首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Muscarinic stimulation of submucosal glands in swine trachea   总被引:1,自引:0,他引:1  
The properties of muscarinic acetylcholine receptors (mAChR) on tracheal explants and isolated submucosal gland cells were determined using [3H]quinuclidinyl benzilate ([3H]QNB) and N-[3H]methylscopolamine ([3H]NMS) as ligands. Analysis of competitive displacement of ([3H]NMS binding by pirenzepine demonstrated the presence of M1- (27 +/- 2%) and M2G- (73 +/- 2%) receptors on isolated tracheal submucosal gland cells (TSGC's) in control. Daily administration of diisopropylfluorophosphate (DFP) inhibited cholinesterase activity by greater than 95%. After 7 days of DFP treatment, [3H]QNB binding to intact TSGC's decreased from 14.2 +/- 0.6 to 6.3 +/- 0.8 fmol/10(6) cells; similarly, [3H]NMS binding fell from 8.1 +/- 1.9 to 2.0 +/- 0.8 fmol/10(6) cells. The loss of mAChR's was predominantly of the M2G subtype with the relative proportion dropping to 33%. In addition, 90% of the receptors assumed the high-affinity state for carbachol displacement of [3H]NMS. Mucus secretion was quantitated by measuring the release of 3H-labeled mucus macromolecules from explants of tracheal submucosal glands and isolated cells. Acetylcholine (ACh), 2 X 10(-5) M, stimulated mucus secretion by 2.5 and 2.3 times the basal rate, respectively. Elimination of acetylcholinesterase (AChe) by DFP increased the ACh sensitivity by 18- and 5-fold. Tracheal explants or TSGC's obtained 2 h after an in vivo DFP treatment showed a 6- and 3-fold ACh stimulation. This ACh sensitivity decreased during the continued daily dosing with DFP such that only a 1.3- and 1.1-fold ACh stimulation was apparent after 7 days of treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The effect of acetylcholine (ACh) on corticoidogenesis in primary cultured bovine adrenocortical cells was examined. One hour exposure to 10(-3) M ACh resulted in a stimulative effect on corticoidogenesis in the freshly isolated cells, and the effect of ACh grew intense during primary culture and reached the maximum on day 2. ACh showed the effect at a higher concentration than 10(-6) M. Thus the primary 2-day cultured cells were used. The corticoidogenic effect of ACh was inhibited by atropine but not by hexamethonium. The effect of ACh was dose dependent, and the extracellular Ca++ was obligatory in inducing the effect. These results suggest that the corticoidogenic effect of ACh may be due to an increase in Ca++-influx via muscarinic receptor in adrenocortical cells.  相似文献   

3.
The role of prostaglandins (PGs) in the mechanism of action of acetylcholine (ACh) on frog adrenocortical cells has been examined. Administration of a single dose of ACh (5 X 10(-5) M) to perifused frog interrenal fragments, for 20 min, stimulated the production of corticosterone, aldosterone, PGE2 and 6-keto-PGF1 alpha. In contrast ACh did not significantly alter TXB2 production. The effect of ACh could be mimicked by muscarine (10(-5) M). Conversely, nicotine (10(-6) to 10(-4) M) was totally inactive. The increase in PG biosynthesis preceded the peak of corticosteroid release. Repeated 20-min pulses of ACh (5 X 10(-5) M) or muscarine (10(-5) M) given at 130-min intervals induced a desensitization phenomenon. In presence of indomethacin (5 X 10(-6) M), the effect of ACh on PG and steroid secretion was totally abolished. In calcium-free medium, the effect of ACh on PG and corticosteroid production was completely blocked. These results indicate that, in the frog, ACh stimulates corticosteroid secretion through a PG-dependent mechanism.  相似文献   

4.
The effects of pharmacological stimulation at different levels of the beta-adrenoceptor (AR) pathway, including the receptor, the receptor-coupled Gs protein, and adenylyl cyclase, were studied by simultaneous measurements of acetylcholine (ACh) release and isometric force evoked by electric stimulation in isolated bovine trachealis. The beta-AR agonists isoproterenol (10-6 and 10-5 M) and salbutamol (10-7 to 10-5 M) significantly attenuated both ACh release and contractile force. Forskolin, at 10-6 M, significantly increased ACh release without effect on contractile force, whereas at 10-5 M it increased ACh release but significantly decreased force. Activation of Gs protein by cholera toxin (10 microg/ml) significantly attenuated both ACh release and contractile force, but its effect on ACh release was abolished by calcium-activated potassium (KCa)-channel blocker iberiotoxin (10-7 M). The KCa-channel opener NS-1619 (10-4 M) attenuated significantly both ACh release and contractile force. It is concluded that beta-AR agonists attenuate cholinergic neurotransmission in isolated bovine trachealis model by a mechanism not involving cAMP but KCa channels.  相似文献   

5.
The mechanism of the anti-beta-adrenergic action of acetylcholine (ACh) on Ca current, ICa, was examined using the tight-seal, whole-cell voltage clamp technique in single atrial myocytes from the bullfrog. Both isoproterenol (ISO) and forskolin increased ICa dose dependently. After ICa had been enhanced maximally by ISO (10(-6) M), subsequent application of forskolin (50 microM) did not further increase ICa, suggesting that ISO and forskolin increase ICa via a common biochemical pathway, possibly by stimulation of adenylate cyclase. ACh (10(-5) M) completely inhibited the effect of low doses of forskolin (2 x 10(-6) M), as well as ISO, but it failed to block the effects of high doses of forskolin (greater than 5 x 10(-5) M). Intracellular application of cyclic AMP (cAMP) also increased ICa. ACh (10(-5) M) failed to inhibit this cAMP effect, indicating that the inhibitory action of ACh occurs at a site proximal to the production of cAMP. ACh (10(-5) M) also activated an inwardly rectifying K+ current IK(ACh). Intracellular application of a nonhydrolyzable GTP analogue, GTP gamma S (5 X 10(-4) M), activated IK(ACh) within several minutes; subsequent application of ACh (10(-5) M) did not increase IK(ACh) further. These results demonstrate that a GTP-binding protein coupled to these K+ channels can be activated maximally by GTP gamma S even in the absence of ACh. Intracellular application of GTP gamma S also strongly inhibited the effect of ISO on ICa in the absence of ACh. Pertussis toxin (IAP) completely prevented both the inhibitory effect of ACh on ICa and the ACh-induced activation of IK(ACh). GTP gamma S (50 microM-1 mM) alone did not increase ICa significantly; however, when ISO was applied first, GTP gamma S (5 x 10(-4) M) gradually inhibited the ISO effect on ICa. These results indicate that ACh antagonizes the effect of ISO on ICa via a GTP-binding protein (Gi and/or Go). This effect may be mediated through a direct inhibition by the alpha-subunit of Gi which is coupled to the adenylate cyclase.  相似文献   

6.
The effects of acetylcholine (ACh) were examined on the naturally occurring slow action potentials (APs) of the isolated, organ-cultured, spontaneously beating sinoatrial (SA) node of the rabbit, in the presence or absence of pertussis toxin. The sensitivity of the SA-node preparations to ACh was not altered after 24 h incubation in organ culture medium. Activation of the muscarinic receptor hyperpolarized the cells and reduced the frequency of spontaneous activity at low concentrations (1 X 10(-6) and 3 X 10(-6) M), and completely abolished automaticity at higher concentrations (1 X 10(-5) M). However, stimulated activity was maintained. Increased concentrations (1 X 10(-4) M) of ACh completely abolished excitability. When the SA-node preparations were cultured in the presence of 0.5 micrograms/mL pertussis toxin, concentrations of ACh as high as 1 X 10(-4) M had no effect on the AP parameters and frequency of spontaneous activity. The results indicate that inactivation of G proteins by pertussis toxin caused inhibition of the ACh effects on the automaticity of the SA node. In addition, the blocking effect of ACh to the naturally occurring slow APs was also inhibited by pertussis toxin. We conclude that in the rabbit SA node, the effects of ACh on automaticity and on the slow channels are mediated by G protein.  相似文献   

7.
The influence of ethylene and ethylene modulators on the in vitro organogenesis of tomato was studied using a highly regenerating accession of the wild tomato Solanum pennellii and an F1 plant resulting from a cross between Solanum pennellii and Solanum lycopersicum cv. Anl27, which is known to have a low regeneration frequency. Four ethylene-modulating compounds, each at four levels, were used, namely: cobalt chloride (CoCl2), which inhibits the production of ethylene; AgNO3 (SN), which inhibits ethylene action; and Ethephon and the precursor 1-aminocyclopropane-1-carboxylic acid (ACC), which both promote ethylene synthesis. Leaf explants of each genotype were incubated on shoot induction medium supplemented with each of these compounds at 0, 10 or 15 days following bud induction. The results obtained in our assays indicate that ethylene has a significant influence on tomato organogenesis. Concentrations of ethylene lower than the optimum (according to genotype) at the beginning of the culture may decrease the percentage of explants with buds (B), produce a delay in their appearance, or indeed inhibit bud formation. This was observed in S. pennellii and the F1 explants cultured on media with SN (5.8–58.0 μM) as well as in the F1 explants cultured on medium with 21.0 μM CoCl2. The percentage of explants with shoots (R) and the mean number of shoots per explant with shoots (PR) also diminished in media that contained SN. Shoots isolated from these explants were less developed compared to those isolated from control explants. On the other hand, ethylene supplementation may contribute to enhancing shoot development. The number of isolable shoots from S. pennellii explants doubled in media with ACC (9.8–98.0 μM). Shoots isolated from explants treated with ethylene releasing compounds showed a higher number of nodes when ACC and Ethephon were added at 10 days (in F1 explants) or at 15 days (in S. pennellii) after the beginning of culture. Thus, the importance of studying not only the concentration but also the timing of the application of regulators when developing regeneration protocols has been made manifest. An excess of ethylene supplementation may produce an inhibitory effect, as was observed when using Ethephon (17.2–69.0 μM). These results show the involvement of ethylene in tomato organogenesis and lead us to believe that ethylene supplementation may contribute to enhancing regeneration and shoot development in tomato.  相似文献   

8.
Rat striatal slices prelabelled with [3H]choline were superfused with dopamine D-1 and D-2 agonists and antagonists, separately and in combination, during measurement of [3H]acetylcholine (ACh) release. SKF38393 (D-1 agonist), 10(-7)-10(-4) M, and SCH23390 (D-1 antagonist), 10(-7)-10(-5) M, produced a dose-dependent increase in [3H]ACh release when given separately. The increased [3H]ACh release induced by either drug could not be attenuated by sufficient L-sulpiride to block D-2 receptors. Yet both SKF38393, 10(-6)-10(-5) M, and SCH23390, 10(-6)-10(-5) M, were able to partially or fully overcome the [3H]ACh release-depressant effect of cosuperfused LY171555 (D-2 agonist), 10(-6) M. This suggests that a functional antagonism regarding striatal ACh release exists between D-1 and D-2 dopaminergic receptor-mediated mechanisms, but that D-1 modulation of local ACh release does not occur at the level of the recognition site of the striatal D-2 receptor. Finally, although attenuation of the increased release of striatal [3H]ACh induced by 10(-5) M SCH23390 by SKF38393 was seen, it is possible that such functional antagonism is not mediated by exclusively D-1 dopaminergic means.  相似文献   

9.
The purpose of this study was to determine whether vasoactive intestinal peptide (VIP) might have a presynaptic modulatory effect at cholinergic terminals in the rat hippocampal formation. The exposure of rat hippocampal slices to VIP increased [3H]acetylcholine ([3H]ACh) synthesis from the precursor [3H]choline when tissue was incubated in normal or in high K+ medium; the maximal effect was apparent at 10(-8) M VIP and 10(-7) M VIP, respectively. Also, 10(-7) M VIP increased the activity of choline acetyltransferase (ChAT) in a hippocampal homogenate system. The increased synthesis by hippocampal slices was not the result of a VIP-induced alteration in either the basal release of ACh or the uptake of choline via the high-affinity uptake system. The increase in ACh synthesis induced by VIP in hippocampal slices was not associated with either adenylate cyclase or protein kinase C second messenger systems. There was no correlation between the effect of VIP on cyclic AMP production with that on ACh synthesis; also, forskolin, an activator of adenylate cyclase that increased cyclic AMP production 3.5-fold, did not mimic the effect of VIP on ACh synthesis. Similarly, there was no effect of the protein kinase C activator, phorbol myristate acetate, on ACh synthesis in hippocampal slices. However, the effect of VIP to increase ACh synthesis was not evident in the absence of extracellular calcium, suggesting that the effect of VIP is mediated by a calcium-requiring mechanism. The results suggest that, in the rat hippocampus, VIP has a presynaptic action at cholinergic terminals that results in enhanced synthesis of ACh, possibly by an action that alters ChAT activity.  相似文献   

10.
1. Kinetics of activation and desensitization phases of the acetylcholine (ACh)-induced chloride current (ICI) were studied using isolated single neurons of Japanese land snail and the "concentration clamp" technique. 2. The dose-response curve for the peak ICI gave a dissociation constant of 7.1 x 10(-6) M and a Hill coefficient of 1.8. 3. The current-voltage relationship was linear in the voltage range examined (-60 to +10 mV) and the reversal potential (EACh) was -7.2 +/- 1.5 mV (N = 10). The value was close to the calculated equilibrium potential for chloride ions (ECI). 4. Both activation and desensitization phases of the ACh-induced ICI consisted of a single exponential at concentrations less than 3 x 10(-6) M and a double exponential at higher concentrations. The time constants of both phases decreased with increasing ACh concentrations but showed no potential dependency. 5. The recovery from desensitization of the ICI induced by 5 x 10(-6) M ACh proceeded double exponentially, with time constants of 11 and 114 sec at a holding potential of -30 mV. 6. Noise analysis was performed on a steady-state current induced by 3 x 10(-7) to 2 x 10(-6) M ACh. The mean open time was about 60 msec at 10(-6) M ACh and the single-channel conductance was 14 PS. 7. These results suggest that the ACh receptor-Cl channel complex in snail neurons has two binding sites with the dissociation constant of 7.1 x 10(-6) M and is rapidly activated and desensitized to a steady level in the presence of the agonist.  相似文献   

11.
In atrial muscle, acetylcholine (ACh) decreases the slow inward current (Isi) and increases the time-independent outward K+ current. However, in ventricular muscle, ACh produces a marked negative inotropic effect only in the presence of positive inotropic agents that elevate cyclic adenosine monophosphate (AMP). A two-microelectrode voltage-clamp method was used on cultured reaggregates of cells from 16--20-d-old embryonic chick ventricles to determine the effects of ACh on Isi and outward current during beta-adrenergic stimulation. Only double penetrations displaying low-resistance coupling were voltage-clamped. Cultured reaggregates are advantageous because their small size (50-- 250 microns) permits better control of membrane potential and adequate space clamp. Tetrodotoxin (10(-6) M) and a holding potential of --50 to --40 mV were used to eliminate the fast Na+ current. Depolarizing voltage steps above --40 mV caused a slow inward current to flow that was sensitive to changes in [Ca]o and was depressed by verapamil (10(- 6) M). Maximal Isi was obtained at --10 mV and the reversal potential was about +25 mV. Isoproterenol (10(-6) M) increased Isi at all clamp potentials. Subsequent addition of ACh (10(-6) M) rapidly reduced Isi to control values (before isoproterenol) without a significant effect on the net outward current measured at 300 ms. The effects of ACh were reversed by muscarinic blockade with atropine (5 X 10(-6) M). We conclude that the anti-adrenergic effects of ACh in ventricular muscle are mediated by a reduction in Ca2+ influx during excitation.  相似文献   

12.
The site of neuromuscular blockade induced by polymyxin B and rolitetracycline was studied on isolated nerve and nerve-muscle preparations. Polymyxin B (1.8 X 10(-4) M) was equipotent to lidocaine as a local anaesthetic on a frog desheathed nerve preparation, while rolitetracycline (up to 3.6 X 10(-3)M) had no local anaesthetic effect. Polymyxin B (6 X 10(-5) M) and rolitetracycline (7 X 10(-4) M) blocked by 50% the response of rat diaphragm induced by phrenic nerve stimulation, but did not decrease the amount of acetylcholine (ACh) released from this preparation during nerve stimulation. Both antibiotics depressed the response of the rat diaphragm to inject ACh, and this response was more sensitive to inhibition by the drugs than was the response to nerve stimulation. With rolitetracycline, a concentration that blocked the response to nerve stimulation by 50% inhibited the response to injected ACh by 85%, and this relationship was similar to that with d-tubocurarine; however, polymyxin B was relatively more effective than d-tubocurarine in inhibiting the effect of ACh. Polymyxin B (1-1.5 X 10(-4) M) but not rolitetracycline (1 X 10(-3) M) depressed the response of the diaphragm to direct muscle stimulation. It is concluded that polymyxin B and rolitetracycline block neuromuscular transmission predominatly by an effect to depress the muscle's sensitivity to ACh; polymyxin B probably acts by an effect similar to that of local anaesthetics, while rolitetracycline probably acts by an effect similar to that of d-tubocurarine.  相似文献   

13.
Voltage-clamp experiments have been performed on frog atrial preparations in order to study the mechanism of the inotropic effect of acetylcholine (ACh) at various concentrations. The amplitude of the slow inward current (Is) is reduced even at low ACh concentrations; such low concentrations have little or no effect on potassium permeability. Dose-effect relationships for Is inhibition (Is/Is max) by ACh show a half amplitude dose (K0.5 around 8 X 10(-8) M ACh. The reduction of Is is attributed largely to a decrease of the maximal conductance of the slow channel (gs). Steady-state activation and inactivation parameters are not affected by ACh. Experiments in a Na-free solution (Na replaced by Li ions) or in a Ca-free solution (with EGTA) indicate that the "slow sodium current" is more sensitive to ACh than the "slow Ca current", although these two currents both seem to flow through the slow channel. The decrease of the phasic component of contraction observed in the presence of ACh is very well correlated with the decrease of Is (K0.5 = 8 X 10(-8) M ACh), while the increase of the tonic tension may be related to the outward potassium current induced by high concentrations of ACh. The significant difference between the half amplitude dose (K0.5) observed in the dose effect curves with ACh for Is inhibition (K0.5 = 8 X 10(-8) M) and for ACh-induced extra-current (K0.5 - 10(-6) M) may indicate the presence of two muscarinic receptors.  相似文献   

14.
Ca2(+)-mobilizing receptors of gastrulating chick embryo   总被引:1,自引:0,他引:1  
1. Gastrulating chick embryo cells (stages 3-5 by HH) possess Ca2(+)-mobilizing receptors for ACh and ATP; insulin and noradrenaline have a weaker effect on [Ca2+]i mobilization. 2. The ED50 value for ACh is 4 (+/- 0.5) X 10(-6) M and for ATP 20 (+/- 5) X 10(-6) M. 3. Addition of ACh and ATP to dissociated chick embryo cells causes rapid accumulation of IP3. 4. The stimulatory effects of ACh and ATP on [Ca2+]i mobilization and IP3 rapid formation are both additive.  相似文献   

15.
To assess the effect of endothelium-derived relaxing factor (EDRF) on diaphragmatic vascular resistance at rest and during contractions, we studied an in situ isolated diaphragm preparation in anesthetized and mechanically ventilated dogs. The arterial supply of the left diaphragm (phrenic artery) was catheterized and perfused with arterial blood at a fixed flow rate. Drugs were infused through a side port of the arterial catheter at 1/100th of the phrenic arterial flow. The inferior phrenic vein was catheterized to complete the isolation from the systemic circulation. Three sets of experiments were performed. In set 1 (n = 3), we infused endothelium-dependent (acetylcholine, ACh) and endothelium-independent (sodium nitroprusside, SNP) dilators at increasing concentrations. ACh and SNP infusion elicited a dose-dependent decline in phrenic vascular resistance (Rphr) at concentrations greater than 10(-8) M and 0.50 micrograms/ml, respectively. In set 2 (n = 15), we infused an inhibitor of EDRF synthesis and release, L-argininosuccinic acid (ArgSA), at increasing concentrations (10(-4), 3 x 10(-4), and 6 x 10(-4) M). ArgSA produced a dose-dependent increase in Rphr. Infusion of another EDRF inhibitor (NG-nitro-L-arginine, LNA, 6 x 10(-4) M) elicited increase in Rphr similar to that induced by ArgSA. In set 3 (n = 25), we infused ArgSA or LNA (6 x 10(-4) M) simultaneously with ACh and SNP and during sustained (2-Hz) contractions of the diaphragm. Both ArgSA and LNA completely reversed ACh vasodilation, whereas SNP vasodilation was reversed by 26 and 11%, respectively. ArgSA or LNA infusion during contractions reversed vasodilation by 48 and 52%, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Vesamicol [2-(4-phenylpiperidino)cyclohexanol, formerly AH5183] at a concentration of 10 μM reduced by 16–20% the amount of vesicle-bound ACh in intact pieces of Torpedo electric organ (isolated prisms). When [14C]acetate was applied to prisms in the presence of 10 μM vesamicol, vesicular translocation of newly synthesized [14C]ACh was inhibited by 40%. During short trains of field shocks given at 10 Hz to the tissue, vesamicol inhibited by 93% the release of [14C]ACh, but left the release of prestored ACh unaltered. In spite of these alterations, 10 μM vesamicol did not impair nerve-electroplaque transmission, even after prolonged electrical stimulation and during a recovery period. It is concluded that in the Torpedo electric organ the actions of vesamicol on ACh metabolism have apparently little or no effect on the efficiency of synaptic transmission.  相似文献   

17.
Ouabain (5 x 10(-8)-5 x 10(-4) M) was confirmed to cause a dose-dependent increase in [3H]acetylcholine ([3H]ACh) release, cytosolic free Ca2+ concentration ([Ca2+]i), and 22Na+ uptake in cerebrocortical synaptosomes of rats in the presence of extracellular Ca2+. Ouabain also caused a dose-dependent decrease in membrane potential. In a low-Na+ (10 mM) medium, ouabain failed to increase [3H]ACh release and [Ca2+]i. Tetrodotoxin (10(-6) M) had no effect on the ouabain-induced increase in both [3H]ACh release and [Ca2+]i but abolished the increase in 22Na+ uptake and partially inhibited the depolarizing effect. Verapamil (10(-6)-5 x 10(-4) M) inhibited the ouabain-induced increase in both [3H]ACh release and [Ca2+]i in a dose-dependent manner. Removal of extracellular Ca2+ abolished the effect of ouabain on [Ca2+]i but not on [3H]ACh release and 22Na+ uptake, regardless of the presence or absence of EGTA. In the absence of extracellular Ca2+, 10 mM Mg2+ blocked ouabain-induced [3H]ACh release, which was resistant to verapamil. These results suggest that ouabain can increase ACh release from synaptosomes without the preceding increases in intracellular Ca2+ and/or Na+ content. It seems likely that the removal of extracellular Ca2+ unmasks mechanisms of ouabain action different from those operating in the presence of Ca2+.  相似文献   

18.
19.
The direct effects of atrial natriuretic factor (ANF) and acetylcholine (ACh) on isolated guinea pig ventricular papillary muscle were studied. ANF (3 x 10(-9) - 3 x 10(-7) M), a cardiogenic hormone, had no significant electrical or mechanical effects on guinea pig papillary muscle driven at a frequency of 60 beats/min in normal (4 mM) and high [K]0 (27 mM) Tyrode solutions. On the other hand, ACh (3 x 10(-8) - 3 x 10(-7) M) caused a significant shortening of action potential duration and the contractile force showed no change or a slight decrease. At high concentration (5 microM), ACh reduced action potential durations at 50% and 90% repolarization (APD50 and APD90) by 10.5 +/- 2.1% and 12.4 +/- 1.8%, respectively, but the contractile force was slightly increased by 9.8 +/- 1.2%. In eleven of twenty-six preparations, spontaneous activity occurred and intermingled with driven activity. The ectopic rhythms were suppressed by ACh (1-5 microM). The changes in electrical but not mechanic activity induced by ACh were suppressed in the presence of five micromolar atropine. These results reveal that, in guinea pig papillary muscle, ANF had no direct chronotropic or inotropic effect. ACh may reduce APD and spontaneous discharges through an activation of muscarinic receptors but enhance twitch tension through other mechanisms.  相似文献   

20.
Acetylcholine (ACh) causes contraction of Aplysia buccal muscles E1 and I5, and serotonin (5-hydroxytryptamine, 5-HT) enhances ACh-elicited contractions of these muscles. Possible roles of calcium influx in mediating these responses were examined by studying influx of 45Ca++. 5-HT increased calcium influx into both I5 and E1. Maximal influx occurred at 10(-6) M 5-HT and the increased influx could be sustained in the presence of 5-HT for at least 10 min. ACh also caused calcium influx, and calcium influx increased approximately in proportion to log[ACh] from 10(-5) M to 10(-3) M ACh. 5-HT and ACh probably bring about calcium influx by different mechanisms since the effect of ACh was additive to a maximal 5-HT response, and 10(-4) M hexamethonium bromide inhibited the increased influx caused by ACh but did not affect influx caused by 5-HT. Cyclic AMP analogues and forskolin neither caused an increase in calcium influx nor an increase in the influx caused by ACh. The data support a model in which ACh-elicited contractions of I5 and E1 are due primarily to calcium entry across the extracellular membrane, and 5-HT can "load" an intracellular site by a mechanism different from that activated by ACh. The data do not support a role for cyclic AMP in mediating the calcium influx response to 5-HT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号