首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The in vivo strain properties of human skeletal muscle-tendon complexes are poorly understood, particularly following chronic periods of reduced load bearing. We studied eight healthy volunteers who underwent 4 wk of unilateral lower limb suspension (ULLS) to induce chronic unloading. Before and after the ULLS, maximum isometric ankle plantar flexion torque was determined by using a magnetic resonance (MR)-compatible dynamometry. Volumes of the triceps surae muscles and strain distribution of the soleus aponeurosis and the Achilles tendon at a constant submaximal plantar flexion (20% pre-maximal voluntary contraction) were measured by using MRI and velocity-encoded, phase-contrast MRI techniques. Following ULLS, volumes of the soleus and the medial gastrocnemius and the maximum isometric ankle plantar flexion (maximum voluntary contraction) decreased by 5.5+/-1.9, 7.5+/-2.7, and 48.1+/-6.1%, respectively. The strain of the aponeurosis along the length of the muscle before the ULLS was 0.3+/-0.3%, ranging from -1.5 to 2.7% in different locations of the aponeurosis. Following ULLS, the mean strain was -6.4+/-0.3%, ranging from -1.6 to 1.3%. The strain distribution of the midregion of the aponeurosis was significantly influenced by the ULLS, whereas the more distal component showed no consistent changes. Achilles tendon strain was not affected by the ULLS. These results raise the issue as to whether these changes in strain distribution affect the functional properties of the triceps surae and whether the probability of strain injuries within the triceps surae increases following chronic unloading in those regions of this muscle complex in which unusual strains occur.  相似文献   

2.
The present study aimed to clarify the effects of knee joint angle on the behavior of the medial gastrocnemius muscle (MG) fascicles during eccentric plantar flexions. Eight male subjects performed maximal eccentric plantar flexions at two knee positions [fully extended (K0) and 90° flexed (K90)]. The eccentric actions were preceded by static plantar flexion at a 30° plantar flexed position and then the ankle joint was forcibly dorsiflexed to 15° of dorsiflexion with an isokinetic dynamometer at 30°/s and 150°/s. Tendon force was calculated by dividing the plantar flexion torque by the estimated moment arm of the Achilles tendon. The MG fascicle length was determined with ultrasonography. The tendon forces during eccentric plantar flexions were influenced by the knee joint angle, but not by the angular velocity. The MG fascicle lengths were elongated as the ankle was dorsiflexed in K0, but in K90 they were almost constant despite the identical range of ankle joint motion. These results suggested that MG fascicle behavior during eccentric actions was markedly affected by the knee joint angle. The difference in the fascicle behavior between K0 and K90 could be attributed to the non-linear force–length relations and/or to the slackness of tendinous tissues.  相似文献   

3.
Warm-up exercises are often advocated prior to strenuous exercise, but the warm-up duration and effect on muscle–tendon behavior are not well defined. The gastrocnemius–Achilles tendon complexes of 18 subjects were studied to quantify the dynamic creep response of the Achilles tendon in-vivo and the warm-up dose required for the Achilles tendon to achieve steady-state behavior. A custom testing chamber was used to determine each subject's maximum voluntary contraction (MVC) during an isometric ankle plantar flexion effort. The subject's right knee and ankle were immobilized for one hour. Subjects then performed over seven minutes of cyclic isometric ankle plantar flexion efforts equal to 25–35% of their MVC at a frequency of 0.75 Hz. Ankle plantar flexion effort and images from dual ultrasound probes located over the gastrocnemius muscle–Achilles tendon and the calcaneus–Achilles tendon junction were acquired for eight seconds at the start of each sequential minute of the activity. Ultrasound images were analyzed to quantify the average relative Achilles tendon strain at 25% MVC force (ε25%MVC) for each minute. The ε25%MVC increased from 0.3% at the start of activity to 3.3% after seven minutes, giving a total dynamic creep of ~3.0%. The ε25%MVC increased by more than 0.56% per minute for the first five minutes and increased by less than 0.13% per minute thereafter. Therefore, following a period of inactivity, a low intensity warm-up lasting at least six minutes or producing 270 loading cycles is required for an Achilles tendon to reach a relatively steady-state behavior.  相似文献   

4.
Load-strain characteristics of tendinous tissues (Achilles tendon and aponeurosis) were determined in vivo for human medial gastrocnemius (MG) muscle. Seven male subjects exerted isometric plantar flexion torque while the elongation of tendinous tissues of MG was determined from the tendinous movements by using ultrasonography. The maximal strain of the Achilles tendon and aponeurosis, estimated separately from the elongation data, was 5.1 +/- 1.1 and 5.9 +/- 1.6%, respectively. There was no significant difference in strain between the Achilles tendon and aponeurosis. In addition, no significant difference in strain was observed between the proximal and distal regions of the aponeurosis. The results indicate that tendinous tissues of the MG are homogeneously stretched along their lengths by muscle contraction, which has functional implications for the operation of the human MG muscle-tendon unit in vivo.  相似文献   

5.
The purpose of this study was to clarify how foot deformation affects the relationship between triceps surae muscle-tendon unit (MTU) length and ankle joint angle. For six women and six men a series of sagittal magnetic resonance (MR) images of the right foot were taken, and changes in MTU length (the displacement of the calcaneal tuberosity), foot arch angle, and ankle joint angle were measured. In the passive session, each subject's ankle joint was secured at 10° dorsiflexed position, neutral position (NP), and 10° and 20° plantar flexed positions while MR images were acquired. In the active session, each subject was requested to perform submaximal isometric plantar flexions (30%, 60%, and 80% of voluntary maximum) at NP. The changes in MTU length in each trial were estimated by two different formulae reported previously. The changes of the measured MTU length as a function of ankle joint angles observed in all trials of the active session were significantly (p<0.05) larger than corresponding values in the passive session and by the estimation formulae. In the passive session, MTU length changes were significantly smaller than the estimated values when the ankle was plantar flexed. The foot arch angle increased as the contraction level increased from rest (117 ± 4°) to 80% (125 ± 3°), and decreased as the ankle was positioned further into plantar flexion in the passive session (115 ± 3°). These results indicate that foot deformation profoundly affects the triceps surae MTU length-ankle joint angle relationship during plantar flexion.  相似文献   

6.
Achilles tendon material properties and geometry are altered in Achilles tendinopathy. The purpose of this study was to determine the relative contributions of altered material properties and geometry to free Achilles tendon stress distribution during a sub-maximal contraction in tendinopathic relative to healthy tendons. Tendinopathic (n = 8) and healthy tendons (n = 8) were imaged at rest and during a sub-maximal voluntary isometric contraction using three-dimensional freehand ultrasound. Images were manually segmented and used to create subject-specific finite element models. The resting cross-sectional area of the free tendon was on average 31% greater for the tendinopathic compared to healthy tendons. Material properties for each tendon were determined using a numerical parameter optimisation approach that minimised the difference in experimentally measured longitudinal strain and the strain predicted by the finite element model under submaximal loading conditions for each tendon. The mean Young’s modulus for tendinopathic tendons was 53% lower than the corresponding control value. Finite element analyses revealed that tendinopathic tendons experience 24% less stress under the same submaximal external loading conditions compared to healthy tendons. The lower tendon stress in tendinopathy was due to a greater influence of tendon cross-sectional area, which alone reduced tendon stress by 30%, compared to a lower Young’s modulus, which alone increased tendon stress by 8%. These findings suggest that the greater tendon cross-sectional area observed in tendinopathy compensates for the substantially lower Young’s modulus, thereby protecting pathological tendon against excessive stress.  相似文献   

7.
The purpose of this study was to investigate whether the mechanical properties of the Achilles tendon were correlated to muscle strength in the triceps surae in humans. Twenty-four men and twelve women exerted maximal voluntary isometric plantar flexion (MVIP) torque. The elongation (DeltaX) and strain of the Achilles tendon (epsilon), the proximal part of which is the composite of the gastrocnemius tendon and the soleus aponeurosis, at MVIP were determined from the displacement of the distal myotendinous junction of the medial gastrocnemius using ultrasonography. The Achilles tendon force at MVIP (F) was calculated from the MVIP torque and the Achilles tendon moment arm. There were no significant differences in either the F-DeltaX or F-epsilon relationships between men and women. DeltaX and epsilon were 9.8 +/- 2.6 mm and 5.3 +/- 1.6%, respectively, and were positively correlated to F (r = 0.39, P < 0.05; r = 0.39, P < 0.05), which meant that subjects with greater muscle strength could store more elastic energy in the tendon. The regression y-intercepts for the F-DeltaX (P < 0.01) and F-epsilon (P < 0.05) relationship were significantly positive. These results might indicate that the Achilles tendon was stiffer in subjects with greater muscle strength, which may play a role in reducing the probability of tendon strain injuries. It was suggested that the Achilles tendon of subjects with greater muscle strength did not impair the potential for storing elastic energy in tendons and may be able to deliver the greater force supplied from a stronger muscle more efficiently. Furthermore, the difference in the Achilles tendon mechanical properties between men and women seemed to be correlated to the difference in muscle strength rather than gender.  相似文献   

8.
PurposeWe assessed fascicle behaviors of the upper extremities during isometric contractions at different joint angles in this study.MethodsThirteen healthy men and women performed isometric elbow extension tasks at 50% and 75% of maximal voluntary contraction (MVC) at 60°, 90°, and 120° of elbow extension (full extension = 180°). Extended field-of-view B-mode ultrasonography was used to obtain sagittal plane panoramic images of the long head (TB-Long) and medial head (TB-Med) of the triceps brachii at rest and during contraction; fascicle length and pennation angle were measured.ResultsIn the TB-Long, significant fascicle shortening from rest was found during 50% and 75%MVC at 60° and during 75%MVC at 90° of extension. There was no significant fascicle shortening in the TB-Med muscle under any conditions. There was no significant pennation angle change from rest in either muscle. The pennation angle of the TB-Long was significantly greater than that of the TB-Med under all conditions.ConclusionsThese results suggest that fascicle shortening in the TB-Long muscle occurs in flexion; however, no change was found in the TB-Med. In the upper extremity muscle–tendon complex, the superficial and deeper muscles may have different force-transmission efficiency at flexed joint angles.  相似文献   

9.
The purposes of this study were to compare the elasticity of tendon and aponeurosis in human knee extensors and ankle plantar flexors in vivo and to examine whether the maximal strain of tendon was correlated to that of aponeurosis. The elongation of tendon and aponeurosis during isometric knee extension (n = 23) and ankle plantar flexion (n = 22), respectively, were determined using a real-time ultrasonic apparatus, while the participants performed ramp isometric contractions up to voluntary maximum. To calculate the strain values from the measured elongation, we measured the respective length of tendon and aponeurosis. For the knee extensors, the maximal strain of aponeurosis (12.1 +/- 2.8 %) was significantly greater than that of the patella tendon (8.3 +/- 2.4 %), p < 0.001. On the contrary, the maximal strain of Achilles tendon (5.9 +/- 1.4 %) was significantly greater than that of aponeurosis in ankle plantar flexors (2.7 +/- 1.4 %), p < 0.001. Furthermore, for both knee extensors and ankle plantar flexors there was no significant correlation between maximal strain of tendon and aponeurosis. These results would be important for understanding the different roles of tendon and aponeurosis during human movements and for more accurate muscle modeling.  相似文献   

10.
王晓军  刘劲松  张洪彬  沈勇伟 《生物磁学》2009,(20):3897-3899,3881
目的:研究短跑训练对运动员跟腱的影响。方法:选择从事运动训练4-6年的健康男、女短跑运动员为实验组(n=12),同时选同龄健康非运动员男、女为对照组(n=12),采用高频超声检测平静状态跟腱长度、横截面积,以及小腿三头肌等长收缩最大力量跖屈跟腱长度的变化。结果:跟腱长度:对照组男子168.5±9.2mm,女子162.4±9.8mm,实验组男子170.9±10.7mm,女子164.0±7.0mm。实验组和对照组组内、组间差别均无统计学意义。跟腱横截面积:对照组男子62.2±6.2mm2,女子47.1±4.5mm2,实验组男子65.6±2.9mm2,女子49.6±1.9mm2。同组内男子比女子跟腱横截面积大,差别有统计学意义(P&lt;0.05),但实验组和对照组组间差别无统计学意义。小腿三头肌等长收缩最大力跖屈时跟腱拉长值:对照组男子7.6±3.6mm,女子4.9±2.8mm,实验组男子11.1±2.9mm,女子7.9±3.1mm。男子比女子跟腱拉长值大、实验组比对照组拉长值大,差别均有统计学意义(P&lt;0.05)。结论:短跑训练可增加跟腱可拉伸长度,跟腱的长度和横截面积未发生明显变化。高频超声可作为重要的测量手段用于...  相似文献   

11.
Material properties of tissue in vivo present an opportunity for clinical analysis of healing progression and pathologies as well as provide an excellent research tool yielding quantified data for longitudinal and cross population studies. Echogenicity is a material?s ability to reflect sound and, using ultrasound, it has been shown to increase with tendon tension in vitro, though this non-invasive measurement technique for determining mechanical properties has not been tested in vivo. The aim of this study was to establish if echogenicity, seen by the increase in image brightness, could be correlated to stress within a tissue. 18 Achilles tendons were imaged in the sagittal and transverse planes while producing a series of isometric contractions starting from rest and producing the torque equivalent of 0.5, 1.0, 1.5, and 2.0× body weights. Manual tracing identified the tendon in each of the images. The cross-sectional area determined from the transverse plane images in conjunction with the tendon force yielded the tendon stress. The echogenicity of the tendon was determined from the mean brightness change from rest to each of the contraction cases, measured from the sagittal plane images. A weak correlation existed between the echogenicity and stress (R=0.25) but it was found that there was no significant change in axial area during contraction (p=0.683) establishing the tendon as incompressible. Echogenicity proved to be non-functional for measuring the mechanical properties of the Achilles tendon due to the additional factors included with in vivo testing e.g. tendon twist and multi-axial loading.  相似文献   

12.
Effects of three different fatiguing local muscular exercises upon plantar flexion reaction time and achilles tendon reflex time have been studied in 24 normal males. The Exercise Conditions, each involving a series of 30 maximal voluntary isometric contractions (MVC) of the plantar flexors, differed by allowing either 5, 10 or 20 sec rest interval between each MVC. Decrements in strength ranged from 15% to 34% MVC. Trend analysis of the fatigue patterns revealed that a cubic orthogonal polynomial equation was sufficient to describe the profile of MVC decrement for all conditions. Following the fatiguing exercise, simple visual reaction time (plantar flexion), and its two components, premotor and motor time, failed to demonstrate any change from Pre Exercise Conditions. Achilles Tendon Reflex Times, however, demonstrated a marked augmentation, as manifest in reduced total reflex times, contraction times and half relaxation times. These results may suggest the differential fatigue of motor units employed in the three motor tasks, viz. MVC, voluntary reaction and achilles tendon reflex. A plausible explanation for the augmentation of the reflex contraction resides in the known potentiating effect of elevated intramuscular temperature. Alternatively, one might postulate a neurally mediated increase in gain of the stretch servomechanism. The possibility of both mechanisms being operative is not excluded.  相似文献   

13.
The present study aimed to re-examine the influence of the isometric plantarflexors contraction on the Achilles tendon moment arm (ATMA) and the factors influencing the ATMA in three-dimensions. A series of coronal magnetic resonance images of the right ankle were recorded at foot positions of 10° of dorsiflexion, neutral position, and 10° of plantarflexion for the rest condition and the plantarflexors contraction condition at 30% maximal voluntary effort. The shortest distance between the talocrural joint axis and the line of action of the Achilles tendon force projected to the orthogonal plane of the talocrural joint axis was determined as the ATMA. The ATMA determined in the contraction condition was significantly greater by 8 mm than that determined in the rest condition. The talocrural joint axis was displaced anteriorly by 3 mm and distally by 2 mm due to the muscle contraction. As the same time, the line of action of the Achilles tendon force was displaced posteriorly by 5 mm and medially by 2 mm. These linear displacements of the talocrural joint axis and the line of action of the Achilles tendon force accounted for the difference in the ATMAs between the two conditions by 35.9 and 62.4%, respectively. These angular displacements accounted for the total of 0.4% increase in the ATMA. These results confirm the previous findings reported in two-dimensional studies and found that the linear displacement of the line of action of the Achilles tendon force is the primary source of the contraction-induced increase in the ATMA.  相似文献   

14.
The purpose of the study was to examine the effect of prolonged vibration on the force fluctuations during a force-matching task performed at low-force levels. Fourteen young healthy men performed a submaximal force-matching task of isometric plantar flexion before and after Achilles tendon vibration (n = 8, vibration subjects) or lying without vibration (n = 6, control subjects) for 30 min. The target forces were 2.5-10% of the previbration maximal voluntary contraction force. The standard deviation of force decreased by a mean of 29 +/- 20% across target forces after vibration, whereas it did not decrease significantly in control subjects (-5 +/- 12%). This change was significantly greater compared with control subjects (P < 0.01 for both). Power spectral density of the force was predominantly composed of signals of low-frequency bandwidth (相似文献   

15.
This paper uses a EMG-driven Hill-type muscle model to estimate individual muscle forces of the triceps surae in isometric plantar flexion contractions. A uniform group of 20 young physical-active adult males was instructed to follow a specific contraction protocol with low (20%MVC) and medium-high (60%MVC) contractions, separated by relaxing intervals. The torque calculated by summing the individual muscle forces multiplied by the respective moment arms was compared to the torque measured by a dynamometer. Musculoskeletal parameters from the literature were used. Then, three different “correction factors” or bias have been applied on some of the muscle model parameters. These factors were based on anthropometric and dynamometric measurements: moment arm scaled by bimalleolar diameter, tendon slack length by leg length and optimal force by the maximum torque. Model torque agreement with dynamometer was recalculated with the parameter scales. It was observed that the relative torque estimation error decreased slightly but significantly when all factors were applied simultaneously (12.92±4.94% without scaling to 10.12±1.73%), which resulted mainly from the correction of the maximal muscle force parameter.  相似文献   

16.
Although conditioning is routinely used in mechanical tests of tendon in vitro, previous in vivo research evaluating the influence of body anthropometry on Achilles tendon thickness has not considered its potential effects on tendon structure. This study evaluated the relationship between Achilles tendon thickness and body anthropometry in healthy adults both before and after resistive ankle plantarflexion exercise. A convenience sample of 30 healthy male adults underwent sonographic examination of the Achilles tendon in addition to standard anthropometric measures of stature and body weight. A 10-5 MHz linear array transducer was used to acquire longitudinal sonograms of the Achilles tendon, 20 mm proximal to the tendon insertion. Participants then completed a series (90-100 repetitions) of conditioning exercises against an effective resistance between 100% and 150% body weight. Longitudinal sonograms were repeated immediately on completion of the exercise intervention, and anteroposterior Achilles tendon thickness was determined. Achilles tendon thickness was significantly reduced immediately following conditioning exercise (t = 9.71, P < 0.001), resulting in an average transverse strain of -18.8%. In contrast to preexercise measures, Achilles tendon thickness was significantly correlated with body weight (r = 0.72, P < 0.001) and to a lesser extent height (r = 0.45, P = 0.01) and body mass index (r = 0.63, P < 0.001) after exercise. Conditioning of the Achilles tendon via resistive ankle exercises induces alterations in tendon structure that substantially improve correlations between Achilles tendon thickness and body anthropometry. It is recommended that conditioning exercises, which standardize the load history of tendon, are employed before measurements of sonographic tendon thickness in vivo.  相似文献   

17.
The ankle flexor and extensor muscles are essential for pedal movements associated with car driving. Neuromuscular activation of lower leg muscles is influenced by the posture during a given task, such as the flexed knee joint angle during car driving. This study aimed to investigate the influence of flexion of the knee joint on recruitment threshold-dependent motor unit activity in lower leg muscles during isometric contraction. Twenty healthy participants performed plantar flexor and dorsiflexor isometric ramp contractions at 30 % of the maximal voluntary contraction (MVC) with extended (0°) and flexed (130°) knee joint angles. High-density surface electromyograms were recorded from medial gastrocnemius (MG), soleus (SOL), and tibialis anterior (TA) muscles and decomposed to extract individual motor units. The torque-dependent change (Δpps /Δ%MVC) of the motor unit activity of MG (recruited at 15 %MVC) and SOL (recruited at 5 %MVC) muscles was higher with a flexed compared with an extended knee joint (p < 0.05). The torque-dependent change of TA MU did not different between the knee joint angles. The motor units within certain limited recruitment thresholds recruited to exert plantar flexion torque can be excited to compensate for the loss of MG muscle torque output with a flexed knee joint.  相似文献   

18.
Transient elastography consists of measuring the transverse local shear elastic modulus defined as local muscle hardness (LMH). It has previously been shown that LMH is correlated to muscle activity level during non-fatiguing contractions. The aim of this study was to describe how LMH and muscle activity level change during a submaximal fatiguing constant-torque protocol. Changes in gastrocnemius medialis LMH and in surface electromyographic activities (sEMG) of plantar flexors induced by a submaximal isometric plantar flexion (40% of the maximal isometric torque) until exhaustion were quantified. During the contraction, sEMG of each muscle increased (P<0.001) whereas LMH remained constant (P>0.05). Active LMH assessed during the contraction did not parallel muscle activity level changes during this type of submaximal fatigue protocol. Interestingly, LMH at rest assessed in passive conditions was higher prior to the fatiguing effort (P<0.05), rather than that assessed immediately after. Muscle and tendon viscous behaviors could imply a creep phenomenon during a prolonged isometric contraction, and our results in LMH at rest could indicate that this phenomenon induces changes in muscle intrinsic mechanical properties. Further studies are needed to examine whether it could have an influence on muscle activity levels during the contraction.  相似文献   

19.
This study used subject-specific measures of three-dimensional (3D) free Achilles tendon geometry in conjunction with a finite element method to investigate the effect of variation in subject-specific geometry and subject-specific material properties on tendon stress during submaximal isometric loading. Achilles tendons of eight participants (Aged 25–35 years) were scanned with freehand 3D ultrasound at rest and during a 70% maximum voluntary isometric contraction. Ultrasound images were segmented, volume rendered and transformed into subject-specific 3D finite element meshes. The mean (±SD) lengths, volumes and cross-sectional areas of the tendons at rest were 62 ± 13 mm, 3617 ± 984 mm3 and 58 ± 11 mm2 respectively. The measured tendon strain at 70% MVIC was 5.9 ± 1.3%. Subject-specific material properties were obtained using an optimisation approach that minimised the difference between measured and modelled longitudinal free tendon strain. Generic geometry was represented by the average mesh and generic material properties were taken from the literature. Local stresses were subsequently computed for combinations of subject-specific and generic geometry and material properties. For a given geometry, changing from generic to subject-specific material properties had little effect on the stress distribution in the tendon. In contrast, changing from generic to subject-specific geometry had a 26-fold greater effect on tendon stress distribution. Overall, these findings indicate that the stress distribution experienced by the living free Achilles tendon of a young and healthy population during voluntary loading are more sensitive to variation in tendon geometry than variation in tendon material properties.  相似文献   

20.
The medialis pedis flap: a new fasciocutaneous flap   总被引:8,自引:0,他引:8  
An anatomic study (30 fresh specimens dissected) and clinical experience (5 patients) have shown the reliability of a fasciocutaneous flap raised from the medial side of the foot. The artery that supplies the flap is issued from the medial plantar artery. The arch of rotation allows one to cover some specific areas, such as the medial malleolus, posterior aspect of the heel, and distal insertion of Achilles tendon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号