首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 422 毫秒
1.
Pyruvate,orthophosphate (Pi) dikinase (PPDK) is best recognized as a chloroplastic C(4) cycle enzyme. As one of the key regulatory foci for controlling flux through this photosynthetic pathway, it is strictly and reversibly regulated by light. This light/dark modulation is mediated by reversible phosphorylation of a conserved threonine residue in the active-site domain by the PPDK regulatory protein (RP), a bifunctional protein kinase/phosphatase. PPDK is also present in C(3) plants, although it has no known photosynthetic function. Nevertheless, in this report we show that C(3) PPDK in leaves of several angiosperms and in isolated intact spinach (Spinacia oleracea) chloroplasts undergoes light-/dark-induced changes in phosphorylation state in a manner similar to C(4) dikinase. In addition, the kinetics of this process closely resemble the reversible C(4) process, with light-induced dephosphorylation occurring rapidly (< or =15 min) and dark-induced phosphorylation occurring much more slowly (> or =30-60 min). In intact spinach chloroplasts, light-induced dephosphorylation of C(3) PPDK was shown to be dependent on exogenous Pi and photosystem II activity but independent of electron transfer from photosystem I. These in organello results implicate a role for stromal pools of Pi and adenylates in regulating the reversible phosphorylation of C(3)-PPDK. Last, we used an in vitro RP assay to directly demonstrate ADP-dependent PPDK phosphorylation in desalted leaf extracts of the C(3) plants Vicia faba and rice (Oryza sativa). We conclude that an RP-like activity mediates the light/dark modulation of PPDK phosphorylation state in C(3) leaves and chloroplasts and likely represents the ancestral isoform of this unusual and key C(4) pathway regulatory "converter" enzyme.  相似文献   

2.
Aoyagi K  Chua NH 《Plant physiology》1988,86(2):364-368
Pyruvate, Pi dikinase (PPDK) is a key enzyme in the C4 photosynthetic pathway. However, its metabolic role in C3 plants remains uncertain. Northern blot analyses of PPDK mRNAs from wheat leaves and seeds probed with maize PPDK cDNA indicates the presence of organ-specific mRNAs. Immunofluorescent labeling of protein in wheat seed demonstrate that the PPDK polypeptide and the ribulose-1, 5-bisphosphate carboxylase small subunit polypeptide are localized predominantly in the aleurone layer and the chlorophyllous pericarp tissue, respectively. This differential distribution of the two polypeptides in wheat seed is paralleled by the differential localization of the their mRNAs as revealed by in situ hybridization. These results suggest a distinct role of cytoplasmic PPDK in seeds, which is different from the well established role in C4 photosynthesis.  相似文献   

3.
丙酮酸磷酸双激酶(pyruvate orthophosphate dikinase,PPDK)作为C4光合途径中一个非常重要的限速酶,其功能已经清楚,但在C3植物中以及逆境条件下的作用尚不明确。在阐述PPDK基本生物学特征的基础上,重点介绍了PPDK在C4植物和C3植物中的功能、活性调控、基因工程以及PPDK对逆境胁迫应答的研究进展,以期为植物抗逆基因挖掘及抗逆种质创制提供参考。  相似文献   

4.
植物丙酮酸磷酸双激酶(PPDK)研究进展   总被引:2,自引:0,他引:2  
丙酮酸磷酸双激酶(PPDK)是C4植物和景天科酸代谢(CAM)植物光合作用的关键酶,催化形成固定CO2的初始分子受体磷酸烯醇式丙酮酸(PEP)。本文重点比较了植物的ppDK基因结构及分子进化关系,综述了PPDK在C4植物和C3植物中的功能、PPDK的调控机理、PPDK在胁迫条件下的功能以及转PPDK基因等在近年来的研究进展。  相似文献   

5.
In C(4) plants such as maize, pyruvate,orthophosphate dikinase (PPDK) catalyzes the regeneration of the initial carboxylation substrate during C(4) photosynthesis. The primary catalytic residue, His-458 (maize C(4) PPDK), is involved in the ultimate transfer of the beta-phosphate from ATP to pyruvate. C(4) PPDK activity undergoes light-dark regulation in vivo by reversible phosphorylation of a nearby active-site residue (Thr-456) by a single bifunctional regulatory protein (RP). Using site-directed mutagenesis of maize recombinant C(4) dikinase, we made substitutions at the catalytic His residue (H458N) and at this regulatory target Thr (T456E, T456Y, T456F). Each of these affinity-purified mutant enzymes was assayed for changes in dikinase activity. As expected, substituting His-458 with Asn results in a catalytically incompetent enzyme. Substitutions of the Thr-456 residue with Tyr and Phe reduced activity by about 94 and 99%, respectively. Insertion of Glu at this position completely abolished activity, presumably by the introduction of negative charge proximal to the catalytic His. Furthermore, neither the T456Y nor inactive H458N mutant enzyme was phosphorylated in vitro by RP. The inability of the former to serve as a phosphorylation substrate indicates that RP is functionally a member of the Ser/Thr family of protein kinases rather than a "dual-specificity" Ser-Thr/Tyr kinase, since our previous work showed that RP effectively phosphorylated Ser inserted at position 456. The inability of RP to phosphorylate its native target Thr residue when Asn is substituted for His-458 documents that RP requires the His-P catalytic intermediate form of PPDK as its protein substrate. For these latter studies, synthetic phosphopeptide-directed antibodies specific for the Thr(456)-P form of maize C(4) PPDK were developed and characterized.  相似文献   

6.
Pyruvate, orthophosphate dikinase (PPDK) is a key enzyme in the C4 photosynthetic pathway of maize. To improve the cold tolerance of the enzyme in maize, we designed two genomic sequence-based constructs in which the carboxy-terminal region of the enzyme was modified to mimic the amino acid sequence of the cold-tolerant PPDK of Flaveria brownii (Asteraceae). A large amount of PPDK was found to have accumulated in the leaves of many of the maize plants transformed with one of these constructs – that which introduced 17 amino acid substitutions without any alteration of the exon-intron structure – although there was a wide range of variation in the amount of PPDK among the separate plants. In contrast, the production was much less in maize transformed with the second construct in which a cDNA fragment for the same carboxy-terminal region was inserted. The specific activity of PPDK in the plants transformed with the gene with the amino acid substitutions was inversely correlated with the amount of enzyme in the leaves. In addition, the activity of the cold-tolerant recombinant enzyme was judged to be regulated by the PPDK regulatory protein, similar to that of the native PPDK. The cold tolerance of PPDK in crude leaf extracts was greatly improved in plants that produced a large amount of the engineered PPDK. The photosynthetic rate at 8°C increased significantly (by 23%, p<0.05), but there was no obvious effect at higher temperatures. These results support the hypothesis that PPDK is one of the limiting factors in the C4 photosynthesis of maize under cold conditions.  相似文献   

7.
Maize is a typical C4 plant of the NADP-malic enzyme type, and its high productivity is supported by the C4 photosynthetic cycle, which concentrates atmospheric CO2 in the leaves. The plant exhibits superior photosynthetic ability under high light and high temperature, but under cold conditions the photosynthetic rate is significantly reduced. Pyruvate orthophosphate dikinase (PPDK), a key enzyme of the C4 pathway in maize, loses its activity below about 12 °C by dissociation of the tetramer and it is considered as one possible cause of the reduction in the photosynthetic rate of maize at low temperatures. To improve the cold stability of the enzyme, we introduced a cold-tolerant PPDK cDNA isolated from Flaveria brownii into maize by Agrobacterium-mediated transformation. We obtained higher levels of expression by using a double intron cassette and a chimeric cDNA made from F. bidentis and F. brownii with a maximum content of 1mg/g fresh weight. In leaves of transgenic maize, PPDK molecules produced from the transgene were detected in cold-tolerant homotetramers or in heterotetramers of intermediate cold susceptibility formed with the internal PPDK. Simultaneous introduction of an antisense gene for maize PPDK generated plants in which the ratio of heterolologous and endogenous PPDK was greatly improved. Arrhenius plot analysis of the enzyme extracted from one such plant revealed that the break point was shifted about 3 °C lower than that of the wild type.  相似文献   

8.
9.
Evolution of C4 phosphoenolpyruvate carboxylase   总被引:8,自引:0,他引:8  
C4 plants are known to be of polyphyletic origin and to have evolved independently several times during the evolution of angiosperms. This implies that the C4 isoform of phosphoenolpyruvate carboxylase (PEPC) originated from a nonphotosynthetic PEPC gene that was already present in the C3 ancestral species. To meet the special requirements of the C4 photosynthetic pathway the expression program of the C4 PEPC gene had to be changed to achieve a strong and selective expression in leaf mesophyll cells. In addition, the altered metabolite concentrations around C4 PEPC in the mesophyll cytoplasm necessitated changes in the enzyme's kinetic and regulatory properties. To obtain insight into the evolutionary steps involved in these altered enzyme characteristics, and even the order of these steps, the dicot genus Flaveria (Asteraceae) appears to be the experimental system of choice. Flaveria contains closely related C3, C3-C4, and C4 species that can be ordered by their gradual increase in C4 photosynthetic traits. The C4 PEPC of F. trinervia, which is encoded by the ppcA gene class, possesses typical kinetic and regulatory features of a C4-type PEPC. Its nearest neighbor is the orthologous ppcA gene of the C3 species F. pringlei. This latter gene encodes a typical nonphotosynthetic C3-type PEPC which is believed to be similar to the C3 ancestral PEPC. This pair of orthologous PEPCs has been used to map C4-specific molecular determinants for the kinetic and regulatory characteristics of C4 PEPCs. The most notable finding from these investigations was the identification of a C4 PEPC invariant site-specific mutation from alanine (C3) to serine (C4) at position 774 that was a necessary and late step in the evolution of C3 to C4 PEPC. The C3-C4 intermediate ppcA PEPCs are used to identify the sequence of events leading from a C3- to a C4-type PEPC.  相似文献   

10.
Pyruvate phosphate dikinase (PPDK) is an essential enzyme of both the C4 photosynthetic pathway and cellular energy metabolism of some bacteria and unicellular protists. In C4 plants, it catalyzes the ATP‐ and Pi‐dependent formation of phosphoenolpyruvate (PEP) while in bacteria and protozoa the ATP‐forming direction is used. PPDK is composed out of three distinct domains and exhibits one of the largest single domain movements known today during its catalytic cycle. However, little information about potential intermediate steps of this movement was available. A recent study resolved a discrete intermediate step of PPDK's swiveling movement, shedding light on the details of this intriguing mechanism. Here we present an additional structural intermediate that possibly represents another crucial step in the catalytic cycle of PPDK, providing means to get a more detailed understanding of PPDK's mode of function.  相似文献   

11.
Chastain CJ  Heck JW  Colquhoun TA  Voge DG  Gu XY 《Planta》2006,224(4):924-934
Pyruvate, orthophosphate dikinase (PPDK; E.C.2.7.9.1) is most well known as a photosynthetic enzyme in C4 plants. The enzyme is also ubiquitous in C3 plant tissues, although a precise non-photosynthetic C3 function(s) is yet to be validated, owing largely to its low abundance in most C3 organs. The single C3 organ type where PPDK is in high abundance, and, therefore, where its function is most amenable to elucidation, are the developing seeds of graminaceous cereals. In this report, we suggest a non-photosynthetic function for C3 PPDK by characterizing its abundance and posttranslational regulation in developing Oryza sativa (rice) seeds. Using primarily an immunoblot-based approach, we show that PPDK is a massively expressed protein during the early syncitial-endosperm/-cellularization stage of seed development. As seed development progresses from this early stage, the enzyme undergoes a rapid, posttranslational down-regulation in activity and amount via regulatory threonyl-phosphorylation (PPDK inactivation) and protein degradation. Immunoblot analysis of separated seed tissue fractions (pericarp, embryo + aleurone, seed embryo) revealed that regulatory phosphorylation of PPDK occurs in the non-green seed embryo and green outer pericarp layer, but not in the endosperm + aleurone layer. The modestly abundant pool of inactive PPDK (phosphorylated + dephosphorylated) that was found to persist in mature rice seeds was shown to remain largely unchanged (inactive) upon seed germination, suggesting that PPDK in rice seeds function in developmental rather than in post-developmental processes. These and related observations lead us to postulate a putative function for the enzyme that aligns its PEP to pyruvate-forming reaction with biosynthetic processes that are specific to early cereal seed development.  相似文献   

12.
The protein content of seeds determines their nutritive value, downstream processing properties and market value. Up to 95% of seed protein is derived from amino acids that are exported to the seed after degradation of existing protein in leaves, but the pathways responsible for this nitrogen metabolism are poorly defined. The enzyme pyruvate,orthophosphate dikinase (PPDK) interconverts pyruvate and phosphoenolpyruvate, and is found in both plastids and the cytosol in plants. PPDK plays a cardinal role in C4 photosynthesis, but its role in the leaves of C3 species has remained unclear. We demonstrate that both the cytosolic and chloroplastic isoforms of PPDK are up‐regulated in naturally senescing leaves. Cytosolic PPDK accumulates preferentially in the veins, while chloroplastic PPDK also accumulates in mesophyll cells. Analysis of microarrays and labelling patterns after feeding 13C‐labelled pyruvate indicated that PPDK functions in a pathway that generates the transport amino acid glutamine, which is then loaded into the phloem. In Arabidopsis thaliana, over‐expression of PPDK during senescence can significantly accelerate nitrogen remobilization from leaves, and thereby increase rosette growth rate and the weight and nitrogen content of seeds. This indicates an important role for cytosolic PPDK in the leaves of C3 plants, and allows us to propose a metabolic pathway that is responsible for production of transport amino acids during natural leaf senescence. Given that increased seed size and nitrogen content are desirable agronomic traits, and that efficient remobilization of nitrogen within the plant reduces the demand for fertiliser applications, PPDK and the pathway in which it operates are targets for crop improvement.  相似文献   

13.
Four enzymes, namely, the maize C(4)-specific phosphoenolpyruvate carboxylase (PEPC), the maize C(4)-specific pyruvate, orthophosphate dikinase (PPDK), the sorghum NADP-malate dehydrogenase (MDH), and the rice C(3)-specific NADP-malic enzyme (ME), were overproduced in the mesophyll cells of rice plants independently or in combination. Overproduction individually of PPDK, MDH or ME did not affect the rate of photosynthetic CO(2) assimilation, while in the case of PEPC it was slightly reduced. The reduction in CO(2) assimilation in PEPC overproduction lines remained unaffected by overproduction of PPDK, ME or a combination of both, however it was significantly restored by the combined overproduction of PPDK, ME, and MDH to reach levels comparable to or slightly higher than that of non-transgenic rice. The extent of the restoration of CO(2) assimilation, however, was more marked at higher CO(2) concentrations, an indication that overproduction of the four enzymes in combination did not act to concentrate CO(2) inside the chloroplast. Transgenic rice plants overproducing the four enzymes showed slight stunting. Comparison of transformants overproducing different combinations of enzymes indicated that overproduction of PEPC together with ME was responsible for stunting, and that overproduction of MDH had some mitigating effects. Possible mechanisms underlying these phenotypic effects, as well as possibilities and limitations of introducing the C(4)-like photosynthetic pathway into C(3) plants, are discussed.  相似文献   

14.
Plants using the C(4) photosynthetic pathway are highly represented among the world's worst weeds, with only 4 C(4) species being agriculturally productive (maize, sorghum, millet, and sugar cane). With the C(4) acid cycle operating as a biochemical appendage of C(3) photosynthesis, the additional enzymes involved in C(4) photosynthesis represent an attractive target for the development of weed-specific herbicides. The rate-limiting enzyme of this metabolic pathway is pyruvate orthophosphate dikinase (PPDK). PPDK, coupled with phosphoenolpyruvate carboxylase and nicotinamide adenine dinucleotide-malate dehydrogenase, was used to develop a microplate-based assay to detect inhibitors of enzymes of the C(4) acid cycle. The resulting assay had a Z' factor of 0.61, making it a high-quality assay able to reliably identify active test samples. Organic extracts of 6679 marine macroscopic organisms were tested within the assay, and 343 were identified that inhibited the 3 enzyme-coupled reaction. A high confirmation rate was achieved, with 95% of these hit extracts proving active again upon retesting. Sequential addition of phosphoenolpyruvate and oxaloacetate to the assay facilitated identification of 83 extracts that specifically inhibited PPDK.  相似文献   

15.
Introducing a C(4)-like pathway into C(3) plants is one of the proposed strategies for the enhancement of photosynthetic productivity. For this purpose it is necessary to provide each component enzyme that exerts strong activity in the targeted C(3) plants. Here, a maize C(4)-form phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) was engineered for its regulatory and catalytic properties so as to be functional in the cells of C(3) plants. Firstly, amino acid residues Lys-835 and Arg-894 of maize PEPC, which correspond to Lys-773 and Arg-832 of Escherichia coli PEPC, respectively, were replaced by Gly, since they had been shown to be involved in the binding of allosteric inhibitors, malate or aspartate, by our X-ray crystallographic analysis of E. coli PEPC. The resulting mutant enzymes were active but their sensitivities to the inhibitors were greatly diminished. Secondly, a Ser residue (S780) characteristically conserved in all C(4)-form PEPC was replaced by Ala conserved in C(3)- and root-form PEPCs to decrease the half-maximal concentration (S(0.5)) of PEP. The double mutant enzyme (S780A/K835G) showed diminished sensitivity to malate and decreased S(0.5)(PEP) with equal maximal catalytic activity (V(m)) to the wild-type PEPC, which will be quite useful as a component of the C(4)-like pathway to be introduced into C(3) plants.  相似文献   

16.
17.
18.
Limited information exists regarding molecular events that occurred during the evolution of C(4) plants from their C(3) ancestors. The enzyme β-carbonic anhydrase (CA; EC 4.2.1.1), which catalyses the reversible hydration of CO(2), is present in multiple forms in C(3) and C(4) plants, and has given insights into the molecular evolution of the C(4) pathway in the genus Flaveria. cDNAs encoding three distinct isoforms of β-CA, CA1-CA3, have been isolated and examined from Flaveria C(3) and C(4) congeners. Sequence data, expression analyses of CA orthologues, and chloroplast import assays with radiolabelled CA precursor proteins from the C(3) species F. pringlei Gandoger and the C(4) species F. bidentis (L.) Kuntze have shown that both contain chloroplastic and cytosolic forms of the enzyme, and the potential roles of these isoforms are discussed. The data also identified CA3 as the cytosolic isoform important in C(4) photosynthesis and indicate that the C(4) CA3 gene evolved as a result of gene duplication and neofunctionalization, which involved mutations in coding and non-coding regions of the ancestral C(3) CA3 gene. Comparisons of the deduced CA3 amino acid sequences from Flaveria C(3), C(4), and photosynthetic intermediate species showed that all the C(3)-C(4) intermediates investigated and F. brownii, a C(4)-like species, have a C(3)-type CA3, while F. vaginata, another C(4)-like species, contains a C(4)-type CA3. These observations correlate with the photosynthetic physiologies of the intermediates, suggesting that the molecular evolution of C(4) photosynthesis in Flaveria may have resulted from a temporally dependent, stepwise modification of protein-encoding genes and their regulatory elements.  相似文献   

19.
Characteristics of photosynthetic carbon metabolism of spikelets in rice   总被引:6,自引:0,他引:6  
In lemmas and paleae of rice, the amount of pyruvate, Pi dikinase (PPDK) protein increased dramatically 6 d after anthesis and this change was consistent with that in the activity of PPDK. Since lemmas and paleae at this stage also showed high activities of the other marker enzymes of C4 pathway including phosphot enolpyruvate carboxylase (Imaizumi et al. (1990) Plant Cell Physiol 31: 835–843), photosynthetic carbon metabolism with lemmas at this stage were characterized. In a 14C pulse-12C chase study by photosynthetic CO2 fixation, about 35% and 25% of 14C fixed in lemmas were incorporated initially into 3-phosphoglycerate (3-PGA) and C4 acids, respectively. This suggests that lemmas participate mainly in C3-type photosynthetic metabolism, but that lemmas may also participate in the metabolism of C4 acids to some extent. To clarify this possibility, large amounts of 14C-labeled C4 acids were synthesized in vivo by a light-enhanced dark CO2 fixation (LED) method and the fate of 14C in C4 acids in the light was investigated. The percentage distribution of 14C in C-4 position of malate was about 90% and 83% after 10 s of photosynthetic 14CO2 fixation and 110 s of LED, respectively. Some of the 14C incorporated into C4 acids was transferred into 3-PGA and sugar phosphates. The possibility of direct fixation of CO2 by phosphot enolpyruvate carboxylase and metabolic pathway of CO2 released by decarboxylation of malate produced were discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号