首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The DXS255 locus at Xp11.22 is highly polymorphic due to a 26-bp variable number of tandem repeats (VNTR) motif. In previous studies, one of the MspI sites flanking the VNTR manifested a correlation between methylation and X chromosome inactivation. Here we show, by DNA sequence analysis, that this MspI site is located within the CpG island at the 5' end of a LINE-1 element, which is 2.5 kb from the VNTR. The methylation status of the CpG island was assessed in Southern blotting experiments using the methylation-sensitive enzymes HpaII, HhaI, and BssHII. All these sites were completely methylated on active X chromosomes, consistent with previously reported findings of full methylation of LINE-1 elements throughout the genome. However, on inactive X chromosomes these sites were predominantly unmethylated, although patterns were found to be heterogeneous. The results suggest that LINE-1 elements on the inactive X chromosome are not suppressed by full methylation of their CpG islands. The differential methylation of the DXS255 CpG island provides the basis for a highly informative X inactivation analysis system.  相似文献   

2.
R M Brown  N J Fraser  G K Brown 《Genomics》1990,7(2):215-221
Consistent differences in methylation of particular cytosine residues in the DNA of active and inactive X chromosomes can be used for rapid, direct analysis of X-inactivation patterns in different female tissues. We have studied methylation of the highly polymorphic DXS255 locus in tissues from patients with deficiency of the E1 alpha subunit of the pyruvate dehydrogenase complex in whom the results can be correlated directly with total enzyme activity, levels of immunoreactive protein, and patterns of cell mosaicism. The results confirm that methylation of the DXS255 locus correlates with X-chromosome expression. In patients and normal controls, the pattern of X inactivation varied widely from tissue to tissue and often deviated markedly from a 50:50 proportion. These deviations are likely to reflect small numbers of tissue-specific stem cells at the time of random X inactivation and cannot be taken alone as evidence for selection or "nonrandom" inactivation.  相似文献   

3.
The Wiskott-Aldrich syndrome (IMD2) is an X-linked recessive immunodeficiency. Initial linkage studies mapped the disease locus on the proximal short arm of the X chromosome, a localization which was further refined to the interval framed by DXS7 and DXS14. We have recently shown that a novel hypervariable locus, DXS255, is very closely linked to the disease gene and is likely to be, at present, the marker closest to the disease gene. The analysis of one family, however, displayed conflicting linkage results, as all of the informative markers situated in the Xp11-q22 region appeared to recombine with the disease locus in two "phase-known" meioses. We have shown by X-inactivation studies that the segregation of the disease through three obligate carrier females in this family originates from a grandpaternal mosaicism, which accounts for the apparent recombinations. This shows that germ-line mosaicism can simulate genetic heterogeneity in linkage studies.  相似文献   

4.
Twelve families with Wiskott-Aldrich syndrome (WAS) were studied by linkage analysis using 10 polymorphic marker loci from the X-chromosome pericentromeric region. The results confirm close linkage of WAS to the DXS14, DXS7, TIMP, and DXZ1 loci and are consistent with previous data suggesting that WAS maps to the proximal Xp and is flanked by the DXS14 and DXS7 loci. The strongest linkage (Z = 10.19 at theta = 0.00) was found to be between WAS and the hypervariable DXS255 locus, a marker locus already mapped between DXS7 and DXS14 and which was informative for all meioses included in this analysis. Linkage of the WAS to two pericentromeric Xq loci, DXS1 and PGK1, was also established. On the basis of these results, accurate predictive testing should now be feasible in the majority of WAS families.  相似文献   

5.
We report a high-resolution genetic linkage map of the region Xp11.4 to Xq13.3, spanning the centromere of the X chromosome and encompassing approximately 30 cM. This 18-locus map is composed of 11 intervals that are spaced on average about 3 cM apart. Markers incorporated into the map together detect 19 distinct polymorphisms and include five genes (TIMP, SYP, AR, CCG1, PGK1), the OATL1 cluster, the hypervariable locus DXS255, the centromeric locus DXZ1, and 10 other anonymous DNA segments. Given that this map spans roughly one-fifth of the length of the X chromosome and includes many loci currently used in both diagnosis and mapping of X-linked disorders, it should be useful for genetic counseling and for guiding efforts to clone disease genes in this region.  相似文献   

6.
A recombinant chromosome in a male affected with X-linked congenital stationary night blindness (CSNB1) provides new information on the location of the CSNB1 locus. A four-generation family with five males affected with X-linked CSNB was analyzed with five polymorphic markers for four X-chromosome loci spanning the region OTC (Xp21.1) to DXS255 (Xp11.22). Four of the males inherited the same X chromosome; one male inherited a chromosome that from OTC to DXS7, inclusive, was derived from the normal X chromosome of his unaffected grandfather and that from a location between DXS7 and DXS426 proximally was derived from the chromosome carrying the CSNB1 locus. This recombinant maps the CSNB1 locus in this family to a region on the short arm of the X chromosome proximal to the DXS7 locus.  相似文献   

7.
The Wiskott-Aldrich syndrome (WAS) is an X-linked recessive genetic disease in which the basic molecular defect is unknown. We previously located the WAS gene between two DNA markers, DXS7 (Xp11.3) and DXS14 (Xp11), and mapped it to the proximal short arm of the human X chromosome (Kwan et al., 1988, Genomics 3:39-43). In this study, further mapping was performed on 17 WAS families with two additional RFLP markers, TIMP and DXS255. Our data suggest that DXS255 is closer to the WAS locus than any other markers that have been previously described, with a multipoint maximum lod score of Z = 8.59 at 1.2 cM distal to DXS255 and thus further refine the position of the WAS gene on the short arm of the X chromosome. Possible locations for the WAS gene are entirely confined between TIMP (Xp11.3) and DXS255 (Xp11.22). Use of these markers thus represents a major improvement in genetic prediction in WAS families.  相似文献   

8.
The mechanism of profound generalized iduronate sulfatase (IDS) deficiency in a developmentally delayed female with clinical Hunter syndrome was studied. Methylation-sensitive RFLP analysis of DNA from peripheral blood lymphocytes from the patient, using MspI/HpaII digestion and probing with M27 beta, showed that the paternal allele was resistant to HpaII digestion (i.e., was methylated) while the maternal allele was digested (i.e., was hypomethylated), indicating marked imbalance of X-chromosome inactivation in peripheral blood lymphocytes of the patient. Similar studies on DNA from maternal lymphocytes showed random X-chromosome inactivation. Among a total of 40 independent maternal fibroblast clones isolated by dilution plating and analyzed for IDS activity, no IDS- clone was found. Somatic cell hybrid clones containing at least one active human X chromosome were produced by fusion of patient fibroblasts with Hprt- hamster fibroblasts (RJK88) and grown in HAT-ouabain medium. Methylation-sensitive RFLP analysis of DNA from the hybrids showed that of the 22 clones that retained the DXS255 locus (M27 beta), all contained the paternal allele in the methylated (active) form. No clone was isolated containing only the maternal X chromosome, and in no case was the maternal allele hypermethylated. We postulate from these studies that the patient has MPS II as a result of a mutation resulting in both the disruption of the IDS locus on her paternal X chromosome and unbalanced inactivation of the nonmutant maternal X chromosome.  相似文献   

9.
Summary Linkage between X-linked congenital stationary night blindness (CSNB1) and seven markers on the X chromosome was investigated in a large four-generation Albertan kindred. We detected significant linkage between the CSNB1 locus and the locus DXS255 (maximum lod score = 6.73 at a recombination fraction of 6%; confidence interval of 1% to 18%), which anchors the CSNB1 locus to the proximal region near p11.22 on the short arm of the X chromosome.  相似文献   

10.
The locus DXS98, detected with the 1.5-kb anonymous probe p4D-8, was recently shown to be closely linked and proximal to the locus for the fragile X syndrome, with theta = .05 at lod = 3.406, by utilizing a limited number of meioses informative for a two-allele MspI RFLP. Because DXS98 may be the closest available marker to the fragile X locus (FRAXA), we sought to increase its utility for linkage studies by extending its PIC and confirming its localization to Xq27, proximal to FRAXA. We have isolated 15 kb of genomic DNA (lambda 4D8-3) from the DXS98 locus by using p4D-8 to screen a genomic phage library containing partial Sau3A-digested human DNA. Three additional RFLPs for the enzymes BglII and XmnI were found by using the entire lambda 4D8-3 as probe. Combined heterozygosity for the four RFLPs in 25 unrelated females was 48%, as compared with only 28% when the MspI RFLP alone was used. In situ hybridization of unique sequences from lambda 4D8-3 was performed on metaphase chromosomes of lymphocytes and lymphoblasts from patients with the fragile X syndrome. Grains on the X chromosome were significantly clustered at band Xq27. Following fragile site induction, all nine grains in the q27-28 region were proximal to the fragile site. Confirmation of the location of DXS98 proximal to FRAXA and the new RFLPs at this locus make DXS98 more useful for linkage analysis and physical mapping in the region of the fragile X mutation.  相似文献   

11.
Aland eye disease: linkage data   总被引:4,自引:0,他引:4  
M Schwartz  T Rosenberg 《Genomics》1991,10(2):327-332
A large Danish family with Aland Island eye disease (AIED) was studied by linkage analysis using 16 polymorphic DNA markers covering the whole X chromosome. Positive lod scores were found for marker loci at the proximal part of the short arm of the X chromosome, DXS255 and TIMP (Zmax = 3.93 and 3.18 at theta = 0.0), suggesting an assignment of the locus for AIED to this part of the X chromosome. Recombination was observed with the locus DXS7 as well as with other loci distal to DXS7. These results are not in agreement with the deletion presented previously by D-A. M. Pillers et al. (1990, Am. J. Med. Genet. 36: 23-28), which mapped AIED to Xp21.  相似文献   

12.
Summary Two sisters with premature menopause and a small deletion of the long arm of one of their X chromosomes [del (X)(pterq26.3:)] were investigated with polymorphic DNA probes near the breakpoint. The deleted chromosome retained the factor IX (F9) locus and the loci DXS51 (52A) and DXS100 (pX45h), which are proximal to F9. However, the factor VIII (F8) locus was not present, nor were two loci tightly linked to this locus, DXS52 (St14) and DXS15 (DX13) This deletion refines the location of the F9 locus to Xq26 or to the interface Xq26/Xq27, thus placing it more proximally than has been previously reported. The DNA obtained from these patients should be valuable in the mapping of future probes derived from this region of the X chromosome.  相似文献   

13.
In a large family with X-linked retinitis pigmentosa 2 (XLRP2), we reexamined 7 obligate carrier females and 6 daughters of obligate carriers, whose linkage relationships suggested that they carried the XLRP2 gene. The phenotype varied from totally normal eyes through mild retinal changes to complete loss of vision. The X-inactivation analysis was carried out with the highly informative probe M27 on DNA from blood lymphocytes. This probe detects a locus DXS 255 that is differentially methylated on the active and inactive X chromosomes. In 5 blind heterozygotes (aged 43 to 68 years), we found that the X chromosome carrying the RP2 gene was methylated and active in nearly all their cells. The opposite X inactivation pattern was found in a carrier female (aged 45 years) who gave normal findings on eye examination. Carriers with less skewed X inactivation had a less severe clinical outcome. However, we found little or no correlation between their phenotypes and the methylation status of their X chromosomes. Our results suggest that it may be possible to develop a predictive test that could identify cases with severe outcome and perhaps cases with normal outcome.  相似文献   

14.
A kindred is described in which X-linked nonspecific mental handicap segregates together with retinitis pigmentosa. Carrier females are mentally normal but may show signs of the X-linked retinitis pigmentosa carrier state and become symptomatic in their later years. Analysis of polymorphic DNA markers at nine loci on the short arm of the X chromosome shows that no crossing-over occurs between the disease and Xp11 markers DXS255, TIMP, DXS426, MAOA, and DXS228. The 90% confidence limits show that the locus is in the Xp21-q21 region. Haplotype analysis is consistent with the causal gene being located proximal to the Xp21 loci DXS538 and 5'-dystrophin on the short arm of the X chromosome. The posterior probability of linkage to the RP2 region of the X chromosome short arm (Xp11.4-p11.23) is .727, suggesting the possibility of a contiguous-gene-deletion syndrome. No cytogenetic abnormality has been identified.  相似文献   

15.
16.
Congenital stationary night blindness (CSNB) is a nonprogressive retinal disorder characterized by night blindness, nystagmus, myopia, a variable decrease in visual acuity, an abnormal electroretinographic response, and a disturbance in dark adaptation. Two forms of X-linked CSNB have been defined, complete CSNB in which rod function is extinguished, and incomplete CSNB in which rod function is reduced but not extinguished, as seen by electroretinography and dark adaptometry. In studying a large family of Mennonite ancestry, we have confirmed linkage between the locus (CSNB2) for incomplete CSNB and genetic markers in the Xp11 region. In particular, lod scores of 12.25 and 15.26 at zero recombination were observed between CSNB2 and the markers DXS573 and DXS255. Detailed analysis of critical recombinant chromosomes in this extended family have refined the minimal region for the CSNB2 locus to the interval between DXS6849 and DXS8023 in Xp11.23. Received: 5 November 1997 / Accepted: 23 February 1998  相似文献   

17.
Multipoint linkage analysis in Menkes disease.   总被引:1,自引:0,他引:1       下载免费PDF全文
Linkage analyses were performed in 11 families with X-linked Menkes disease. In each family more than one affected patient had been diagnosed. Forty informative meioses were tested using 11 polymorphic DNA markers. From two-point linkage analyses high lod scores are seen for DXS146 (pTAK-8; maximal lod score 3.16 at recombination fraction [theta] = .0), for DXS1 (p-8; maximal lod score 3.44 at theta = .0), for PGK1 (maximal lod score 2.48 at theta = .0), and for DXS3 (p19-2; maximal lod score 2.90 at theta = .0). This indicates linkage to the pericentromeric region. Multilocus linkage analyses of the same data revealed a peak for the location score between DXS146(pTAK-8) and DXYS1X(pDP34). The most likely location is between DXS159 (cpX289) and DXYS1X(pDP34). Odds for this location relative to the second-best-supported region, between DXS146(pTAK-8) and DXS159 (cpX289), are better than 74:1. Visualization of individual recombinant X chromosomes in two of the Menkes families showed the Menkes locus to be situated between DXS159(cpX289) and DXS94(pXG-12). Combination of the present results with the reported absence of Menkes symptoms in male patients with deletions in Xq21 leads to the conclusion that the Menkes locus is proximal to DXSY1X(pDP34) and located in the region Xq12 to Xq13.3.  相似文献   

18.
During a routine prenatal diagnosis we detected a female fetus with an apparent terminal deletion of an X chromosome with a karyotype 46,X,del(X)(q25); the mother, who later underwent premature ovarian failure, had the same Xq deletion. To further delineate this familial X deletion and to determine whether the deletion was truly terminal or, rather, interstitial (retaining a portion of the terminal Xq28), we used a combination of fluorescence in situ hybridization (FISH) and Southern analyses. RFLP analyses and dosage estimation by densitometry were performed with a panel of nine probes (DXS3, DXS17, DXS11, DXS42, DXS86, DXS144E, DXS105, DXS304, and DXS52) that span the region Xq21 to subtelomeric Xq28. We detected a deletion involving the five probes spanning Xq26-Xq28. FISH with a cosmid probe (CLH 128) that defined Xq28 provided further evidence of a deletion in that region. Analysis with the X chromosome-specific cocktail probes spanning Xpter-qter showed hybridization signal all along the abnormal X, excluding the possibility of a cryptic translocation. However, sequential FISH with the X alpha-satellite probe DXZ1 and a probe for total human telomeres showed the presence of telomeres on both the normal and deleted X chromosomes. From the molecular and FISH analyses we interpret the deletion in this family as 46,X,del(X) (pter-->q26::qter). In light of previous phenotypic-karyotypic correlations, it can be deduced that this region contains a locus responsible for ovarian maintenance.  相似文献   

19.
Summary Two unrelated pedigrees, which show recurrence of Emery-Dreifuss muscular dystrophy (EDMD) in three generations, have been studied using 13 X-linked DNA polymorphisms and somatic cell hybrids to establish the phase of the corresponding alleles in some obligate carriers. The reconstruction of cross-over points on the X chromosomes carrying the EDMD gene excludes from mapping most regions of the X chromosome except for the terminal portion of Xq. Pooled linkage data from the two pedigrees confirm the linkage previously reported with locus DXS15. A cross-over in a carrier female suggests that the EDMD gene is probably located distally to DXS15. In addition the recombinant meioses from one of the two pedigrees suggest the following order for some Xq polymorphic loci: DXS1 (DXYS1-DXS178) DXS42 (F9-DXS15).  相似文献   

20.
Incontinentia pigmenti (IP) is an X-linked dominant disorder characterized by developmental anomalies of the tissues and organs derived from embryonic ectoderm and neuroectoderm. An IP locus, designated IP1, probably resides in Xp11.21, since five unrelated patients with nonfamilial IP have been identified who possess constitutional de novo reciprocal X;autosome translocations involving Xp11.21. We have used a series of somatic cell hybrids containing the rearranged chromosomes derived from three of the five IP1 patients, along with other hybrid cell lines, to map probes in the vicinity of the IP1 locus. Five anonymous DNA loci--DXS422, DXS14, DXS343, DXS429, and DXS370--have been mapped to a region within Xp11.21, between two IP1 X-chromosomal translocation breakpoints; the IP1 t(X;17) breakpoint is proximal (centromeric) to this region, and the IP1 t(X;13) and t(X;9) X-chromosomal breakpoints lie distal to it. While no IP1 translocation breakpoint has yet been identified by pulsed-field gel electrophoretic (PFGE) analysis, an overlap between three probes--p58-1, 7PSH3.5, and cpX210--has been detected, placing these probes within 125 kb. Four probes--p58-1, 7PSH3.5, cpX210, and 30CE2.8--have been helpful in constructing a 1,250-kb PFGE map of the region between the breakpoints; these results suggest that the IP1 X-chromosomal translocation breakpoints are separated by at least this distance. The combined somatic cell hybrid and PFGE analyses we report here favor the probe order DXS323-(IP1 t(X;13), IP1, t(X;9]-(DXS422, DXS14, DXS343, DXS429, DXS370)-(IP1 t(X;17), DXZ1). These sequences provide a starting point for identifying overlapping genomic sequences that span the IP1 translocation breakpoints; the availability of IP1 translocation breakpoints should now assist the cloning of this locus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号