首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We aimed to investigate whether newborn rats respond to acute hypoxia with a biphasic pattern as other newborn species, the characteristics of their ventilatory response to hypercapnia, and the ventilatory response to combined hypoxic and hypercapnic stimuli. First, we established that newborn unanesthetized rats (2-4 days old) exposed to 10% O2 respond as other species. Their ventilation (VE), measured by flow plethysmography, immediately increased by 30%, then dropped and remained around normoxic values within 5 min. The drop was due to a decrease in tidal volume, while frequency remained elevated. Hence, alveolar ventilation was about 10% below normoxic value. At the same time O2 consumption, measured manometrically, dropped (-23%), possibly indicating a mechanism to protect vital organs. Ten percent CO2 in O2 breathing determined a substantial increase in VE (+47%), indicating that the respiratory pump is capable of a marked sustained hyperventilation. When CO2 was added to the hypoxic mixture, VE increased by about 85%, significantly more than without the concurrent hypoxic stimulus. Thus, even during the drop in VE of the biphasic response to hypoxia, the respiratory control system can respond with excitation to a further increase in chemical drive. Analysis of the breathing patterns suggests that in the newborn rat in hypoxia the inspiratory drive is decreased but the inspiratory on-switch mechanism is stimulated, hypercapnia increases ventilation mainly through an increase in respiratory drive, and moderate asphyxia induces the most powerful ventilatory response by combining the stimulatory action of hypercapnia and hypoxia.  相似文献   

2.
Acute hypercapnia may develop during periodic breathing from an imbalance between abnormal ventilatory patterns during apnea and/or hypopnea and compensatory ventilatory response in the interevent periods. However, transition of this acute hypercapnia into chronic sustained hypercapnia during wakefulness remains unexplained. We hypothesized that respiratory-renal interactions would play a critical role in this transition. Because this transition cannot be readily addressed clinically, we modified a previously published model of whole-body CO2 kinetics by adding respiratory control and renal bicarbonate kinetics. We enforced a pattern of 8 h of periodic breathing (sleep) and 16 h of regular ventilation (wakefulness) repeated for 20 days. Interventions included varying the initial awake respiratory CO2 response and varying the rate of renal bicarbonate excretion within the physiological range. The results showed that acute hypercapnia during periodic breathing could transition into chronic sustained hypercapnia during wakefulness. Although acute hypercapnia could be attributed to periodic breathing alone, transition from acute to chronic hypercapnia required either slowing of renal bicarbonate kinetics, reduction of ventilatory CO2 responsiveness, or both. Thus the model showed that the interaction between the time constant for bicarbonate excretion and respiratory control results in both failure of bicarbonate concentration to fully normalize before the next period of sleep and persistence of hypercapnia through blunting of ventilatory drive. These respiratory-renal interactions create a cumulative effect over subsequent periods of sleep that eventually results in a self-perpetuating state of chronic hypercapnia.  相似文献   

3.
Studies were performed to determine the effects of aging on the ventilatory responsiveness to two known respiratory stimulants, inhaled CO2 and exercise. Although explanation of the physiological mechanisms underlying development of exercise hyperpnea remains elusive, there is much circumstantial evidence that during exercise, however mediated, ventilation is coupled to CO2 production. Thus matched groups of young and elderly subjects were studied to determine the relationship between increasing ventilation and increasing CO2 production (VCO2) during steady-state exercise and the change in their minute ventilation in response to progressive hypercapnia during CO2 rebreathing. We found that the slope of the ventilatory response to hypercapnia was depressed in elderly subjects when compared with the younger control group (delta VE/delta PCO2 = 1.64 +/- 0.21 vs. 2.44 +/- 0.40 l X min-1 X mmHg-1, means +/- SE, respectively). In contrast, the slope of the relationship between ventilation and CO2 production during exercise in the elderly was greater than that of younger subjects (delta VE/delta VCO2 = 29.7 +/- 1.19 vs. 25.3 +/- 1.54, means +/- SE, respectively), as was minute ventilation at a single work load (50 W) (32.4 +/- 2.3 vs. 25.7 +/- 1.54 l/min, means +/- SE, respectively). This increased ventilation during exercise in the elderly was not produced by arterial O2 desaturation, and increased anaerobiasis did not play a role. Instead, the increased ventilation during exercise seems to compensate for increased inefficiency of gas exchange such that exercise remains essentially isocapnic. In conclusion, in the elderly the ventilatory response to hypercapnia is less than in young subjects, whereas the ventilatory response to exercise is greater.  相似文献   

4.
BackgroundRecent reports have shown that there are developmental changes in the ventilatory response to hypercapnia in the rat. These are characterized by an initial large response to carbon dioxide immediately after birth followed by a decline with a trough at one week of age, followed by a return in sensitivity. A second abnormality is seen at postnatal day 5 (P5) rats in that they cannot maintain the increase in frequency for 5 min of hypercapnia. In mice lacking GAD65 the release of GABA during sustained synaptic activation is reduced. We hypothesized that this developmental pattern would be present in the mouse which is also less mature at birth and that GABA mediates this relative respiratory depression.MethodsIn awake C57BL/6J and GAD65-/- mice the ventilatory response to 5% carbon dioxide (CO2) was examined at P2, P4, P6, P7, P12.5, P14.5 and P21.5, using body plethysmography.ResultsMinute ventilation (VE) relative to baseline during hypercapnia from P2 through P7 was generally less than from P12.5 onwards, but there was no trough as in the rat. Breaking VE down into its two components showed that tidal volume remained elevated for the 5 min of exposure to 5% CO2. At P6, but not at other ages, respiratory frequency declined with time and at 5 min was less that at 2 and 3 min. GAD65-/- animals at P6 showed a sustained increase in respiratory rate for the five mins exposure to CO2.ConclusionThese results show, that in contrast to the rat, mice do not show a decline in minute ventilatory response to CO2 at one week of age. Similiar to the rat at P5, mice at P6 are unable to sustain an increase in CO2 induced respiratory frequency and GAD65 contributes to this fall off.  相似文献   

5.
Ventilatory control in hypercapnia and exercise: optimization hypothesis   总被引:7,自引:0,他引:7  
A model of the respiratory control system incorporating both chemical and respiratory neuromechanical feedbacks is proposed to describe the steady-state ventilatory responses to CO2 inhalation and exercise. It is postulated that ventilatory output (VE) is set by the respiratory center to minimize a net operating cost representing the conflicting challenges of arterial chemical imbalance and respiratory-mechanical discomfort (intolerance of effort), given, respectively, by a quadratic function of arterial PCO2 and a logarithmic function of VE. In addition, the system is assumed to be mechanically limited at maximum VE (Vmax). The predicted responses in VE during moderate hypercapnia, exercise, and ventilatory loading closely mimic those normally observed, even though no separate signal unique to exercise is assumed. As a quantitative validation, the model yielded good fits to ventilatory response data obtained in eight healthy subjects during eucapnic and hypercapnic exercise; the predicted Vmax averaged approximately 77% of the maximum voluntary ventilation in all subjects. The results demonstrate the plausibility of the proposed optimization mechanism and suggest an important role for respiratory-mechanical factors in the control of VE.  相似文献   

6.
Thermoregulatory benefits of cold-induced changes in breathing pattern and mechanism(s) by which cold induces hypoventilation were investigated using male Holstein calves (1-3 mo old). Effects of ambient temperatures (Ta) between 4 and 18 degrees C on ventilatory parameters and respiratory heat loss (RHL) were determined in four calves. As Ta decreased, respiratory frequency decreased 29%, tidal volume increased 35%, total ventilation and RHL did not change, and the percentage of metabolic rate attributed to RHL decreased 26%. Total ventilation was stimulated by increasing inspired CO2 in six calves (Ta 4-6 degrees C), and a positive relationship existed between respiratory frequency and expired air temperature. Therefore, cold-exposed calves conserve respiratory heat by decreasing expired air temperature and dead space ventilation. Compared with thermoneutral exposure (16-18 degrees C), hypoventilation was induced by airway cold exposure (4-6 degrees C) alone and by exposing the body but not the airways to cold. Blocking nasal thermoreceptors with topical lidocaine during airway cold exposure prevented the ventilatory response but did not lower hypothalamic temperature. Hypothalamic cooling (Ta 16-18 degrees C) did not produce a ventilatory response. Thus, airway temperature but not hypothalamic temperature appears to control ventilation in cold-exposed calves.  相似文献   

7.
The ventilatory response to electrically induced contraction (EIC) and passive movement (PM) of hindlimb muscles at different levels of anesthesia was studied in 11 chloralose-urethan anesthetized dogs with and without rhizotomy. The level of anesthesia was assessed by corneal reflexes and measurements of the ventilatory response to hypercapnia. Muscle contraction was induced by electrically stimulating the peripheral cut ends of the sciatic and femoral nerves for 4-5 min, and PM was induced manually at the same frequency and amplitude as during EIC. In spinal intact dogs (n = 7), initial rapid increases in minute ventilation (VE) during EIC and PM were found in both light and deep anesthesia. Further increases in VE above the initial rise were seen during EIC but not PM. The initial rapid increases in VE did not differ between the two anesthetic levels. The steady-state ventilatory response during EIC decreased as anesthesia deepened but did not do so during PM. Rhizotomy (n = 4) abolished the initial rapid increase in VE during EIC and PM and the steady-state VE response to PM at both anesthetic levels. These results suggest that the transitional ventilatory response is neurally mediated from the muscles and not affected by the level of general anesthesia. Additionally, the anesthesia-induced reduction of ventilatory response may be due to depression of responsiveness to CO2 rather than to the inspiratory motoneuron pathway.  相似文献   

8.
Compensation for inspiratory flow-resistive loading was compared during progressive hypercapnia and incremental exercise to determine the effect of changing the background ventilatory stimulus and to assess the influence of the interindividual variability of the unloaded CO2 response on evaluation of load compensation in normal subjects. During progressive hypercapnia, ventilatory response was incompletely defended with loading (mean unloaded delta VE/delta PCO2 = 3.02 +/- 2.29, loaded = 1.60 +/- 0.67 1.min-1.Torr-1 CO2, where VE is minute ventilation and PCO2 is CO2 partial pressure; P less than 0.01). Furthermore the degree of defense of ventilation with loading was inversely correlated with the magnitude of the unloaded CO2 response. During exercise, loading produced no depression in ventilatory response (mean delta VE/delta VCO2 unloaded = 20.5 +/- 1.9, loaded = 19.2 +/- 2.5 l.min-1.l-1.min-1 CO2 where VCO is CO2 production; P = NS), and no relationship was demonstrated between degree of defense of the exercise ventilatory response and the unloaded CO2 response. Differences in load compensation during CO2 rebreathing and exercise suggest the presence of independent ventilatory control mechanisms in these states. The type of background ventilatory stimulus should therefore be considered in load compensation assessment.  相似文献   

9.
The respiratory effect of progestin differs among various animal species and humans. The rat does not hyperventilate in response to exogenous progestin. The present study was conducted to determine whether administration of combined progestin and estrogen prompts ventilatory stimulation in the male rat. Ventilation, blood gases, and metabolic rates (O2 consumption and CO2 production) were measured in the awake and unrestrained male Wistar rat. The combined administration of a synthetic potent progestin (TZP4238) and estradiol for 5 days significantly increased tidal volume and minute expiratory ventilation (VE), reduced arterial PCO2, and enhanced the ventilatory response to CO2 inhalation (delta VE/delta PCO2). On the other hand, respiratory frequency, O2 consumption, CO2 production, and body temperature were not affected. The arterial pH increased slightly, with a concomitant decrease in plasma [HCO3-]. Administration of either TZP4238 or estradiol alone or vehicle (Tween 80) had no effect on respiration, blood gases, and ventilatory response to CO2. The results indicated that respiratory stimulation following combined progestin plus estradiol treatment in the male rat involves activation of process(es) that regulate tidal volume and its augmentation during CO2 stimulus.  相似文献   

10.
Maintenance of eucapnia during sleep in obstructive sleep apnea (OSA) requires a balance between CO(2) loading during apnea and CO(2) elimination. This study examines individual respiratory events and relates magnitude of postevent ventilation to CO(2) load during the preceding respiratory event in 14 patients with OSA (arterial PCO(2) 42-56 Torr). Ventilation and expiratory CO(2) and O(2) fractions were measured on a breath-by-breath basis during daytime sleep. Calculations included CO(2) load during each event (metabolic CO(2) production - exhaled CO(2)) and postevent ventilation in the 10 s after an event. In 12 of 14 patients, a direct relationship existed between postevent ventilation and CO(2) load during the preceding event (P < 0.05); the slope of this relationship varied across subjects. Thus the postevent ventilation is tightly linked to CO(2) loading during each respiratory event and may be an important mechanism that defends against development of acute hypercapnia in OSA. An inverse relationship was noted between this postevent ventilatory response slope and the chronic awake arterial PCO(2) (r = 0.90, P < 0.001), suggesting that this mechanism is impaired in patients with chronic hypercapnia. The link between development of acute hypercapnia during respiratory events asleep and maintenance of chronic awake hypercapnia in OSA remains to be further investigated.  相似文献   

11.
We assessed the time course of changes in eupneic arterial PCO(2) (Pa(CO(2))) and the ventilatory response to hyperoxic rebreathing after removal of the carotid bodies (CBX) in awake female dogs. Elimination of the ventilatory response to bolus intravenous injections of NaCN was used to confirm CBX status on each day of data collection. Relative to eupneic control (Pa(CO(2)) = 40 +/- 3 Torr), all seven dogs hypoventilated after CBX, reaching a maximum Pa(CO(2)) of 53 +/- 6 Torr by day 3 post-CBX. There was no significant recovery of eupneic Pa(CO(2)) over the ensuing 18 days. Relative to control, the hyperoxic CO(2) ventilatory (change in inspired minute ventilation/change in end-tidal PCO(2)) and tidal volume (change in tidal volume/ change in end-tidal PCO(2)) response slopes were decreased 40 +/- 15 and 35 +/- 20% by day 2 post-CBX. There was no recovery in the ventilatory or tidal volume response slopes to hyperoxic hypercapnia over the ensuing 19 days. We conclude that 1) the carotid bodies contribute approximately 40% of the eupneic drive to breathe and the ventilatory response to hyperoxic hypercapnia and 2) there is no recovery in the eupneic drive to breathe or the ventilatory response to hyperoxic hypercapnia after removal of the carotid chemoreceptors, indicating a lack of central or aortic chemoreceptor plasticity in the adult dog after CBX.  相似文献   

12.
Eight healthy volunteers performed gradational tests to exhaustion on a mechanically braked cycle ergometer, with and without the addition of an inspiratory resistive load. Mean slopes for linear ventilatory responses during loaded and unloaded exercise [change in minute ventilation per change in CO2 output (delta VE/delta VCO2)] measured below the anaerobic threshold were 24.1 +/- 1.3 (SE) = l/l of CO2 and 26.2 +/- 1.0 l/l of CO2, respectively (P greater than 0.10). During loaded exercise, decrements in VE, tidal volume, respiratory frequency, arterial O2 saturation, and increases in end-tidal CO2 tension were observed only when work loads exceeded 65% of the unloaded maximum. There was a significant correlation between the resting ventilatory response to hypercapnia delta VE/delta PCO2 and the ventilatory response to VCO2 during exercise (delta VE/delta VCO2; r = 0.88; P less than 0.05). The maximal inspiratory pressure generated during loading correlated with CO2 sensitivity at rest (r = 0.91; P less than 0.05) and with exercise ventilation (delta VE/delta VCO2; r = 0.83; P less than 0.05). Although resistive loading did not alter O2 uptake (VO2) or heart rate (HR) as a function of work load, maximal VO2, HR, and exercise tolerance were decreased to 90% of control values. We conclude that a modest inspiratory resistive load reduces maximum exercise capacity and that CO2 responsiveness may play a role in the control of breathing during exercise when airway resistance is artificially increased.  相似文献   

13.
Glia are thought to regulate ion homeostasis, including extracellular pH; however, their role in modulating central CO2 chemosensitivity is unclear. Using a push-pull cannula in chronically instrumented and conscious rats, we administered a glial toxin, fluorocitrate (FC; 1 mM) into the retrotrapezoid nucleus (RTN), a putative chemosensitive site, during normocapnia and hypercapnia. FC exposure significantly increased expired minute ventilation (VE) to a value 38% above the control level during normocapnia. During hypercapnia, FC also significantly increased both breathing frequency and expired VE. During FC administration, maximal ventilation was achieved at approximately 4% CO2, compared with 8-10% CO2 during control hypercapnic trials. RTN perfusion of control solutions had little effect on any ventilatory measures (VE, tidal volume, or breathing frequency) during normocapnic or hypercapnic conditions. We conclude that unilateral impairment of glial function in the RTN of the conscious rat results in stimulation of respiratory output.  相似文献   

14.
To test the hypothesis that stress alters the performance of the respiratory control system, we compared the acute (20 min) responses to moderate hypoxia and hypercapnia of rats previously subjected to immobilization stress (90 min/day) with responses of control animals. Ventilatory measurements were performed on awake rats using whole body plethysmography. Under baseline conditions, there were no differences in minute ventilation between stressed and unstressed groups. Rats previously exposed to immobilization stress had a 45% lower ventilatory response to hypercapnia (inspiratory CO(2) fraction = 0.05) than controls. In contrast, stress exposure had no statistically significant effect on the ventilatory response to hypoxia (inspiratory O(2) fraction = 0.12). Stress-induced attenuation of the hypercapnic response was associated with reduced tidal volume and inspiratory flow increases; the frequency and timing components of the response were not different between groups. We conclude that previous exposure to a stressful condition that does not constitute a direct challenge to respiratory homeostasis can elicit persistent (> or =24 h) functional plasticity in the ventilatory control system.  相似文献   

15.
Minute ventilation was measured in conscious dogs, at rest and during exercise (1 mph), over 60 min immediately following the acute inhalation of 5% carbon dioxide in air and at 2, 4, 7, and 14 days while breathing the same gas mixture in a chamber. The dogs were also studied in the immediate period of air recovery from chronic hypercapnia and 1 day later. Control studies were carried out with the dogs breathing air in the chamber under comparable conditions. A triphasic ventilation change was ovserved in dogs at rest over the 14 days of hypercapnia. After an initial marked increase in ventilation during acute hypercapnia, ventilation returned to control levels by 2 days and then appeared to be elevated above control studies from 4 to 14 days at a time when blood acid-base balance became compensated. When the same dogs were studied during exercise, ventilation was also not different from air control at 2 days of hypercapnia; however during exercise, unlike the resting studies, there was only a tendency for a secondary increase in ventilation at 7 and 14 days of hypercapnia. During the immediate recovery from chronic hypercapnia when the dogs breathed air there was no evidence of hypoventilation either at rest or exercise despite arterial alkalosis. At 24 h of recovery it appeared that dogs while at rest had a slightly reduced ventilatory response to 5% carbon dioxide relative to control studies. The findings provide suggestive evidence that other factors, in addition to acid-base balance, might contribute to the regulation of ventilation during chronic hypercapnia and the recovery from chronic hypercapnia.  相似文献   

16.
Hypoxia stimulates ventilation, but when it is sustained, a decline in the ventilatory response is seen. The mechanism responsible for this decline lies within the CNS, but still remains unknown. In this study, we attempted to elucidate the possible role of hypoxia-induced depression of respiratory neurons by comparing the ventilatory response to hypoxia in intact rats and those with denervated carotid bodies. A whole-body plethysmograph was used to measure tidal volume, frequency of breathing and minute ventilation (VE) in awake and anesthetized intact rats and rats after carotid body denervation during exposure to hypoxia (FIO2 0.1). Fifteen-minute hypoxia induced an initial increase of VE in intact rats (to 248% of control ventilation in awake and to 227% in anesthetized rats) followed by a consistent decline (to 207% and 196% of control VE, respectively). Rats with denervated carotid bodies responded with a smaller increase in VE (to 134% in awake and 114% in anesthetized animals), but without a secondary decline (145% and 129% of control VE in the 15th min of hypoxia). These results suggest that afferentation from the carotid bodies and/or the substantial increase in ventilation are crucial for the biphasicity of the ventilatory response to sustained hypoxia and that a central hypoxic depression cannot fully explain the secondary decline in VE.  相似文献   

17.
Neonatal maternal separation (NMS) is a form of stress that exerts persistent, sex-specific effects on the hypoxic ventilatory response. Adult male rats previously subjected to NMS show a 25% increase in the response, whereas NMS females show a response 30% lower than controls (8). To assess the extent to which NMS affects ventilatory control development, we tested the hypothesis that NMS alters the ventilatory response to hypercapnia in awake, unrestrained rats. Pups subjected to NMS were placed in a temperature- and humidity-controlled incubator 3 h/day for 10 consecutive days (P3 to P12). Control pups were undisturbed. At adulthood (8 to 10 wk old), rats were placed in a plethysmography chamber for measurement of ventilatory parameters under baseline and hypercapnic conditions (inspired CO(2) fraction = 0.05). After 20 min of hypercapnia, the minute ventilation response measured in NMS males was 47% less than controls, owing to a lower tidal volume response (22%). Conversely, females previously subjected to NMS showed minute ventilation and tidal volume responses 63 and 18% larger than controls respectively. Although a lower baseline minute ventilation contributes to this effect, the higher minute ventilation/CO(2) production response observed in NMS females suggests a greater responsiveness to CO(2)/H(+) in this group. We conclude that NMS exerts sex-specific effects on the hypercapnic ventilatory response and that the neural mechanisms affected by NMS likely differ from those involved in the hypoxic chemoreflex.  相似文献   

18.
Nutritional intake plays an important role in determining metabolic and respiratory demands during both rest and exercise. This study examines the effects in normal subjects of 4 days of semistarvation with 440 kcal/day of intravenously infused dextrose followed by the infusion of 480 kcal/day of amino acids for 48 h on the metabolic and ventilatory response to exercise (1.25, 2.50, and 5.0 kg . m/s.). After 4 days of the dextrose infusion, arterial PCO2 (P less than 0.05), and the ventilatory equivalent for CO2 (VE/VCO2, P less than 0.05) were decreased at rest compared with control measurements made prior to the dextrose infusion. During all three levels of steady-state exercise, arterial PCO2 was significantly lower (P less than 0.05) than observed before the start of the dextrose infusion. The subsequent infusion of amino acids resulted in increases in O2 consumption (V02; P less than 0.05) and minute ventilation (VE; P less than 0.05), a decrease in arterial PCO2 (P less than 0.05), and little change in CO2 production (VCO2) at rest. During low levels of exercise, compared with the values obtained following the 4 days of dextrose infusion, there were larger increases in VE and VO2, whereas VCO2 changed little. Mechanical efficiency (kcal work/kcal energy utilized) during exercise increased after 4 days of dextrose and returned to near control levels with the amino acid infusion. The adaptive response characteristic of semistarvation with dextrose appears to be altered when isocaloric amounts of amino acids are subsequently administered for short periods.  相似文献   

19.
Somatostatin inhibits the ventilatory response to hypoxia in humans   总被引:2,自引:0,他引:2  
The effects of a 90-min infusion of somatostatin (1 mg/h) on ventilation and the ventilatory responses to hypoxia and hypercapnia were studied in six normal adult males. Minute ventilation (VE) was measured with inductance plethysmography, arterial 02 saturation (SaO2) was measured with ear oximetry, and arterial PCO2 (Paco2) was estimated with a transcutaneous CO2 electrode. The steady-state ventilatory response to hypoxia (delta VE/delta SaO2) was measured in subjects breathing 10.5% O2 in an open circuit while isocapnia was maintained by the addition of CO2. The hypercapnic response (delta VE/delta PaCO2) was measured in subjects breathing first 5% and then 7.5% CO2 (in 52-55% O2). Somatostatin greatly attenuated the hypoxic response (control mean -790 ml x min-1.%SaO2 -1, somatostatin mean -120 ml x min-1.%SaO2 -1; P less than 0.01), caused a small fall in resting ventilation (mean % fall - 11%), but did not affect the hypercapnic response. In three of the subjects progressive ventilatory responses (using rebreathing techniques, dry gas meter, and end-tidal Pco2 analysis) and overall metabolism were measured. Somatostatin caused similar changes (mean fall in hypoxic response -73%; no change in hypercapnic response) and did not alter overall O2 consumption nor CO2 production. These results show an hitherto-unsuspected inhibitory potential of this neuropeptide on the control of breathing; the sparing of the hypercapnic response is suggestive of an action on the carotid body but does not exclude a central effect.  相似文献   

20.
The rostral fastigial nucleus (FNr) of the cerebellum facilitates the respiratory response to hypercapnia. We hypothesized that some FNr sites are chemosensitive to focal tissue acidosis and contribute, at least partially, to respiratory modulation. Minute ventilation (VE) was recorded in 21 anesthetized and spontaneously breathing rats. Acetazolamide (AZ; 50 microM) was microinjected unilaterally into the FNr while an isocapnic condition was maintained throughout the experiment. AZ (1 or 20 nl) injection into the FNr significantly elevated VE (46.0 +/- 6.7%; P < 0.05), primarily via an increase in tidal volume (31.7 +/- 3.8%; P < 0.05), with little effect on arterial blood pressure. This augmented ventilatory response was initiated at 6.3 +/- 0.8 min and reached the peak at 19.7 +/- 4.1 min after AZ administration. The same dose of AZ delivered into the interposed and lateral cerebellar nuclei, or vehicle injection into the FNr, failed to elicit detectable cardiorespiratory responses. To determine whether the ventilatory response to AZ injection into the FNr resulted from an increase in respiratory central drive, the minute phrenic nerve activity (MPN) was recorded in seven paralyzed and ventilated rats. Similar to VE, MPN was increased by 38.9 +/- 8.9% (P < 0.05) after AZ administration. Our results suggest that elevation of CO2/H+ within the FNr facilitates respiratory output, supporting the presence of ventilatory chemoreception in rat FNr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号