for human c-myc was inserted into the genome of the baculovirus Autographa californica nuclear polyhedrosis virus adjacent to the strong polyhedrin promoter. Insect cells infected with the recombinant virus produced significant amounts of c-myc protein, which constituted the major phosphoprotein component in these cells. By immunoprecipitation and immunoblot analysis, two proteins of 61 and 64 kilodaltons were detected with c-myc-specific antisera. The insect-derived proteins were compared with recombinant human c-myc-encoded proteins synthesized in Escherichia coli and Saccharomyces cerevisiae cells. The c-myc gene product was found predominantly in the nucleus by subcellular fractionation of infected insect cells.  相似文献   

2.
3.
Since the number of potential drug targets identified has significantly increased in the past decade, rapid expression of recombinant proteins in sufficient amounts for structure determination and modern drug discovery is one of the major challenges in pharmaceutical research. As a result of its capacity for insertion of large DNA fragments, its high yield of recombinant protein and its high probability of success compared to protein expression in Escherichia coli, the baculovirus expression vector system (BEVS) is used routinely to produce recombinant proteins in the milligram scale. For some targets, however, expression of the recombinant protein with the BEVS in insect cells fails and mammalian expression systems have to be used to achieve proper post-translational processing of the nascent polypeptide. We now introduce a modified BEVS as a very useful tool for simultaneously testing the expression of target proteins in both insect and mammalian cells by using baculovirus infection of both host systems. The expression yields in insect cells are comparable to those obtained with state-of-the-art baculovirus vectors, such as the Bac-to-Bac system. Using the same virus, we can transduce mammalian cells to quickly assess target gene expression feasibility and optimize expression conditions, eliminating additional cloning steps into mammalian expression vectors. This reduces time and effort for finding appropriate expression conditions in various hosts.  相似文献   

4.
5.
6.
7.
Generating large amounts of recombinant protein in transgenic animals is often challenging and has a number of drawbacks compared to cell culture systems. The baculovirus expression vector system (BEVS) uses virus-infected insect cells to produce recombinant proteins to high levels, and these are usually processed in a similar way to the native protein. Interestingly, since the development of the BEVS, the virus most often used (Autographa californica multi-nucleopolyhedovirus; AcMNPV) has been little altered genetically from its wild-type parental virus. In this study, we modified the AcMNPV genome in an attempt to improve recombinant protein yield, by deleting genes that are non-essential in cell culture. We deleted the p26, p10 and p74 genes from the virus genome, replacing them with an antibiotic selection cassette, allowing us to isolate recombinants. We screened and identified recombinant viruses by restriction enzyme analysis, PCR and Western blot. Cell viability analysis showed that the deletions did not improve the viability of infected cells, compared to non-deletion viruses. However, expression studies showed that recombinant protein levels for the deletion viruses were significantly higher than the expression levels of non-deletion viruses. These results confirm that there is still great potential for improving the BEVS, further increasing recombinant protein expression yields and stability in insect cells.  相似文献   

8.
Synapsin IIa belongs to a family of neuron-specific phosphoproteins called synapsins, which are associated with synaptic vesicles in presynaptic nerve terminals. In order to examine the biochemical properties of synapsin IIa, and ultimately its physiological function, purified protein is required. Since attempts to purify significant quantities of synapsin IIa, an isoform of the synapsins, from mammalian brain have proven difficult, we undertook the production of recombinant synapsin IIa by utilizing the baculovirus expression system. Rat synapsin IIa cDNA was introduced into the baculovirus genome via homologous recombination, and the recombinant baculovirus was purified. Spodoptera frugiperda (Sf9) cells infected with this virus expressed synapsin IIa as 5% of the total cellular protein. The recombinant protein was extracted from the particulate fraction of the infected Sf9 cells with salt and a nonionic detergent and purified by immunoaffinity chromatography. The purified synapsin IIa was phosphorylated by the catalytic subunit of cAMP-dependent protein kinase to a stoichiometry of 0.8 mol of phosphate/mol of protein. Metabolic labeling with [32P]Pi demonstrated synapsin IIa phosphorylation in infected Sf9 cells. Using a homogenate of uninfected Sf9 cells, a cAMP-dependent protein kinase activity which can phosphorylate synapsin IIa was detected. Limited proteolysis of recombinant synapsin IIa phosphorylated in vitro and in vivo resulted in identical phosphopeptide maps. Further, synapsin IIa, like synapsin I, binds with high affinity in a saturable manner to synaptic vesicles purified from rat cortex.  相似文献   

9.
10.
An expression cassette for continuous high-level expression of secreted glycoproteins by transformed lepidopteran insect cells has been developed as an alternative to baculovirus and mammalian cell expression systems. The expression cassette utilizes the promoter of the silkmoth cytoplasmic actin gene to drive expression from foreign gene sequences, and also contains the ie-1 transactivator gene and the HR3 enhancer region of BmNPV to stimulate gene expression. Using an antibiotic-resistance selection scheme, we have cloned a Bm5 (silkmoth) cell line overexpressing the secreted glycoprotein juvenile hormone esterase (JHE-KK) at levels of 190 mg/L in batch suspension cultures. A baculovirus (AcNPV) expressing the same gene under the control of the p10 promoter of AcNPV produced only 4 mg/L active JHE in static cultures of infected Sf21 cells. A cloned Bm5 cell line overexpressing a soluble isoform of the alpha-subunit of the granulocyte-macrophage colony stimulating factor receptor (solGMRalpha) was also generated and produced five times more solGMRalpha in static cultures than a cloned BHK cell line obtained by transformation with a recombinant expression cassette utilizing the human cytomegalovirus (CMV) enhancer-promoter system. Finally, we show that recombinant protein expression levels in transformed Bm5 cells remain high in serum-free media, that expression is stable even in the absence of antibiotic selection, and that lepidopteran cells other than Bm5 may be used equally efficiently with this new expression cassette for producing recombinant proteins.  相似文献   

11.
The mechanism by which the binding of epidermal growth factor (EGF) to specific cell surface receptors induces a range of biological responses remains poorly understood. An important part of the study of signal transduction in this system involves the production of sufficient native and mutant EGF receptor species for X-ray crystallographic and spectroscopic analysis. Baculovirus vectors containing the cDNA encoding the human EGF receptor protein have here been utilized to infect insect cells. This results in expression of a 155-kb transmembrane protein which is recognized by four antibodies against different regions of the human EGF receptor. Studies with tunicamycin, monensen and endoglycosidase H show the difference in size between the recombinant and the native receptor is due to alterations in glycocsylation. Studies of [125I] EGF binding shows a Kd of 2 X 10(-9) M in intact infected insect cells which falls to 2 X 10(-7) M upon detergent solubilization. The recombinant protein exhibits an EGF-stimulated tyrosine protein kinase activity and an analysis of tryptic peptides shows that the phosphate acceptor sites are similar to those of the EGF receptor isolated from A431 cells. These observations indicate that functional EGF receptor can be expressed in insect cells, and furthermore, this system can be used for large-scale production.  相似文献   

12.
The causative agent of severe acute respiratory syndrome (SARS) is a previously unidentified coronavirus, SARS-CoV. The nucleocapsid (N) protein of SARS-CoV is a major viral protein recognized by acute and early convalescent sera from SARS patients. To facilitate the studies on the function and structure of the N protein, this report describe the expression and purification of recombinant SARS-CoV N protein using the baculovirus  相似文献   

13.
The renin-angiotensin (RA) system is important for the regulation of blood pressure and electrolyte balance, and renin is the rate-limiting enzyme in this system. The recent discovery of (pro)renin receptor (PRR) has reinforced the functional role of the RA system. PRR non-proteolytically activates prorenin and its role has attracted the attention of researchers towards the RA system. However, there is insufficient information on the biochemical structure and biological functioning of PRR due to the difficulty of measuring PRR expression. In this work, human PRR (hPRR) with intact transmembrane and C-terminal domain (hPRR-wTM) and PRR without this domain (hPRR-w/oTM) were expressed in insect cells using baculovirus expression system (BES). Both hPRR-wTM and hPRR-w/oTM were fused with FLAG peptide by its N-terminus. Most of the hPRR-wTM was expressed in cell fraction and hPRR-w/oTM was secreted into the culture medium. hPRR-wTM was solubilized from the membrane fraction of recombinant baculovirus-infected cells by various detergents, suggesting that hPRR-wTM might be a transmembrane protein. hPRR-wTM was purified from the solubilized fraction using anti-FLAG M2 antibody agarose. Binding of purified hPRR-wTM to renin immobilized onto sensor chips was directly proportional to the hPRR-wTM concentration. Approximately 225 μg of functional hPRR-wTM was purified from 80 ml of baculovirus-infected cell culture. Scale-up of this system will lead to mass production and crystallization of hPRR-wTM and determination of its biochemical structure and biological function.  相似文献   

14.
15.
Aims: To develop an efficient and facile expression system supply of high purity and stable activity of rFip-fve for oral administration, medicinal study and applications. Methods and Results: A recombinant virus that contained the chimera gene, encoding a bombyxin signal peptide sequence fused to a Fip-fve-6His sequence, was constructed. The rFip-fve was purified from the supernatant of the infected Sf21 cells using a nickel-chelated affinity column, and was verified by Western blot and MALDI-MS (matrix-assisted laser desorption ionization mass spectrometry) analyses. Results showed that a glycosylated mature rFip-fve was produced and secreted into the infected cell supernatant. The immunomodulatory activity of rFip-fve was evaluated by measuring the amount of interleukin-2 released from murine splenocytes. Conclusions: A reliable scheme to express and purify active rFip-fve in a baculovirus/insect cell system for medicinal applications and genetic study is a feasible means of solving potential problems related to the production and activity of rFip-fve protein. Significance and Impact of the Study: The rFip-fve expressed in insect cells was processed and modified in a manner more similar to that of its native counterpart than that in bacterial cells. Therefore, the potential applications of rFip-fve that is generated in Sf21 cells can be more effectively evaluated that produced in Escherichia coli.  相似文献   

16.
A full-length human creatine kinase B (B-CK) cDNA was used to produce a recombinant baculovirus (AcDZ1-BCK). Sf9 cells infected with this recombinant expressed a homodimeric protein composed of 43 kDa subunits which, under optimal conditions, formed up to 30% of the total soluble cellular protein. Upon analysis by PAGE, zymogram assay and gel filtration chromatography the recombinant protein behaved like authentic dimeric human BB-CK protein. Studies with a newly produced monoclonal antibody (CK-BYK/21E10) directed against an epitope in the N-terminus of the protein confirmed the identity of the product. The recombinant BB-CK protein was purified to over 99% homogeneity from the total protein extract of AcDZ1-CKB infected cells in one single step involving anion exchange column chromatography on MonoQ in FPLC. Dialysed protein had a specific activity of 239 U/mg protein.  相似文献   

17.
Human xylosyltransferase I (XT-I) catalyzes the transfer of xylose from UDP-xylose to consensus serine residues of proteoglycan core proteins. Expression of a soluble form of recombinant histidine-tagged XT-I (rXT-I-HIS) was accomplished at a high level with High Five/pCG255-1 insect cells in suspension culture. The recombinant protein was purified to homogeneity by a combination of heparin affinity chromatography and metal (Ni(2+)) chelate affinity chromatography. Using the modern technique of perfusion chromatography, a rapid procedure for purification of the rXT-I-HIS from insect cell culture supernatant was developed. The purified, biologically active enzyme was homogeneous on SDS-PAGE, was detected with anti-XT-I-antibodies, and had the expected tryptic fragment mass spectrum. N-terminal amino acid sequencing demonstrated that the N-terminal signal sequence of the expressed protein was quantitatively cleaved. The total yield of the enzyme after purification was 18% and resulted in a specific XT-I activity of 7.9mU/mg. The K(m) of the enzyme for recombinant [Val(36),Val(38)](delta1),[Gly(92),Ile(94)](delta2)bikunin was 0.8microM. About 5mg purified enzyme could be obtained from 1L cell culture supernatant. The availability of substantial quantities of active, homogeneous enzyme will be of help in future biochemical and biophysical characterization of XT-I and for the development of a immunological XT-I assay.  相似文献   

18.
L Ellis  A Levitan  M H Cobb    P Ramos 《Journal of virology》1988,62(5):1634-1639
The human insulin receptor (IR) is a transmembrane glycoprotein, whose cytoplasmic domain contains an insulin-activated protein-tyrosine kinase (EC 2.7.1.112). By the use of an appropriately engineered baculovirus expression vector, a soluble cytoplasmic derivative of this domain was expressed in the insect cell line Spodoptera frugiperda (Sf9). At 24 to 48 h after Sf9 cells were infected with recombinant virus, a protein of the size expected for this domain (approximately 48 kilodaltons) constituted a major band when total cell lysates of metabolically labeled cells were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography. This protein (designated AchIRPTK) was immunoprecipitated by three monoclonal antibodies, each of which recognizes a distinct antigenic site of the IR cytoplasmic domain and requires the native structure of the protein for recognition and one of which binds at or near the physiologically relevant site(s) of IR autophosphorylation. In vivo, AchIRPTK was phosphorylated on both tyrosine and serine residues. When affinity purified, the kinase was active in vitro; it autophosphorylated exclusively on tyrosine residues, and phosphorylated the exogenous substrates histone H2b and poly(Glu-Tyr). The expression of an active IR protein-tyrosine kinase molecule in this heterologous cell system provides an efficient experimental method for producing this domain in quantity for enzymatic and structural studies.  相似文献   

19.
Several fusion strategies have been developed for the expression and purification of small antimicrobial peptides (AMPs) in recombinant bacterial expression systems. However, some of these efforts have been limited by product toxicity to host cells, product proteolysis, low expression levels, poor recovery yields, and sometimes an absence of posttranslational modifications required for biological activity. For the present work, we investigated the use of the baculoviral polyhedrin (Polh) protein as a novel fusion partner for the production of a model AMP (halocidin 18-amino-acid subunit; Hal18) in Escherichia coli. The useful solubility properties of Polh as a fusion partner facilitated the expression of the Polh-Hal18 fusion protein ( approximately 33.6 kDa) by forming insoluble inclusion bodies in E. coli which could easily be purified by inclusion body isolation and affinity purification using the fused hexahistidine tag. The recombinant Hal18 AMP ( approximately 2 kDa) could then be cleaved with hydroxylamine from the fusion protein and easily recovered by simple dialysis and centrifugation. This was facilitated by the fact that Polh was soluble during the alkaline cleavage reaction but became insoluble during dialysis at a neutral pH. Reverse-phase high-performance liquid chromatography was used to further purify the separated recombinant Hal18, giving a final yield of 30% with >90% purity. Importantly, recombinant and synthetic Hal18 peptides showed nearly identical antimicrobial activities against E. coli and Staphylococcus aureus, which were used as representative gram-negative and gram-positive bacteria, respectively. These results demonstrate that baculoviral Polh can provide an efficient and facile platform for the production or functional study of target AMPs.  相似文献   

20.
Kwon SY  Choi YJ  Kang TH  Lee KH  Cha SS  Kim GH  Lee HS  Kim KT  Kim KJ 《Plasmid》2005,53(3):274-282
Recently developed bacterial hemoglobin (VHb) fusion expression vector has been widely used for the production of many target proteins due to its distinctive properties of expressing fusion protein with red color which facilitates visualization of the steps in purification, and increasing solubility of the target proteins. However, after intensive use of the vector, several defects have been found. In this report, we present a modified VHb fusion vector (pPosKJ) with higher efficiency, in which most of the defects were eliminated. First, it was found that thrombin protease often digests target protein as well as inserted thrombin cleavage site, so it was replaced by a TEV cleavage site for more specific cleavage of VHb from target protein. Second, a glycine-rich linker sequence was inserted between 6x his-tag and VHb to improve the affinity of 6x his-tag to Ni-NTA resin, resulting in higher purity of eluted fusion protein. Third, EcoRI and XhoI restriction sites located elsewhere in the vector were removed to make these restriction sites available for the cloning of target protein coding genes. A pPosKJ vector was fully examined with an anti-apoptotic BCL-2 family member of Caenorhabditis elegans, CED-9. A C-terminal VHb fusion expression vector (pPosKJC) was also constructed for stable expression of target proteins that may be difficult to express with an N-terminal fusion. Vaccinia-related kinase 1 (VRK1) was also successfully expressed and purified using the vector with high yield. Taken together, we suggest that the VHb fusion vector may be well suited for high-throughput protein expression and purification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号