首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
3 beta,20 alpha-Hydroxysteroid oxidoreductase was purified to homogeneity from fetal lamb erythrocytes. The Mr 35,000 enzyme utilizes NADPH and reduces progesterone to 4-pregnen-20 alpha-ol-3-one [Km = 30.8 microM and Vmax = 0.7 nmol min-1 (nmol of enzyme)-1] and 5 alpha-dihydrotestosterone to 5 alpha-androstane-3 beta, 17 beta-diol [Km = 74 microM and Vmax = 1.3 nmol min-1 (nmol of enzyme)-1]. 5 alpha-Dihydrotestosterone competitively inhibits (Ki = 102 microM) 20 alpha-reductase activity, suggesting that both substrates may be reduced at the same active site. 16 alpha-(Bromoacetoxy)progesterone competitively inhibits 3 beta- and 20 alpha-reductase activities and also causes time-dependent and irreversible losses of both 3 beta-reductase and 20 alpha-reductase activities with the same pseudo-first order kinetic t1/2 value of 75 min. Progesterone and 5 alpha-dihydrotestosterone protect the enzyme against loss of the two reductase activities presumably by competing with the affinity alkylating steroid for the active site of 3 beta,20 alpha-hydroxysteroid oxidoreductase. 16 alpha-(Bromo[2'-14C]acetoxy) progesterone radiolabels the active site of 3 beta,20 alpha-hydroxysteroid oxidoreductase wherein 1 mol of steroid completely inactivates 1 mol of enzyme with complete loss of both reductase activities. Hydrolysis of the 14C-labeled enzyme with 6 N HCl at 110 degrees C and analysis of the amino acid hydrolysate identified predominantly N pi-(carboxy[2'-14C]methyl)histidine [His(pi-CM)].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Studies on nitrate reductase (NAD(P)H:nitrate oxidoreductases EC 1.6.6.2) of Cyanidium caldarium revealed that the enzyme is inhibited by excess of electron donor, NADPH, reduced benzylviologen and FMN. Also dithionite, used to reduce benzylviologen and FMN, inactivates nitrate reductase: however, FMN at an optimal concentration and nitrate, added before the dithionite, protect the enzyme against this inactivation. Cyanide, cyanate and carbamyl phosphate inhibit the enzyme competitively with respect to nitrate, and Ki values are reported. Organic mercurials, 0.1 mM, act preferentially on NADPH activity, whereas Ag+ and Hg-2+ at the same concentration inactivate 80--90% of the benzylviologen and FMN activities. ADP is very poor inhibitor. Urea 4 M in 2 h destroys 90% of the NADPH activity and only 30% of the benzylviologen and FMN activities. The apparent Km values for NADPH, benzylviologen, FMN and nitrate have been determined.  相似文献   

3.
We have copurified human placental 3 beta-hydroxy-5-ene-steroid dehydrogenase and steroid 5----4-ene-isomerase, which synthesize progesterone from pregnenolone and androstenedione from fetal dehydroepiandrosterone sulfate, from microsomes as a homogeneous protein based on electrophoretic and NH2-terminal sequencing data. The affinity alkylator, 2 alpha-bromoacetoxyprogesterone, simultaneously inactivates the pregnene and androstene dehydrogenase activities as well as the C21 and C19 isomerase activities in a time-dependent, irreversible manner following first order kinetics. At four concentrations (50/1-20/1 steroid/enzyme M ratios), the alkylator inactivates the dehydrogenase activity (t1/2 = 1.5-3.7 min) 2-fold faster than the isomerase activity. Pregnenolone and dehydroepiandrosterone protect the dehydrogenase activity, while 5-pregnene-3,20-dione, progesterone, and androstenedione protect isomerase activity from inactivation. The protection studies and competitive kinetics of inhibition demonstrate that the affinity alkylator is active site-directed. Kitz and Wilson analyses show that 2 alpha-bromoacetoxyprogesterone inactivates the dehydrogenase activity by a bimolecular mechanism (k3' = 160.9 l/mol.s), while the alkylator inactivates isomerase by a unimolecular mechanism (Ki = 0.14 mM, k3 = 0.013 s-1). Pregnenolone completely protects the dehydrogenase activity but does not slow the rate of isomerase inactivation by 2 alpha-bromoacetoxyprogesterone at all. NADH completely protects both activities from inactivation by the alkylator, while NAD+ protects neither. From Dixon analysis, NADH competitively inhibits NAD+ reduction by dehydrogenase activity. Mixed cofactor studies show that isomerase binds NAD+ and NADH at a common site. Therefore, NADH must not protect either activity by simply binding at the cofactor site. We postulate that NADH binding as an allosteric activator of isomerase protects both the dehydrogenase and isomerase activities from affinity alkylation by inducing a conformational change in the enzyme protein. The human placental enzyme appears to express the pregnene and androstene dehydrogenase activities at one site and the C21 and C19 isomerase activities at a second site on the same protein.  相似文献   

4.
Glucose-6-phosphate dehydrogenase (G-6-PD) is the first enzyme in the pentose phosphate pathway. Cadmium is a toxic heavy metal that inhibits several enzymes. Zinc is an essential metal but overdoses of zinc have toxic effects on enzyme activities. In this study G-6-PD from lamb kidney cortex was competitively inhibited by zinc both with respect to glucose-6-phosphate (G-6-P) and NADP+ with Ki values of 1.066 +/- 0.106 and 0.111 +/- 0.007 mM respectively whereas cadmium was a non-competitive inhibitor with respect to both G-6-P and NADP+ Ki values of 2.028 +/- 0.175 and 2.044 +/- 0.289 mM respectively.  相似文献   

5.
The enzyme from cod fish muscle that catalyzes the irreversible decarboxylation of oxalacetate and is homogeneous by several criteria contains very significant pyruvate kinase activity. For every unit of decarboxylase activity (0.90 unit/mg) there are 235 units of pyruvate kinase activity (212 units/mg). The inability to separate the two activities by a variety of physical techniques indicates that both are due to a single enzyme protein. Improtantly, the two activities appear to take place at the same or overlapping sites on the enzyme. Phosphoenolpyruvate and 4-ethyloxalacetate are strong linear competitive inhibitors of the decarboxylase activity with respect to oxalacetate having dissociation constants of 3.2 and 10.2 muM, respectively, while 4-ethyloxalacetate is a linear competitive inhibitor of the pyruvate kinase activity with respect to phosphoenolpyruvate, Ki - 13.5 muM. In addition, both activities exhibit sigmoidal kinetics for substrates. The differential influence of effectors on substrate cooperativity for the two reactions indicates that the decarboxylase reaction may be an important tool for studying allosteric mechanisms in this enzyme.  相似文献   

6.
Glucose-6-phosphate dehydrogenase (G-6-PD) is the first enzyme in the pentose phosphate pathway. Cadmium is a toxic heavy metal that inhibits several enzymes. Zinc is an essential metal but overdoses of zinc have toxic effects on enzyme activities. In this study G-6-PD from lamb kidney cortex was competitively inhibited by zinc both with respect to glucose-6-phosphate (G-6-P) and NADP+ with Ki values of 1.066 ± 0.106 and 0.111 ± 0.007 mM respectively whereas cadmium was a non-competitive inhibitor with respect to both G-6-P and NADP+ Ki values of 2.028 ± 0.175 and 2.044 ± 0.289 mM respectively.  相似文献   

7.
Extracts of Acetobacter xylinum catalyze the phosphorylation of glycerol and dihydroxyacetone (DHA) by adenosine 5'-triphosphate (ATP) to form, respectively, L-alpha-glycerophosphate and DHA phosphate. The ability to promote phosphorylation of glycerol and DHA was higher in glycerol-grown cells than in glucose- or succinate-grown cells. The activity of glycerol kinase in extracts is compatible with the overall rate of glycerol oxidation in vivo. The glycerol-DHA kinase has been purified 210-fold from extracts, and its molecular weight was determined to be 50,000 by gel filtration. The glycerol kinase to DHA kinase activity ratio remained essentially constant at 1.6 at all stages of purification. The optimal pH for both reactions was 8.4 to 9.2. Reaction rates with the purified enzyme were hyperbolic functions of glycerol, DHA, and ATP. The Km for glycerol is 0.5 mM and that for DHA is 5 mM; both are independent of the ATP concentration. The Km for ATP in both kinase reactions is 0.5 mM and is independent of glycerol and DHA concentrations. Glycerol and DHA are competitive substrates with Ki values equal to their respective Km values as substrates. D-Glyceraldehyde and l-Glyceraldehyde were not phosphorylated and did not inhibit the enzyme. Among the nucleotide triphosphates tested, only ATP was active as the phosphoryl group donor. Fructose diphosphate (FDP) inhibited both kinase activities competitively with respect to ATP (Ki= 0.02 mM) and noncompetitively with respect to glycerol and DHA. Adenosine 5'-diphosphate (ADP) and adenosine 5'-monophosphate (AMP) inhibited both enzymic activities competitively with respect to ATP (Ki (ADP) = 0.4 mM; Ki (AMP) =0.25 mM). A. xylinum cells with a high FDP content did not grow on glycerol. Depletion of cellular FDP by starvation enabled rapid growth on glycerol. It is concluded that a single enzyme from A. xylinum is responsible for the phosphorylation of both glycerol and DHA. This as well as the sensitivity of the enzyme to inhibition by FDP and AMP suggest that it has a regulatory role in glycerol metabolism.  相似文献   

8.
The kinetic mechanism of the inhibition of alpha-thrombin by hirudin was analyzed using the hirudin-derived fragments hirudin(1-47) and hirudin(45-65). Previously, these fragments have been shown to interact with alpha-thrombin at distinct sites inhibiting thrombin-mediated clot formation. Binding to the active site the N-terminal fragment hirudin(1-47) competitively inhibits hydrolysis of the substrates Tos-Gly-Pro-Arg-NH-Mec (Tos, tosyl; NH-Mec, 4-methylcoumaryl-7-amide) and fibrinogen with Ki values of 420 +/- 18 nM and 460 +/- 25 nM, respectively. Interacting with the anion-binding site of alpha-thrombin the C-terminal fragment competitively inhibits the hydrolysis of fibrinogen with a Ki of 760 +/- 40 nM. It was found, however, that this fragment acts as a hyperbolic uncompetitive inhibitor with respect to the hydrolysis of the peptide-NH-Mec substrate. According to the Botts-Morales scheme for enzyme inhibition, the parameters Ki = 710 +/- 38 nM, K'i = 348 +/- 22 nM, as well as alpha = beta = 0.49 of thrombin inhibition by the C-terminal fragment hirudin(45-65), were obtained. The results are discussed in terms of the interaction of hirudin and thrombin.  相似文献   

9.
Hydroxymethylpyrimidine kinase, which catalyzes the conversion of 2-methyl-4-amino-5-hydroxymethylpyrimidine (hydroxymethylpyrimidine) to its monophosphate, is purified about 3300-fold to apparent homogeneity from the cell-free extracts of E. coli K-12 through four successive steps of column chromatographies. The purified enzyme gave a single protein band on polyacrylamide gel electrophoresis and its molecular weight is estimated to be 43 000-44 000. The enzyme phosphorylated each of the pyridoxine substrates, pyridoxine, pyridoxal and pyridoxamine as well as hydroxymethylpyrimidine, and the reaction gave rise to a corresponding 5'-phosphate compound. The Km values of the purified enzyme for hydroxymethylpyrimidine and for pyridoxine are 1.1.10(-4) and 6.6.10(-5) M, respectively. Pyridoxine inhibits competitively the phosphorylation of hydroxymethylpyrimidine with a Ki value of 2.7.10(-6) M and hydroxymethylpyrimidine shows the same for that of pyridoxine with a Ki value of 9.0.10(-5) M. A similarity in enzymic properties between the hydroxymethylpyrimidine kinase and an enzyme which has been characterized as pyridoxal kinase leads to the assumption that both hydroxymethylpyrimidine and pyridoxine might be phosphorylated by the same enzyme species.  相似文献   

10.
The cholesterol esterase-catalyzed hydrolysis of the water-soluble substrate p-nitrophenyl butyrate occurs via an acylenzyme mechanism, and is competitively inhibited by boronic acid transition state analog inhibitors. Accordingly, we undertook to dimensionally map the enzyme's active site via synthesis and characterization of a series of n-alkyl boronic acid inhibitors. The most potent of these is n-hexaneboronic acid, with a Ki = 13 +/- 1 microM, since inhibitor potency declines for both longer and shorter boronic acids. No inhibition is observed for methaneboronic acid and n-octaneboronic acid inhibits poorly, with a Ki of 7 mM. These results indicate that the ability of the enzyme to form tight complexes with boron-containing transition state analog inhibitors is sensitive to alkyl chain length. The trend in inhibitor potency is discussed in terms of substrate specificity of and transition state stabilization by cholesterol esterase, and has important implications for the design of optimal reversible inhibitors of the enzyme.  相似文献   

11.
The effects of modifiers (NAD+, NADH, propionaldehyde, chloral hydrate, diethylstilboestrol and p-nitrobenzaldehyde) on the hydrolysis of p-nitrophenyl (PNP) pivalate (PNP trimethylacetate) catalysed by cytoplasmic aldehyde dehydrogenase are reported. In each case a different inhibition pattern is obtained to that observed when the substrate is PNP acetate; for example, propionaldehyde and chloral hydrate competitively inhibit the hydrolysis of PNP acetate, but are mixed inhibitors with PNP pivalate. The kinetic results can be rationalized in terms of different rate-determining steps: acylation of the enzyme in the case of the pivalate but acyl-enzyme hydrolysis for the acetate. This is confirmed by stopped-flow studies, in which a burst of p-nitrophenoxide is observed when the substrate is PNP acetate, but not when it is the pivalate. PNP pivalate inhibits the dehydrogenase activity of the enzyme competitively with the aldehyde substrate; this is most simply explained if the esterase and dehydrogenase reactions occur at a common enzymic site.  相似文献   

12.
Lysosomal beta-glucosidase ('glucocerebrosidase') in peripheral blood lymphocyte and spleen extracts from normal individuals and Ashkenazi-Jewish Gaucher disease type-1 patients were investigated using several modifiers of glucosyl ceramide hydrolysis. The negatively charged lipids, phosphatidylserine and taurocholate, had differential effects on the hydrolytic rates of the normal and Gaucher disease enzymes from either source. With the normal enzyme, either negatively charged lipid (up to 1 mmol/l) increased the reaction rates, while decreasing hydrolytic rates were obtained at greater concentrations. In comparison, the peak activities of the Gaucher enzymes were observed at about 2-3 mmol/l or 5-8 mmol/l of phosphatidylserine or taurocholate, respectively. These negatively charged lipids altered only the velocity of the reactions; the apparent Km values were not affected. Taurocholate or phosphatidylserine also facilitated the interaction of the normal enzyme with conduritol B epoxide, a covalent inhibitor of the catalytic site. Compared to the normal enzyme, the Ashkenazi-Jewish Gaucher type-1 enzyme required about 5-fold greater concentrations of conduritol B epoxide for 50% inhibition. Neutral or cationic acyl-beta-glucosides were found to be competitive or noncompetitive inhibitors of the enzymes, respectively. Alkyl beta-glucosides were competitive (or linear-mixed type) inhibitors of the normal splenic or lymphocyte enzyme with competitive inhibition constants (Ki) inversely related to the chain length. With octyl and dodecyl beta-glucoside nearly normal competitive Ki values were obtained with the splenic enzymes from Gaucher patients. These Ki values were not influenced by increasing phosphatidylserine or taurocholate concentrations. In contrast, the cationic lipids, sphingosyl-1-O-beta-D-glucoside (glucosyl sphingosine) and its N-hexyl derivative, were noncompetitive inhibitors whose apparent Ki values for the normal enzyme were 30 and 0.25 mumol/l, respectively. The Ki values for these sphingosyl glucosides were about increased 5 times for the Gaucher type-1 enzymes from Ashkenazi-Jewish Gaucher disease type-1 patients. The Ki values of glucosyl sphingosine for the normal or mutant enzymes were directly related to increasing concentrations of phosphatidylserine or taurocholate. This latter site appears to be specifically altered by a mutation in the structural gene for lysosomal beta-glucosidase in the Ashkenazi-Jewish form of type-1 Gaucher disease.  相似文献   

13.
During the search for inhibitors of N-acetylneuraminic acid biosynthesis, it was shown that 3-O-methyl-N-acetylglucosamine competitively inhibits the N-acetylglucosamine kinase of rat liver in vitro with a Ki value of 17 microM. N-Acetylmannosamine kinase is inhibited non-competitively with a Ki value of 80 microM. In a human hepatoma cell line (HepG2), 3-O-methyl-N-acetyl-D-glucosamine (1 mM) inhibits the incorporation of 14C-N-acetylglucosamine and 14C-N-acetylmannosamine into cellular glycoproteins by 88% and 70%, respectively.  相似文献   

14.
The Ca(2+)-calmodulin (CaM)-dependent activation of myosin light chain kinase is inhibited by ruthenium red competitively with respect to Ca2+, with a Ki value of 8.6 microM. The binding of Ca2+ to CaM is inhibited by micromolar concentrations of ruthenium red. In the absence of Ca2+, CaM has two binding sites for ruthenium red with the dissociation constants of 0.36 and 8.7 microM, respectively. Ca2+ antagonizes the binding of ruthenium red to the low-affinity site on CaM. Binding of ruthenium red to the high-affinity site is not affected by Ca2+. The low- and high-affinity sites for ruthenium red are shown to be located in the NH2-terminal half and the COOH-terminal half of CaM, respectively. Lower concentrations of ruthenium red are needed for enzyme inactivation than for the dissociation of enzyme-CaM-Sepharose complex, suggesting these events have different Ca2+ requirements. Moreover, ruthenium red inhibits Ca(2+)-induced contraction of depolarized vascular smooth muscle in a competitive manner with respect to Ca2+. These results suggest that ruthenium red may be a new type of CaM antagonist that inhibits the binding of Ca2+ to CaM and thereby inhibits Ca(2+)-CaM-dependent enzymes and smooth muscle contraction competitively with respect to Ca2+.  相似文献   

15.
alpha-Glycerophosphate dehydrogenase (EC 1.1.99.5) in mitochondria from liver of the triiodothyronine-treated rats is competitively inhibited by phosphoenolpyruvate, glyceraldehyde 3-phosphate and 3-phosphoglycerate, the apparent Ki values for phosphoenolpyruvate being 0.76 mM at pH 7.0, 1.7 mM at pH 7.4 and 3.5 mM at pH 7.7. The apparent Ki values for glyceraldehyde 3-phosphate and 3-phosphoglycerate are also pH-dependent. Other glycolytic intermediates, such as 2-phosphoglycerate, 2,3-diphosphoglycerate, pyruvate, glucose 6-phosphate, fructose 6-phosphate and fructose 1,6-diphosphate did not alter significantly alpha-glycerophosphate dehydrogenase activity. Palmitoyl-CoA is a competitive inhibitor of this enzyme, with Ki value of about 30 micron.  相似文献   

16.
The inhibitory effect of ethylenediamine on both activities of mushroom tyrosinase (MT) at 20 °C in a 10 mM phosphate buffer solution (pH 6.8), was studied. L-DOPA and L-tyrosine were used as substrates of catecholase and cresolase activities, respectively. The results showed that ethylenediamine competitively inhibits both activities of the enzyme with inhibition constants (K(i)) of 0.18±0.05 and 0.14±0.01 μM for catecholase and cresolase respectively, which are lower than the reported values for other MT inhibitors. For further insight a docking study between tyrosinase and ethylenediamine was performed. The docking simulation showed that ethylenediamine binds in the active site of the enzyme near the Cu atoms and makes 3 hydrogen bonds with two histidine residues of active site.  相似文献   

17.
The recombinant forms of the two human isozymes of glutamate decarboxylase, GAD65 and GAD67, are potently and reversibly inhibited by molecular oxygen (Ki = 0.46 and 0.29 mM, respectively). Inhibition of the vesicle-associated glutamate decarboxylase (GAD65) by molecular oxygen is likely to result in incomplete filling of synaptic vesicles with gamma-aminobutyric acid (GABA) and may be a contributing factor in the genesis of oxygen-induced seizures. Under anaerobic conditions, nitric oxide inhibits both GAD65 and GAD67 with comparable potency to molecular oxygen (Ki = 0.5 mM). Two forms of porcine cysteine sulfinic acid decarboxylase (CSADI and CSADII) are also sensitive to inhibition by molecular oxygen (Ki = 0.30 and 0.22 mM, respectively) and nitric oxide (Ki = 0.3 and 0.2 mM, respectively). Similar inhibition of glutamate decarboxylase and cysteine sulfinic acid decarboxylase by two different radical-containing compounds (O2 and NO) is consistent with the notion that these reactions proceed via radical mechanisms.  相似文献   

18.
Spermine synthase, a propylamine transferase, which catalyses the biosynthesis of spermine from S-methyladenosylhomocystemine and spermidine has been purified to an apparent homogeneity (about 6000-fold) from bovine brain using spermine-Sepharose affinity chromatography. The enzyme preparation was free from S-adenosylmethionine decarboxylase and spermidine synthase activities. The molecular Stokes radius of the enzyme was calculated to be 4.16 nm. The enzyme has an apparent molecular weight of approximately 88 000, composing of two subunits of equal size. The enzyme showed a broad pH optimum between 7.0 and 8.0 and an acidic isoelectric point at pH 5.10. The apparent Km values for S-methyladenosylhomocysteamine was 0.6 microM and about 60 microM for spermidine. The enzyme showed strict specificity to spermidine as the propylamine acceptor. Both the reaction products, spermine and 5'-methylthioadenosine inhibited the enzyme activity, methylthioadenosine being a powerful competitive inhibitor with respect to S-methyladenosylhomocysteamine (Ki value of about 0.3 microM). Putrescine also inhibited competitively with respect to spermidine (Ki value of about 1.7 mM). Spermine synthase had no requirements for metal or other cofactors.  相似文献   

19.
The extracts of granules isolated from bovine granulocytes show elastase- and chymotrypsin-like activities, as detected with specific synthetic substrates. Extraction of these enzymes depends upon salt concentration. In the course of the present studies a 21-fold purification of the elastase-like enzyme was achieved on a (Ala)3-CH-Sepharose 4B gel. The molecular weight of the enzyme is 33 000, as determined by gel electrophoresis in the presence of sodium dodecyl sulfate. The elastase-like activity is inhibited by phenylmethylsulfonyl fluoride, soybean trypsin inhibitor, basic pancreatic inhibitor and by heparin at different rates. Elastatinal inhibits the enzyme competitively (Ki = 80 microM). The cytosol of bovine granulocytes contains a protein which strongly inhibits the elastase-like enzyme of the bovine granulocyte (Ki = 0.4 nM) as well as porcine pancreatic elastase (Ki = 11 nM).  相似文献   

20.
cGMP-dependent protein kinase contains four cGMP-binding sites which are homologous to the four cAMP-binding sites of cAMP-dependent protein kinase. The interaction of the diastereomers of adenosine 3',5'-thionophosphate, (PS)-cAMP[S] and (PR)-cAMP[S], with cGMP-dependent protein kinase has been studied. Autophosphorylation of cGMP-dependent protein kinase is stimulated by cAMP and (PS)-cAMP[S] with apparent KA values of 7 microM and 94 microM, respectively. cAMP-stimulated autophosphorylation is inhibited competitively by (PR)-cAMP[S] with a Ki value of 15 microM. The phosphorylation of the peptide substrate (Leu-Arg-Arg-Ala-Ser-Leu-Gly) is stimulated by cGMP (approx. KA 1 microM) and cAMP (approx. KA 98 microM) but neither by the (PR) nor (PS) stereoisomer of cAMP[S]. (PR)-cAMP[S] and (PS)-cAMP[S] inhibit competitively cAMP-or cGMP-stimulated phosphorylation of the peptide substrate with Ki values of 52 microM and 73 microM, respectively. (PS)-cAMP[S] stimulates the phosphorylation of the peptide substrate by an autophosphorylated enzyme. Binding of [3H]cGMP to cGMP-dependent protein kinase is inhibited by (PS)-cAMP[S] and (PR)-cAMP[S] with IC50 values of 200 microM and 15 microM, respectively. These results show that both diastereomers of cAMP[S] bind to cGMP-dependent protein kinase. (PR)-cAMP[S] has properties of a pure antagonist whereas (PS)-cAMP[S] has properties of a partial agonist. The results provide further evidence that autophosphorylation of the enzyme affects the interaction between the cGMP-binding sites and the catalytic center of the enzyme by facilitating the activation of the phosphotransferase reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号