首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
Hepatocyte growth factor (HGF), a mesenchymal-derived factor which regulates growth, motility, and morphogenesis of epithelial and endothelial cells, functions as a hepatotrophic and renotrophic factor for regeneration of the liver and kidney. We have now obtained evidence that transforming growth factor-beta 1 (TGF-beta 1) and glucocorticoids are negative regulators for HGF gene expression. When TGF-beta 1 or dexamethasone was added to cultures of MRC-5 human embryonic lung fibroblasts and HL-60 human promyelocytic leukemic cells, the amount of HGF secreted into the culture medium was inhibited to 30-40% of that of control cultures by 10 ng/ml TGF-beta 1 and to 40-50% by 10(-6) M dexamethasone. The inhibitory effect of TGF-beta 1 and dexamethasone on HGF synthesis in MRC-5 cells was additive, thereby suggesting that TGF-beta 1 and dexamethasone exert effects through distinct mechanisms. Hydrocortisone also inhibited HGF synthesis with the same potency as dexamethasone; however, testosterone, estriol, and beta-estradiol had no effect. The rate of HGF synthesis in MRC-5 cells, as measured by pulse labeling with [35S]methionine and subsequent immunoprecipitation, was suppressed to 30-40% of the control with 10 ng/ml TGF-beta 1, and to 30-45% by 10(-6) M dexamethasone. HGF mRNA levels in MRC-5 cells and HL-60 cells were dose-dependently suppressed by TGF-beta 1 and dexamethasone; 10 ng/ml TGF-beta 1 suppressed HGF mRNA levels to 32% and 35% of control culture, respectively, in MRC-5 cells and HL-60 cells, and 10(-6) M dexamethasone suppressed to 43% and 38%, respectively. Thus, TGF-beta 1 and glucocorticoids seem to inhibit HGF synthesis by suppressing the expression of the HGF gene. We propose that a negative regulation of HGF gene expression by TGF-beta 1 or glucocorticoids may be involved in physiological or pathological processes during tissue regeneration.  相似文献   

3.
EDA-containing fibronectin (EDA + FN) is selectively produced under several physiological and pathological conditions requiring tissue remodeling, where cells actively proliferate and migrate. Only a few growth factors, such as transforming growth factor (TGF)-beta1, have been reported to regulate FN splicing at the EDA region. In the present study, we showed for the first time that hepatocyte growth factor/scatter factor (HGF/SF), which is mainly produced by mesenchymal cells and functions as a motogenic and mitogenic factor for epithelial cells, modulates FN splicing at the EDA region in MDCK epithelial cells. HGF/SF treatment increased the ratio of EDA + FN mRNA to mRNA of FN that lacks EDA (EDA - FN) (EDA+/EDA- ratio) more than TGF-beta1 treatment did: at a range from 0.02 to 20 ng/ml, HGF/SF increased the ratio in a dose-dependent manner by up to 2. 1-fold compared with nontreated control, while TGF-beta1 stimulated the EDA+/EDA- ratio by 1.5-fold at the optimum dose of 10 ng/ml. However, TGF-beta1 increased total FN mRNA levels by 3-fold at 10 ng/ml, but HGF/SF did not. We previously demonstrated that fibroblasts cultured at low cell density expressed more EDA + FN than those at high cell density. The same effect of cell density was also observed in MDCK cells. Furthermore, at low cell density, HGF/SF stimulated EDA inclusion into FN mRNA more effectively than did TGF-beta1, whereas at high cell density, TGF-beta1 was more potent than HGF/SF. Simultaneous treatment of cells with HGF/SF and TGF-beta1 synergistically stimulated EDA inclusion into FN mRNA. This stimulation of EDA inclusion into FN mRNA by HGF/SF led to increased EDA + FN protein production and secretion by cells, which was demonstrated by immunoblotting. Thus, our studies have shown that HGF/SF is an enhancer of EDA inclusion into FN mRNA as is TGF-beta1. However, these two factors were different in their effects at low and high cell densities and also in their effects on total FN mRNA levels.  相似文献   

4.
5.
6.
7.
8.
Hepatocyte growth factor/scatter factor (HGF/SF) is a multi-function cytokine that has been shown to regulate the expression of cell adhesion molecules in human endothelial cells. It is also a key cytokine in the development and progression of cancer, particularly during metastasis. NK4 is a variant of HGF/SF that has already been shown to be antagonistic to HGF/SF. This study shows that HGF/SF decreased transendothelial resistance (TER) and increased paracellular permeability in human vascular endothelial cells can that such effects can be inhibited by addition of the NK4 variant. In addition, HGF/SF-stimulated invasion of endothelium by breast cancer cells was inhibited by the addition of NK4. Western blotting revealed that HGF/SF decreased the protein level, and increased tyrosine phosphorylation of ZO-1, but did not cause a change in level of occludin or claudin-1, both molecules involved in tight junction function. RT-PCR revealed that addition of HGF/SF caused no change in signal for claudin-5 or junctional adhesion molecule (JAM), but there was a decrease in the signal for claudin-1. NK4 was able to prevent the decrease in levels of ZO-1 protein by HGF/SF.  相似文献   

9.
Strategies that antagonize growth factor signaling are attractive candidates for the biological therapy of brain tumors. HGF/NK2 is a secreted truncated splicing variant and potential antagonist of scatter factor/hepatocyte growth factor (SF/HGF), a multifunctional cytokine involved in the malignant progression of solid tumors including glioblastoma. U87 human malignant glioma cells that express an autocrine SF/HGF stimulatory loop were transfected with the human HGF/NK2 cDNA and clonal cell lines that secrete high levels of HGF/NK2 protein (U87-NK2) were isolated. The effects of HGF/NK2 gene transfer on the U87 malignant phenotype were examined. HGF/NK2 gene transfer had no effect on 2-dimensional anchorage-dependent cell growth. In contrast, U87-NK2 cell lines were approximately 20-fold less clonogenic in soft agar and approximately 4-fold less migratory than control-transfected cell lines. Intracranial tumor xenografts derived from U87-NK2 cells grew much slower than controls. U87-NK2 tumors were approximately 50-fold smaller than controls at 21 days post-implantation and HGF/NK2 gene transfer resulted in a trend toward diminished tumorigenicity. This report shows that the predominant effect of transgenic HGF/NK2 overexpression by glioma cells that are autocrine for SF/HGF stimulation is to inhibit their malignant phenotype.  相似文献   

10.
11.
Hepatocyte growth factor/scatter factor (HGF/SF) is a multifunctional cytokine that is involved in many normal as well as pathological conditions. HGF/NK1, a splice variant of HGF/SF, has been reported to have either antagonistic or agonistic effects with regard to c-Met signaling depending on the cell type. In these experiments, we have determined that HGF/NK1 is a potent mitogen for rat hepatocytes in culture. Furthermore, we have found that coagulation factor Xa (fXa) is capable of cleaving HGF/NK1 and single chain HGF/SF (scHGF/SF). The products resulting from cleavage of HGF/NK1 or scHGF/SF by fXa appear as single bands under non-reducing conditions. The reaction products from the digestion of HGF/NK1 by fXa were separated under reducing conditions, and the cleavage site, as determined by N-terminal sequencing, was located C-terminal to arginine 134. Previous work established that the heparin-binding domain for HGF/SF is located in the N domain of HGF/SF. Additionally, the dimerization of the HGF/SF receptor (c-Met) by the ligand HGF/NK1 is facilitated by heparin and related sulfonated sugars on the cell surface, whereas heparin is not required for HGF/SF-mediated dimerization. Cleavage of single chain HGF/SF or HGF/NK1 by factor Xa does not alter the affinity of the respective molecules for heparin, but it did variably affect the associated mitogenic activity of these factors. The associated mitogenic activity of HGF/NK1 was reduced by more than 90%, whereas the mitogenic activity of scHGF/SF was unaffected. This suggests mandatory maintenance of a steric interaction of the N domain and the first kringle domain for HGF/NK1 to act as an agonist for rat hepatocyte growth but is not required by full-length HGF/SF.  相似文献   

12.
Basic fibroblast growth factor (bFGF) together with other pleiotropic factors plays an important role in many complex physiological processes such as embryonic development, angiogenesis, and wound repair. Among these factors, hepatocyte growth factor/scatter factor (HGF/SF) which is secreted by cells of mesodermal origin exerts its mito- and motogenic activities on cells of epithelial and endothelial origin. Knowledge of the regulatory mechanisms of HGF/SF may contribute to the understanding of its role in physio-pathological processes. We observed that the secretion of HGF/SF by MRC-5 cells and by other fibroblast-derived cell cultures in conditioned media was enhanced by exposure to bFGF. HGF/SF was measured by the scatter assay, a bioassay for cell motility, and was further characterized by Western blot analysis with anti-HGF/SF antibodies. Exposure of MRC-5 cultures to 10 ng/ml of bFGF resulted already 6 h posttreatment in a threefold higher amount of scatter factor secreted into the medium as compared to untreated cultures. HGF/SF secretion was sustained after bFGF treatment for the following 72 h when increased amounts of HGF/SF were detected both in conditioned media as well as associated to the extracellular matrix. The secretion of HGF/SF in cell supernatants increased dose dependently upon treatment with bFGF starting from basal levels of 6 U/ml and reaching 27 U/ml at 30 ng/ml bFGF, plateauing thereafter. Upregulation of HGF/SF by IL-1, already described by others, was confirmed in this study. Based on our findings an articulated interaction can be speculated for bFGF, HGF/SF, and IL-1, e.g., in tissue regeneration during inflammatory processes or in wound healing. © 1996 Wiley-Liss, Inc.  相似文献   

13.
14.
15.
Hepatocyte growth factor/scatter factor (HGF/SF) is a potent mitogen, motogen, and morphogen for epithelial cells expressing its tyrosine kinase receptor, the c-met proto-oncogene product, and is required for normal development in the mouse. Inappropriate stimulation of Met signal transduction induces aberrant morphogenesis and oncogenesis in mice and has been implicated in human cancer. NK1 is a naturally occurring HGF/SF splice variant composed of only the amino terminus and first kringle domain. While the biological activities of NK1 have been controversial, in vitro data suggest that it may have therapeutic value as an HGF/SF antagonist. Here, we directly test this hypothesis in vivo by expressing mouse NK1 in transgenic mice and comparing the consequent effects with those observed for mice carrying an HGF/SF transgene. Despite robust expression, NK1 did not behave as an HGF/SF antagonist in vivo. Instead, NK1-transgenic mice displayed most of the phenotypic characteristics associated with HGF/SF-transgenic mice, including enlarged livers, ectopic skeletal-muscle formation, progressive renal disease, aberrant pigment cell localization, precocious mammary lobuloalveolar development, and the appearance of mammary, hepatocellular, and melanocytic tumors. And like HGF/SF-transgenic livers, NK1 livers had higher levels of tyrosine-phosphorylated complexes associated with Met, suggesting that the mechanistic basis for the effects of NK1 overexpression in vivo was autocrine activation of Met. We conclude that NK1 acts in vivo as a partial agonist. As such, the efficacy of NK1 as a therapeutic HGF/SF antagonist must be seriously questioned.  相似文献   

16.
Induction of hepatocyte growth factor/scatter factor (HGF/SF) may be one of the critical steps in organ regeneration, wound healing, and embryogenesis. We previously reported the production of HGF/SF from various human leukemia cell lines and a high level of the growth factor in blood and bone marrow plasma from patients with various types of leukemia. We determined here the effects of hematopoietic cytokines on HGF/SF production in human leukemia cell lines, KG-1, a myeloid cell line, and RPMI-8226, a B cell line. Interferon (IFN)-γ remarkably stimulated HGF/SF production in both cell lines at concentrations of more than 0.1 or 1 IU/ml. IFN-α and IFN-β were as effective as IFN-γ in RPMI-8226 cells, but less than IFN-γ in KG-1 cells. HGF/SF gene expression in KG-1 cells was also up-regulated by IFN-γ. Granulocyte colony-stimulating factor (G-CSF), granulocyte/macrophage colony-stimulating factor (GM-CSF), interleukin (IL)-5 and IL-6 had no effect on HGF/SF production in the 2 leukemia cell lines. We also determined the effects of HGF/SF inducers known for human fibroblasts on the growth factor production in leukemia cells. Out of phorbol 12-myristate 13-acetate (PMA), cholera toxin, IL-1β, and tumor necrosis factor (TNF)-α, the former three were as effective as IFN-γ in KG-1 cells, but only TNF-α stimulated HGF/SF production in RPMI-8226 cells, whose effect was less than those of IFN-α, IFN-β, and IFN-γ. The effect of IFN-γ in KG-1 cells was synergistic with that of PMA. In contrast with the effect in leukemia cells, HGF/SF induction by IFN-γ in human skin fibroblasts was much less than that by PMA or cholera toxin. These results indicated that IFN-γ is a potent inducer of HGF/SF in human leukemia cells. This finding suggests the presence of a homeostatic control mechanism in liver regeneration and repair: hepatic injury, DNA synthesis inhibition, or apoptosis caused by IFN-γ is subsequently overcome by cytokine-induced HGF/SF, a potent promoter of liver DNA synthesis. J. Cell. Physiol. 174:107–114, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
Transforming growth factor-beta 1 (TGF-beta 1) inhibited secretion of human hepatocyte growth factor (hHGF), which is also known as scatter factor or fibroblast-derived tumor cytotoxic factor, by MRC-5 cells. The effect was detectable at as little as 10 pg/ml and was more potent than that of dexamethasone. Complete inhibition was observed after 12 h in the presence of 5 ng/ml of TGF-beta 1. Phorbol 12-myristate 13-acetate-induced secretion of hHGF from human skin fibroblasts was also suppressed by TGF-beta 1. TGF-beta 2 inhibited hHGF secretion by MRC-5 cells to the same extent as TGF-beta 1, but other growth factors such as epidermal growth factor and acidic and basic fibroblast growth factors had only a slight or null inhibitory effect.  相似文献   

18.
19.
Hepatocyte growth factor/scatter factor (HGF/SF) stimulates numerous cellular activities capable of contributing to the metastatic phenotype, including growth, motility, invasiveness, and morphogenetic transformation. When inappropriately expressed in vivo, an HGF/SF transgene induces numerous hyperplastic and neoplastic lesions. NK1 and NK2 are natural splice variants of HGF/SF; all interact with a common receptor, Met. Although both agonistic and antagonistic properties have been ascribed to each isoform in vitro, NK1 retains the full spectrum of HGF/SF-like activities when expressed as a transgene in vivo. Here we report that transgenic mice broadly expressing NK2 exhibit none of the phenotypes characteristic of HGF/SF or NK1 transgenic mice. Instead, when coexpressed in NK2-HGF/SF bitransgenic mice, NK2 antagonizes the pathological consequences of HGF/SF and discourages the subcutaneous growth of transplanted Met-containing melanoma cells. Remarkably, the metastatic efficiency of these same melanoma cells is dramatically enhanced in NK2 transgenic host mice relative to wild-type recipients, rivaling levels achieved in HGF/SF and NK1 transgenic hosts. Considered in conjunction with reports that in vitro NK2 induces scatter, but not other activities, these data strongly suggest that cellular motility is a critical determinant of metastasis. Moreover, our results demonstrate how alternatively structured ligands can be exploited in vivo to functionally dissociate Met-mediated activities and their downstream pathways.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号