首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
There is increasing awareness that epistasis plays a role for the determination of complex traits. This study employed an association mapping approach in a large panel of 455 diverse European elite soft winter wheat lines. The genotypes were evaluated in multi-environment trials and fingerprinted with SSR markers to dissect the underlying genetic architecture of grain yield and heading time. A linear mixed model was applied to assess marker-trait associations incorporating information of covariance among relatives. Our findings indicate that main effects dominate the control of grain yield in wheat. In contrast, the genetic architecture underlying heading time is controlled by main and epistatic effects. Consequently, for heading time it is important to consider epistatic effects towards an increased selection gain in marker-assisted breeding.  相似文献   

2.
不同耕作方式对旱作冬小麦旗叶衰老和籽粒产量的影响   总被引:19,自引:0,他引:19  
在旱作条件下研究了一次深翻、免耕、深松和传统耕作4种耕作方式对冬小麦花后旗叶衰老、小麦籽粒产量及土壤水分和养分状况的影响.结果表明:免耕和深松提高了小麦旗叶SOD和POD活性及可溶性蛋白和叶绿素含量,降低了MDA和O2-·含量,延缓了小麦叶片的衰老进程;同时,免耕、深松在开花期和灌浆期0~40 cm土层土壤水分含量分别比传统耕作提高了4.13%、6.23%和5.50%、9.27%,土壤碱解氮、速效磷和速效钾含量均显著高于传统耕作.一次深翻0~40 cm土层土壤水分含量低于传统耕作,土壤养分含量高于传统耕作,但两处理间差异不显著.与传统耕作相比,免耕和深松花后干物质生产量分别提高4.34%和4.76%,花后干物质转运率分别提高15.56%和13.51%,产量分别提高10.22%和9.26%.免耕和深松为冬小麦花后生长发育提供了良好的环境,延缓了小麦叶片衰老,促进了花后干物质积累及干物质向籽粒的转运,从而使籽粒产量显著提高,是旱作麦区适宜的耕作方式.  相似文献   

3.
4.
Three wheat cultivars ( Triticum aestivum L.), Splendeur, Hobbit and Maris Huntsman grown in pots were compared. Especially when compared to Splendeur, the flag leaf senesced most rapidly in Maris Huntsman, which presented the most rapid loss of moisture, chlorophyll and nitrogen. The uptake of exogenous nitrogen during the post-anthesis period was lower in the rapidly than in the slowly senescing variety. A higher concentration of free amino nitrogen in the flag leaf at a given sampling date was associated with a lower percentage decrease of soluble proteins at the following date. Acid proteinase activity in the flag leaf was inversely related to moisture percentage and free amino nitrogen level, but unrelated to the nitrogen loss of the flag leaf. Acid proteinase activity in the flag leaf was directly related to grain nitrogen percentage, but inversely related to grain yield. Grain yield was also directly related to the mean soluble protein content of the flag leaf through senescence.  相似文献   

5.
为探索小麦高产高效优质生产技术途径,指导小麦晚播生产实践,2012年10月—2014年6月,以弱春性小麦偃展4110和半冬性小麦矮抗58为材料进行连续2年的田间定位试验,设置了常规适播(10月中旬、240万株·hm-2)和极端晚播(11月中旬、600万株·hm-2)两种栽培模式,研究了极端晚播对0~40 cm土层土壤硝态氮含量、小麦氮素吸收利用、产量、籽粒蛋白质含量和氮素吸收效率的影响.结果表明: 与常规适播处理相比,两个生长季极端晚播处理均使拔节和开花期0~40 cm土壤硝态氮含量显著提高,从而促进拔节后小麦植株氮素吸收积累,成熟期穗部氮素的分配比例也得到提高,最终显著提高小麦籽粒蛋白质含量和偃展4110的蛋白质产量、氮素吸收效率,但对籽粒产量的影响因品种而异.其中,极端晚播处理使偃展4110的籽粒产量显著提高,而矮抗58的籽粒产量却显著降低.因此,极端晚播栽培模式可维持小麦拔节后的土壤氮供应,有利于提高小麦氮素吸收效率,从而提高小麦籽粒产量和蛋白质含量,是灌区小麦高产优质的有效途径之一.  相似文献   

6.
Summary Grain yield, plant height and test weight were studied in a population of winter wheat (Triticum aestivum L.). The population consisted of F2 bulk populations of 42 crosses among 11 genotypes adapted to S. W. Ontario. Heritabilities were: 0.30±0.32 for yield, 0.77±0.15 for height and 0.98±0.08 for test weight. Predicted genetic gain with 10% selection intensity was 0.15 t/ha for yield, 10.1 cm for height and 3.00 kg/hl for test weight. The low heritability for yield indicates that effective selection would require pedigree information and progeny tests, while the high heritabilities for height and test weight indicate that selection for these traits using single plots would be appropriate.  相似文献   

7.
A doubled haploid (DH) population derived from a cross between the Japanese cultivar 'Fukuho-kumogi' and the Israeli wheat line 'Oligoculm' was used to map genome regions involved in the expression of grain yield, yield components, and spike features in wheat (Triticum aestivum L). A total of 371 markers (RAPD, SSR, RFLP, AFLP, and two morphological traits) were used to construct the linkage map that covered 4190 cM of wheat genome including 28 linkage groups. The results of composite interval mapping for all studied traits showed that some of the quantitative trait loci (QTL) were stable over experiments conducted in 2004 and 2005. The major QTL located in the Hair-Xpsp2999 interval on chromosome 1A controlled the expression of grains/spike (R(2) = 12.9% in 2004 and 22.4% in 2005), grain weight/spike (R(2) = 21.4% in 2004 and 15.8% in 2005), and spike number (R(2) = 15.6% in 2004 and 5.4% in 2005). The QTL for grain yield located on chromosomes 6A, 6B, and 6D totally accounted for 27.2% and 31.7% of total variation in this trait in 2004 and 2005, respectively. Alleles inherited from 'Oligoculm' increased the length of spikes and had decreasing effects on spike number. According to the data obtained in 2005, locus Xgwm261 was associated with a highly significant spike length QTL (R(2) = 42.33%) and also the major QTL for spikelet compactness (R(2) = 26.1%).  相似文献   

8.
Accumulation of protein and starch in grain is a key process determining grain yield and quality in wheat. Under drought or waterlogging, endogenous plant hormone levels will change and may have an impact on the yield and quality of wheat. In a greenhouse experiment, four winter wheat (Triticum aestivum L.) varieties differing in grain protein content, Heimai 76, Wanmai 38, Yangmai 10 and Yangmai 9, were subjected to drought (SRWC = 4550%, DR), waterlogging (WL) and moderate water supply (SRWC = 7580%, CK), beginning from 4 days post-anthesis (DPA) to maturity. On the 10 (grain enlargement stage) and 20 (grain filling stage) DPA, endogenous abscisic acid (ABA), gibberellins (GA1+3), indole-3-acetic acid (IAA) and zeatin riboside (ZR) were determined in sink and source organs of wheat plants by enzyme linked immunosorbent assay (ELISA). The patterns of hormonal changes were similar in four varieties. The ABA levels were much higher under DR and WL than under CK. Compared with CK, GA1+3 levels in whole-plant under DR and WL changed a little at 10 DPA, but markedly decreased under DR and WL at 20 DPA. Changes of endogenous IAA level under DR and WL exhibited a complicated pattern, depending on organs and growth stages. Particularly at the 20 DPA, the mean levels of IAA in roots, leaves and grains decreased significantly under DR and WL. In comparison with CK, ZR levels in all organs significantly decreased under DR and WL at both stages. The correlation analyses between yields and contents of starch and protein in grains and levels and ratios of four hormones in source and sink organs indicated that the changes in yield and content of grain starch and protein under DR and WL were associated with the reduced IAA, ZR and GA1+3 levels and elevated ABA level in plants, especially in grains. It was proposed that the changed levels of endogenous hormones under post-anthesis DR and WL might indirectly affect protein and starch accumulation in grains by influencing the regulatory enzymes and processes.  相似文献   

9.
Several genotype-by-environment stability measures are in use, but little information exists about their inheritance or genetic inter-relationships. Among those measures in common use are the linear regression coefficient (b), deviations from regression (sb), coefficient of determination (R2), coefficient of phenotypic variation (CPV) and, more recently, interaction principal components (IPCA) of the additive-main-effect-and-multiplicative-interaction (AMMI) model. Because of the factorial structure of the data, the diallel cross is well suited to study these parameters and their relationship to quantitative traits. For this study a complete diallel cross, derived by mating eight lines from a broad based bread wheat breeding population, was grown for several growing seasons at two Ugandan locations, one of which was prone to yellow rust. Stability parameters and grain yield were measured for each cross. CPV had the highest narrow-sense heritability (h2=0.522) followed by IPCA1 of the AMMI (h2=0.461). Lowest narrow-sense heritabilities were calculated for b and R2 (h2=0.150 and 0.100 respectively). There were high additive genetic correlations (rA) between grain yield and CPV (rA=−0.933), grain yield and IPCA1 (rA=0.707), and grain yield and IPCA2 (rA=0.751). The genetic association between CPV and IPCA1 was also high and negative (rA= −0.934). These results suggest that it may be possible to select simultaneously for high and stable grain yield in this broad-based bread wheat breeding pool by selecting outyielders that exhibit a low CPV. Received: 25 July 2000 / Accepted: 7 December 2000  相似文献   

10.

A population of 206 recombinant inbred lines (RILs F9–F10) derived from wheat cross WL711/C306 was phenotyped for morpho-physiological traits such as flag leaf area (FLA), flag leaf length (FLL), flag leaf width (FLW), and cell membrane stability (CMS) under water deficit stress (WDS) environment. High yielding cultivar, WL711 had higher FLA than the medium yielding cultivar C306 across trials under both environments. Parent cultivar C306 maintained membrane integrity while WL711 showed higher membrane damage under WDS. The RIL population showed considerable variation, normal distribution and transgressive segregation for FLA, FLL, FLW and CMS under WDS. The genetic linkage map of WL711/C306 RIL population was constructed comprising of 346 markers. The total map distance was 4526.8 cM with an averaged interval of 12.9 cM between adjacent markers. Major consistent QTL for FLA, FLL, FLW, and CMS were identified on chromosomes 2DS and 3BS respectively in the WL711/C306 RIL population under WDS. The major QTL for FLA, qFLAWD.2D.1 which expressed in multiple environments and for CMS, qCMSWD.3B.3 and qCMSWD.3B.4, accounted for a large proportion of phenotypic variance (PV) with positive allele being contributed by C306, a drought resistant (DR) parent. QTL qFLAWD.2D.1 for FLA co-located with QTL for grain number (GN) and days to flowering (DTF) while QTL qCMSWD.3B.3 and qCMS.3B.4 co-located with QTL for grain yield and its components, days to flowering, canopy temperature and coleoptiles length as reported in our previous publications on the WL711/C306 population (Shukla et al. in Euphytica 203:449–467, 2015; Singh et al. in J Plant Biochem Biotechnol 24:324–330, 2015). Two candidate genes Ghd7 for grain yield and heading date and OsCDK4 for calcium dependent protein kinases were identified in the 2DS and 3BS QTL regions respectively on comparison with gene content of rice chromosomes 7 and 1 respectively. Hence, QTLs qFLAWD.2D.1 and qCMSWD.3B.3 are potential target regions for fine mapping and marker assisted selection for FLA and CMS respectively in wheat under water deficit environments.

  相似文献   

11.
The genetic basis of heading time in wheat (Triticum aestivum L.) was investigated through the study of flowering under normal autumn sown field conditions as well as photoperiod responses under a controlled environment. Quantitative trait loci (QTLs) for these traits were mapped in a doubled-haploid (DH) population derived from a cross between the wheat cultivars 'Courtot' and 'Chinese Spring'. A molecular marker linkage map of this cross that was previously constructed based on 187 DH lines and 380 markers was used for QTL mapping. The genome was well covered (85%) except for chromosomes 1D and 4D, and a set of anchor loci regularly spaced over the genome (one marker each 15.5 cM) was chosen for marker regression analysis. The presence of a QTL was declared at a significance threshold of alpha = 0.005. The population was grown under field conditions in Clermont-Ferrand, France during two years (1994-1995), in Norwich, U.K. over one year (1998), and also under controlled environments in Norwich. For each trait, between 2 and 4 QTLs were identified with individual effects ranging between 6.3% and 44.4% of the total phenotypic variation. Two QTLs were detected that simultaneously affected heading time and photoperiod response. For heading time, these two QTLs were detected in more than one year. One QTL located on chromosome arm 2BS near the locus Xfbb121-2B, co-segregated with the gene Ppd-B1 known to be involved in photoperiod response. This chromosome region explained a large part of the variation (23.4-44.4% depending on the years or the traits). Another region located on chromosome arm 7BS between the loci Xfbb324-7B and Xfbb53-7B also had a strong effect (7.3-15.3%). This region may correspond to a QTL for earliness per se.  相似文献   

12.
Yield per shoot and to a much lesser extend yield per unit area were related to morphological characters. The flag sheath was better related to shoot yield than were any of the three uppermost leaf laminae. Among these the areas of the two lower leaves showed a better relationship to the yield than did the flag leaf lamina. Variation in main shoot yield was associated mainly with variation in grain number. More attention should be given to morphological character related to spike development before anthesis.  相似文献   

13.
Pyramiding of genes that confer partial resistance is a method for developing wheat (Triticum aestivum L.) cultivars with durable resistance to leaf rust caused by Puccinia triticina. In this research, a doubled haploid population derived from the cross between the synthetic hexaploid wheat (SHW) (×Aegilotriticum spp.) line TA4152-60 and the North Dakota breeding line ND495 was used for identifying genes conferring partial resistance to leaf rust in both the adult plant and seedling stages. Five QTLs located on chromosome arms 3AL, 3BL, 4DL, 5BL and 6BL were associated with adult plant resistance with the latter four representing novel leaf rust resistance QTLs. Resistance effects of the 4DL QTL were contributed by ND495 and the effects of the other QTLs were contributed by the SHW line. The QTL on chromosome arm 3AL had large effects and also conferred seedling resistance to leaf rust races MJBJ, TDBG and MFPS. The other major QTL, which was on chromosome arm 3BL, conferred seedling resistance to race MFPS and was involved in a significant interaction with a locus on chromosome arm 5DS. The QTLs and the associated molecular markers identified in this research can be used to develop wheat cultivars with potentially durable leaf rust resistance.  相似文献   

14.
Quality, specifically protein content and gluten strength are among the main objectives of a durum wheat breeding program. The aim of this work was to validate quantitative trait loci (QTLs) associated with grain protein content (GPC) and gluten strength measured by SDS sedimentation volume (SV) and to find additional QTLs expressed in Argentinean environments. Also, epistatic QTL and QTL x environmental interactions were analyzed. A mapping population of 93 RILs derived from the cross UC1113 x Kofa showing extreme values in gluten quality was used. Phenotypic data were collected along six environments (three locations, two years). Main effect QTLs associated with GPC were found in equivalent positions in two environments on chromosomes 3BS (R2 = 21.0-21.6%) and 7BL (R2 = 12.1-13%), and in one environment on chromosomes 1BS, 2AL, 2BS, 3BL, 4AL, 5AS, 5BL and 7AS. The most important and stable QTL affecting SV was located on chromosome 1BL (Glu-B1) consistently detected over the six environments (R2 = 20.9- 54.2%). Additional QTLs were found in three environments on chromosomes 6AL (R2 = 6.4-12.5%), and in two environments on chromosomes 6BL (R2 = 11.5-12.1%), 7AS (R2 = 8.2-10.2%) and 4BS (R2 = 11–16.4%). In addition, pleiotropic effects were found affecting grain yield, test weight, thousand-kernel- weight and days to heading in some of these QTLs. Epistatic QTLs and QTL x environment interactions were found for both quality traits, mostly for GPC. The flanking markers of the QTLs detected in this work could be efficient tools to select superior genotypes for the mentioned traits.  相似文献   

15.
Grain protein content (GPC) in durum wheat (Triticum turgidum var. durum) is negatively correlated with grain yield. To evaluate possible genetic interrelationships between GPC and grain yield per spike, thousand-kernel weight and kernel number per spike, quantitative trait loci (QTL) for GPC were mapped using GPC-adjusted data in a covariance analysis on yield components. Phenotypic data were evaluated in a segregating population of 120 recombinant inbred lines derived from crossing the elite cultivars Svevo and Ciccio. The material was tested at five environments in southern Italy. QTL were determined by composite interval mapping based on the Svevo?×?Ciccio linkage map described in Gadaleta et al. (2009) and integrated with DArT markers. The close relationship between GPC and yield components was reflected in the negative correlation between the traits and in the reduction of variance when GPC values were adjusted to yield components. Ten independent genomic regions involved in the expression of GPC were detected, six of which were associated with QTL for one or more grain yield components. QTL alleles with increased GPC effects were associated with QTL alleles with decreased effects on one or more yield component traits, or vice versa (i.e. the allelic effects were in opposite direction). Four QTL for GPC showed always significant effects, and these QTL should represent genes that influence GPC independently from variation in the yield components. Such genes are of special interest in wheat breeding since they would allow an increase in GPC without a concomitant decrease in grain yield.  相似文献   

16.
灌水模式对冬小麦光合特性、水分利用效率和产量的影响   总被引:5,自引:0,他引:5  
试验于2013—2014和2014—2015年连续2个生长季在自动控制干旱棚内的隔离池中进行,拔节期设3个灌水梯度,灌水量分别为0(J_0)、37.5(J_1)、75 mm(J_2),扬花期设3个灌水梯度,灌水量分别为0(F_0)、37.5(F_1)、75 mm(F_2),灌浆期所有处理均按75 mm灌溉,共9个处理,研究不同灌溉模式对小麦中后期不同生育阶段植株生长、耗水量、水分利用效率、光合特性和产量构成因素的影响.结果表明:拔节期干旱(0和37.5 mm)显著降低了小麦扬花期的净光合速率和拔节后的叶面积,扬花期的灌水量直接影响扬花期后的旗叶净光合速率;拔节期干旱扬花期补水和扬花期干旱灌浆期补水都可以有效提高植株的干物质量;拔节期灌水量越多,全生育期耗水量越大;除J_1F_2外,全生育期灌水量越大,耗水量越大,产量也越高;J_1F_2处理产量和水分利用效率最高.扬花期充足的灌水量使J_1F_2处理具有较高的花后旗叶净光合速率,此期补偿性灌溉加快了干物质积累,也保证了较高的穗粒数,使其最终产量高于J_2F_2处理或与之持平,同时J_1F_2拔节期较低的灌水量降低了小麦生育中后期的耗水量,其水分利用效率也显著高于其他处理.综上,J_1F_2是小麦生育中期理想的水分处理组合.  相似文献   

17.
水氮运筹对干旱年型冬小麦旗叶生理性状及产量的交互效应   总被引:11,自引:5,他引:11  
在大田条件下,探讨了不同灌水和施氮处理对冬小麦叶片生长、生理特性及产量性状的影响。结果表明,干旱年型条件下灌水和氮肥增产效应均显著,但灌水增产潜力更大,灌水两次(拔节和孕穗水),产量较高;灌水3次(拔节、孕穗和灌浆水)增产效果并不明显,氮肥全部底施产量下降,水分胁迫影响肥效发挥,降低产量,但可通过增加施氮量得到弥补,只有水氮合理搭配,才能有效协调各产量构成因素的关系,提高单位面积产量。  相似文献   

18.
Effects of different concentrations of ozone on grain filling, flag leaf senescence and final grain yield in field‐grown spring wheat (Triticum aestivum L. cv. Dragon) were studied using open‐top chambers. The hypothesis tested was that an ozone‐induced reduction in grain yield is mainly related to an enhanced senescence and a shortening of the grain‐filling period. The plants were exposed to filtered air (F), non‐filtered air without extra ozone (NF) or non‐filtered air with 3 different levels of ozone added (NF1+, NF2+ and NF3+). The mean daytime (08.00–20.00 h) ozone concentrations during the exposure period (31 days) were 7, 20, 34, 48 and 62 nmol mol?1 in F, NF, NF1+, NF2+ and NF3+, respectively. The corresponding ozone doses, expressed as the accumulated exposure over a concentration threshold of 40 nmol mol?1 (AOT40), were 0, 12, 1 989, 5 881 and 10 375 nmol mol?1 h, respectively, and 884, 2 594, 4 557, 6 188 and 7 900 μmol m?2, respectively, expressed as the calculated cumulative flag leaf ozone flux (CFO30). The flag leaves senesced earlier and the grain‐filling duration was significantly shorter at higher ozone exposure compared to F (?5, ?13 and ?18% in NF1+, NF2+ and NF3+, respectively). The relative grain‐filling rate did not differ between the treatments. The 1000‐grain weights were 10, 28 and 37% lower, and the grain yields were 15, 29 and 46% lower than F in NF1+, NF2+ and NF3+, respectively. Ozone exposure had no significant effect on the number of grains per unit ground area or on straw yield, but significantly reduced the harvest index and increased the grain protein concentration in NF2+ and NF3+ compared to F. The grain yield was negatively correlated with the ozone dose, expressed either as AOT40 or as CFO3 with or without an ozone flux threshold. The 1000‐grain weight was positively correlated with the grain‐filling duration (R2=0.998), which in turn was positively correlated with the leaf area duration (R2=0.989).  相似文献   

19.
Orchid is a major floral crop around the world and Dendrobium hybrids are considered to be one of the most popular orchids. In vitro germination of hybrid seeds is a common practice among orchid growers, however, in many cross pollinations the embryos may not develop to maturity, leading to poor seed germination. The effect of seed maturity and sucrose concentration were investigated via asymbiotic germination of nobile Dendrobium hybrids. Capsules were harvested from two hybrids (Den. Lucky Girl × Den. Second Love ‘Kirameki’ and Den. Lucky Girl × Den. Hamana Lake ‘Kumi’) and one selfing of Den. Second Love ‘Kirameki’ at 2, 3, 4, and 5 months after pollination and immature seeds were taken. Immature seeds from 3- to 5-month old capsules could be successfully germinated on Hyponex based medium. Immature seeds from 4-month old capsules showed greatest germination rate of tested treatments, whereas 3-month old immature seeds showed the least germination. After 6 weeks of in vitro culture, protocorms derived from embryos developed on every concentration of sucrose, but germination was greater at lower concentrations. Greater concentration of sucrose decreased normal-developed protocorms.  相似文献   

20.
Molecular genetic analyses revealed that the WUSCHEL‐related homeobox (WOX) gene superfamily regulates several programs in plant development. Many different mechanisms are reported to underlie these alterations. The WOX family member STENOFOLIA (STF) is involved in leaf expansion in the eudicot Medicago truncutula. Here, we report that when this gene was ectopically expressed in a locally adapted hard red winter wheat cultivar (Triticum aestivum), the transgenic plants showed not only widened leaves but also accelerated flowering and increased chlorophyll content. These desirable traits were stably inherited in the progeny plants. STF binds to wheat genes that have the (GA)n/(CT)n DNA cis element, regardless of sequences flanking the DNA repeats, suggesting a mechanism for its pleiotropic effects. However, the amino acids between position 91 and 262 in the STF protein that were found to bind with the (GA)n motif have no conserved domain with any other GAGA‐binding proteins in animals or plants. We also found that STF interacted with a variety of proteins in wheat in yeast 2 hybrid assays. We conclude that the eudicot STF gene binds to (GA)n/(CT)n DNA elements and can be used to regulate leaf width, flowering time and chlorophyll content in monocot wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号