首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Resveratrol, a polyphenol found in fruits, possesses chemopreventive and chemotherapeutic properties and has been shown to increase lifespan in yeast and metazoans, including mice. Genetic evidence and in vitro enzymatic measurements indicate that the deacetylase Sir2/SIRT1, an enzyme promoting stress resistance and aging, is the target of resveratrol. Similarly, down-regulation of insulin-like pathways, of which PI3K (phosphoinositide 3-kinase) is a key mediator, promotes longevity and is an attractive strategy to fight cancer. We show here that resveratrol inhibits, in vitro and in cultured muscle cell lines, class IA PI3K and its downstream signalling at the same concentration range at which it activates sirtuins. Our observations define class IA PI3K as a target of resveratrol that may contribute to the longevity-promoting and anticancer properties and identify resveratrol as a natural class-specific PI3K inhibitor.  相似文献   

2.
3.
4.
Arginase II is a mitochondrial enzyme that catalyses the hydrolysis of L-arginine into urea and ornithine. It is present in other extra-hepatic tissues that lack urea cycle. Therefore, it is plausible that arginase II has a physiological role other than urea cycle which includes polyamine, proline, glutamate synthesis and regulation of nitric oxide production. The high expression of arginase II in kidney, among extrahepatic tissues, might have an important role associated with kidney functions. The present study is aimed to determine the age-associated alteration in the activity and expression of arginase II in the kidney of mice of different ages. The effect of dietary restriction to modulate the age-dependent changes of arginase II was also studied. Results showed that renal arginase II activity declines significantly with the progression of age (p<0.01 and p<0.001 in 6- and 18-month-old mice, respectively as compared to 2-month old mice) and is due to the reduction in its protein as well as the mRNA level (p<0.001 in both 6- and 18-month-old mice as compared to 2-month-old mice). Long-term dietary restriction for three months has significantly up-regulated arginase II activity and expression level in both 2- and 18-month-old mice (p<0.01 and p<0.001, respectively as compared to AL group). These findings clearly indicate that the reducing level of arginase II during aging might have an impact on the declining renal functions. This age-dependent down-regulation of arginase II in the kidney can be attenuated by dietary restriction which may help in the maintenance of such functions.  相似文献   

5.
The estrogen-related receptor alpha (ERRα) is an orphan receptor belonging to the nuclear receptor superfamily that regulates a number of target genes encoding enzymes that participate in various metabolic pathways involved in maintaining energy balance in animals. In this study, whether long-term caloric restriction (alternate days of fasting for 3 months) in mice modulates the expression of ERRα in various tissues was investigated. Western blot analyses showed positive immunoreactive ERRα protein (53 kDa) band in various mice tissue extracts, though at varying levels. Heart, kidney, and skeletal muscles expressed significant levels of ERRα, with a comparatively lower level detected in the intestine, brain, and liver. Cardiac ERRα expression was the highest, with the least detected in the liver. Caloric restricted mice exhibited a significant increase in ERRα level in the heart (5.45-fold), kidney (3.70-fold), skeletal muscle (3.0-fold), small intestine (2.72-fold), and liver (2.44-fold) extracts as compared to ad libitum fed. However, caloric restriction could not evoke any detectable receptor level change in the brain. Notably, the highest ERRα up-regulation was detected in the heart. This up-regulation in ERRα level especially in highly oxidative tissues such as heart, kidney, small intestine, and skeletal muscle of caloric restricted mice may be helpful in modulating ERRα responsive genes that participates in maintaining energy balance. This may potentially strengthen the metabolic and biochemical adaptation in such tissues, which is necessary for animal survival under long-term caloric restriction.  相似文献   

6.
7.
Certain triglyceride-rich lipoproteins (TRLs), specifically chylomicrons, dyslipemic VLDLs, and their remnants, are atherogenic and can induce monocyte-macrophage foam cell formation in vitro via the apolipoprotein B-48 receptor (apoB-48R). Human atherosclerotic lesion foam cells express the apoB-48R, as determined immunohistochemically, suggesting it can play a role in the conversion of macrophages into foam cells in vivo. The regulation of the apoB-48R in monocyte-macrophages is not fully understood, albeit previous studies indicated that cellular sterol levels and state of differentiation do not affect apoB-48R expression. Since peroxisome proliferator-activated receptors (PPARs) regulate some aspects of cellular lipid metabolism and may be protective in atherogenesis by up-regulation of liver X-activated receptor alpha and ATP-binding cassette transporter A1, we examined the regulation of apoB-48R by PPAR ligands in human monocyte-macrophages. Using real-time PCR, Northern, Western, and functional cellular lipid accumulation assays, we show that PPARalpha and PPARgamma activators significantly suppress the expression of apoB-48R mRNA in human THP-1 and blood-borne monocyte-macrophages. Moreover, PPAR activators inhibit the expression of the apoB-48R protein and, notably, the apoB-48R-mediated lipid accumulation of TRL by THP-1 monocytes in vitro. If PPAR activators also suppress the apoB-48R pathway in vivo, diminished apoB-48R-mediated monocyte-macrophage lipid accumulation may be yet another antiatherogenic effect of the action of PPAR ligands.  相似文献   

8.
Caloric restriction (CR) is well known to expand lifespan in a variety of species and to retard many age-related diseases. The effects of relatively mild CR on the proteome profile in relation to lifespan have not yet been reported, despite the more extensive studies of the stricter CR conditions. Thus, the present study was conducted to elucidate the protein profiles in rat livers after mild CR for a relatively short time. Young growing rats were fed CR diets (10% and 30% CR) for 1 month. We performed the differential proteomic analysis of the rat livers using two-dimensional electrophoresis combined with MALDI-TOF mass spectrometry. The most remarkable protein among the differentially expressed proteins was found to be prohibitin, the abundance of which was increased by 30% CR. Prohibitin is a ubiquitously expressed protein shown to suppress cell proliferation and to be related to longevity. The increase in prohibitin was observed both in 10% and 30% CR by Western blot analysis. Furthermore, induction of AMP-activated kinase (AMPK) protein, related to the actions of prohibitin in promoting longevity, was observed. The increased prohibitin level in response to subtle CR suggests that this increase may be one of the early events leading to the expansion of lifespan in response to CR.  相似文献   

9.
The eukaryotic initiation factor 4E (eIF4E) serves as a master switch that controls mRNA translation through the promotive binding to eIF4G and the regulative binding with the endogenous inhibitor 4E-BP. Although the bindings of eIF4G and 4E-BP to eIF4E proceed through the common eIF4E recognition Y(X)4Lφ motif (X: variable, φ: hydrophobic) (first binding site), the relationship between their eIF4E binding mode and the functional difference is hardly known. Recently, we have clarified the existence and function of the second eIF4E binding site in 4E-BP. Surface plasmon resonance (SPR) analysis based on the sequential comparison between 4E-BP and eIF4GI clarified that eIF4G has the second binding site at the periphery of the 597SDVVL601 sequence and that it plays an auxiliary but indispensable function in stabilizing the binding of the first binding sequence 572YDREFLL578. The kinetic parameters of the interactions of the eIF4GI and 4E-BP2 fragment peptides with eIF4E showed that the association (ka) and dissociation (kd) rates of the former peptide are about three and two orders of magnitude lower than those of the latter peptide, respectively. This means that eIF4G has a potent resistive property for release from eIF4E, although its rate of binding to eIF4E is not as high as that of 4E-BP, that is, 4E-BP is apt to bind to and be released from eIF4E, as compared with eIF4G. Isothermal titration calorimetry (ITC) showed the opposite behavior between the second binding sites of eIF4GI and 4E-BP for the interaction with eIF4E. This clearly indicates the importance of the second binding region for the difference in function between eIF4G and 4E-BP for eIF4E translation.  相似文献   

10.
11.
12.
13.
The yeast sir2 gene and its orthologues in Drosophila and C. elegans have well-established roles in lifespan determination and response to caloric restriction. We have studied mice carrying two null alleles for SirT1, the mammalian orthologue of sir2, and found that these animals inefficiently utilize ingested food. These mice are hypermetabolic, contain inefficient liver mitochondria, and have elevated rates of lipid oxidation. When challenged with a 40% reduction in caloric intake, normal mice maintained their metabolic rate and increased their physical activity while the metabolic rate of SirT1-null mice dropped and their activity did not increase. Moreover, CR did not extend lifespan of SirT1-null mice. Thus, SirT1 is an important regulator of energy metabolism and, like its orthologues from simpler eukaryotes, the SirT1 protein appears to be required for a normal response to caloric restriction.  相似文献   

14.
15.
Zhang P  Liu C  Zhang C  Zhang Y  Shen P  Zhang J  Zhang CY 《FEBS letters》2005,579(6):1446-1452
PGC-1alpha mRNA and protein are elevated in islets from multiple animal models of diabetes. Overexpression of PGC-1alpha impairs glucose-stimulated insulin secretion (GSIS). However, it is not well known which metabolic events lead to upregulation of PGC-1alpha in the beta-cells under pathophysiological condition. In present study, we have investigated effects of chronic hyperlipidemia and hyperglycemia on PGC-1alpha mRNA expression in isolated rat islets. Isolated rat islets are chronically incubated with 0, 0.2 and 0.4 mM oleic acid/palmitic acid (free fatty acids, FFA) or 5.5 and 25 mM glucose for 72 h. FFA dose-dependently increases PGC-1alpha mRNA expression level in isolated islets. FFA also increases PGC-1alpha expression in mouse beta-cell-derived beta TC3 cell line. In contrast, 25 mM glucose decreases expression level of PGC-1alpha. Inhibition of PGC-1alpha by siRNA improves FFA-induced impairment of GSIS in islets. These data suggest that hyperlipidemia and hyperglycemia regulate PGC-1alpha expression in islets differently, and elevated PGC-1alpha by FFA plays an important role in chronic hyperlipidemia-induced beta-cell dysfunction.  相似文献   

16.
Carnitine palmitoyltransferase I (CPT-I) catalyzes the rate-controlling step in the pathway of mitochondrial fatty acid oxidation. Thyroid hormone will stimulate the expression of the liver isoform of CPT-I (CPT-I alpha). This induction of CPT-I alpha gene expression requires the thyroid hormone response element in the promoter and sequences within the first intron. The peroxisomal proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1 alpha) is a coactivator that promotes mitochondrial biogenesis, mitochondrial fatty acid oxidation, and hepatic gluconeogenesis. In addition, PGC-1 alpha will stimulate the expression of CPT-I alpha in primary rat hepatocytes. Here we report that thyroid hormone will increase PGC-1 alpha mRNA and protein levels in rat hepatocytes. In addition, overexpression of PGC-1 alpha will enhance the thyroid hormone induction of CPT-I alpha indicating that PGC-1 alpha is a coactivator for thyroid hormone. By using chromatin immunoprecipitation assays, we show that PGC-1 alpha is associated with both the thyroid hormone response element in the CPT-I alpha gene promoter and the first intron of the CPT-I alpha gene. Our data demonstrate that PGC-1 alpha participates in the stimulation of CPT-I alpha gene expression by thyroid hormone and suggest that PGC-1 alpha is a coactivator for thyroid hormone.  相似文献   

17.
18.
We evaluated the role of reactive oxygen species (ROS) for the contraction induced increase in expression of PGC-1alpha, HKII and UCP3 mRNA. Rat skeletal muscle cells were subjected to acute or repeated electrostimulation in the presence and absence of antioxidants. Contraction of muscle cells lead to an increased H2O2 formation, as measured by oxidation of H2HFF. Acute contraction of the muscle cells lead to a transient increase in PGC-1alpha and UCP3 mRNA by 172 and 65%, respectively (p<0.05), whereas this increase was absent in the presence of antioxidants. Repeated contraction sessions induced a sustained elevation in PGC-1alpha and UCP3 mRNA and a transient increase in HKII (p<0.05) and this effect was not present with treatment of cells with either an antioxidant cocktail or with GPX+GSH. Incubation of cells for 10 days with ROS produced by xanthine oxidase/xanthine increased the level of PGC-1alpha, HKII and UCP3 mRNA by 175, 58 and 115%, respectively (p<0.05). A 10-day incubation of cells with antioxidants was found to have no effect on the basal mRNA content (p>0.05). The present data demonstrate that contraction of skeletal muscle cells leads to an enhanced formation of ROS and an elevation in PGC-1alpha, UCP3 and HKII mRNA content which is abolished in the presence of antioxidants, suggesting that ROS are of importance for the contraction induced increase in expression of these genes in skeletal muscle.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号