首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Responses of plant cells to environmental stresses often involve morphological changes, differentiation and redistribution of various organelles and cytoskeletal network. Tobacco BY-2 cells provide excellent model system for in vivo imaging of these intracellular events. Treatment of the cell cycle-synchronized BY-2 cells with a proteinaceous oomycete elicitor, cryptogein, induces highly synchronous programmed cell death (PCD) and provide a model system to characterize vacuolar and cytoskeletal dynamics during the PCD. Sequential observation revealed dynamic reorganization of the vacuole and actin microfilaments during the execution of the PCD. We further characterized the effects cryptogein on mitotic microtubule organization in cell cycle-synchronized cells. Cryptogein treatment at S phase inhibited formation of the preprophase band, a cortical microtubule band that predicts the cell division site. Cortical microtubules kept their random orientation till their disruption that gradually occurred during the execution of the PCD twelve hours after the cryptogein treatment. Possible molecular mechanisms and physiological roles of the dynamic behavior of the organelles and cytoskeletal network in the pathogenic signal-induced PCD are discussed.Key words: actin microfilament, cell cycle, cryptogein, microtubules, nuclei, programmed cell death, tobacco BY-2 cells, vacuoles  相似文献   

2.
Ren D  Yang KY  Li GJ  Liu Y  Zhang S 《Plant physiology》2006,141(4):1482-1493
Mitogen-activated protein kinase (MAPK) cascades are important signaling modules in eukaryotic cells. They function downstream of sensors/receptors and regulate cellular responses to external and endogenous stimuli. Recent studies demonstrated that SIPK and WIPK, two tobacco (Nicotiana spp.) MAPKs, are involved in signaling plant defense responses to various pathogens. Ntf4, another tobacco MAPK that shares 93.6% and 72.3% identity with SIPK and WIPK, respectively, was reported to be developmentally regulated and function in pollen germination. We found that Ntf4 is also expressed in leaves and suspension-cultured cells. Genomic analysis excluded the possibility that Ntf4 and SIPK are orthologs from the two parental lines of the amphidiploid common tobacco. In vitro and in vivo phosphorylation and activation assays revealed that Ntf4 shares the same upstream MAPK kinase, NtMEK2, with SIPK and WIPK. Similar to SIPK and WIPK, Ntf4 is also stress responsive and can be activated by cryptogein, a proteinaceous elicitin from oomycetic pathogen Phytophthora cryptogea. Tobacco recognition of cryptogein induces rapid hypersensitive response (HR) cell death in tobacco. Transgenic Ntf4 plants with elevated levels of Ntf4 protein showed accelerated HR cell death when treated with cryptogein. In addition, conditional overexpression of Ntf4, which results in high cellular Ntf4 activity, is sufficient to induce HR-like cell death. Based on these results, we concluded that Ntf4 is multifunctional. In addition to its role in pollen germination, Ntf4 is also a component downstream of NtMEK2 in the MAPK cascade that regulates pathogen-induced HR cell death in tobacco.  相似文献   

3.
There is much interest in the transduction pathways by which avirulent pathogens or derived elicitors activate plant defense responses. However, little is known about anion channel functions in this process. The aim of this study was to reveal the contribution of anion channels in the defense response triggered in tobacco by the elicitor cryptogein. Cryptogein induced a fast nitrate (NO(3)(-)) efflux that was sensitive to anion channel blockers and regulated by phosphorylation events and Ca(2+) influx. Using a pharmacological approach, we provide evidence that NO(3)(-) efflux acts upstream of the cryptogein-induced oxidative burst and a 40-kD protein kinase whose activation seems to be controlled by the duration and intensity of anion efflux. Moreover, NO(3)(-) efflux inhibitors reduced and delayed the hypersensitive cell death triggered by cryptogein in tobacco plants. This was accompanied by a delay or a complete suppression of the induction of several defense-related genes, including hsr203J, a gene whose expression is correlated strongly with programmed cell death in plants. Our results indicate that anion channels are involved intimately in mediating defense responses and hypersensitive cell death.  相似文献   

4.
5.
Polygalacturonases (PGs), enzymes that hydrolyze the homogalacturonan of the plant cell wall, are virulence factors of several phytopathogenic fungi and bacteria. On the other hand, PGs may activate defense responses by releasing oligogalacturonides (OGs) perceived by the plant cell as host-associated molecular patterns. Tobacco (Nicotiana tabacum) and Arabidopsis (Arabidopsis thaliana) plants expressing a fungal PG (PG plants) have a reduced content of homogalacturonan. Here, we show that PG plants are more resistant to microbial pathogens and have constitutively activated defense responses. Interestingly, either in tobacco PG or wild-type plants treated with OGs, resistance to fungal infection is suppressed by exogenous auxin, whereas sensitivity to auxin of PG plants is reduced in different bioassays. The altered plant defense responses and auxin sensitivity in PG plants may reflect an increased accumulation of OGs and subsequent antagonism of auxin action. Alternatively, it may be a consequence of perturbations of cellular physiology and elevated defense status as a result of altered cell wall architecture.  相似文献   

6.
Yoda H  Hiroi Y  Sano H 《Plant physiology》2006,142(1):193-206
Programmed cell death plays a critical role during the hypersensitive response in the plant defense system. One of components that triggers it is hydrogen peroxide, which is generated through multiple pathways. One example is proposed to be polyamine oxidation, but direct evidence for this has been limited. In this article, we investigated relationships among polyamine oxidase, hydrogen peroxide, and programmed cell death using a model system constituted of tobacco (Nicotiana tabacum) cultured cell and its elicitor, cryptogein. When cultured cells were treated with cryptogein, programmed cell death occurred with a distinct pattern of DNA degradation. The level of hydrogen peroxide was simultaneously increased, along with polyamine oxidase activity in apoplast. With the same treatment in the presence of alpha-difluoromethyl-Orn, an inhibitor of polyamine biosynthesis, production of hydrogen peroxide was suppressed and programmed cell death did not occur. A gene encoding a tobacco polyamine oxidase that resides in the apoplast was isolated and used to construct RNAi transgenic cell lines. When these lines were treated with cryptogein, polyamines were not degraded but secreted into culture medium and hydrogen peroxide was scarcely produced, with a concomitant suppression of cell death. Activities of mitogen-activated protein kinases (wound- and salicylic acid-induced protein kinases) were also suppressed, indicating that phosphorylation cascade is involved in polyamine oxidation-derived cell death. These results suggest that polyamine oxidase is a key element for the oxidative burst, which is essential for induction of programmed cell death, and that mitogen-activated protein kinase is one of the factors that mediate this pathway.  相似文献   

7.
Pharmacological evidence suggests that anion channel-mediated plasma membrane anion effluxes are crucial in early defense signaling to induce immune responses and hypersensitive cell death in plants. However, their molecular bases and regulation remain largely unknown. We overexpressed Arabidopsis SLAC1, an S-type anion channel involved in stomatal closure, in cultured tobacco BY-2 cells and analyzed the effect on cryptogein-induced defense responses including fluxes of Cl and other ions, production of reactive oxygen species (ROS), gene expression and hypersensitive responses. The SLAC1-GFP fusion protein was localized at the plasma membrane in BY-2 cells. Overexpression of SLAC1 enhanced cryptogein-induced Cl efflux and extracellular alkalinization as well as rapid/transient and slow/prolonged phases of NADPH oxidase-mediated ROS production, which was suppressed by an anion channel inhibitor, DIDS. The overexpressor also showed enhanced sensitivity to cryptogein to induce downstream immune responses, including the induction of defense marker genes and the hypersensitive cell death. These results suggest that SLAC1 expressed in BY-2 cells mediates cryptogein-induced plasma membrane Cl efflux to positively modulate the elicitor-triggered activation of other ion fluxes, ROS as well as a wide range of defense signaling pathways. These findings shed light on the possible involvement of the SLAC/SLAH family anion channels in cryptogein signaling to trigger the plasma membrane ion channel cascade in the plant defense signal transduction network.  相似文献   

8.
Oligogalacturonides (OGs) are elicitors of plant defence responses released from the homogalacturonan of the plant cell wall during the attack by pathogenic micro-organisms. The signalling pathway mediated by OGs remains poorly understood, and no proteins involved in their signal perception and transduction have yet been identified. In order to shed light into the molecular pathways regulated by OGs, a differential proteomic analysis has been carried out in Arabidopsis. Proteins from the apoplastic compartment were isolated and their expression compared between control and OG-treated seedlings. 2-D gels and difference in gel electrophoresis (DIGE) techniques were used to compare control and treated proteomes in the same gel. The analysis of subcellular proteomes from seedlings allowed the identification of novel and low abundance proteins that otherwise remain masked when total cellular extracts are investigated. The DIGE technique showed to be a powerful tool to overcome the high interexperiment variation of 2-D gels. Differentially expressed apoplastic proteins were identified by MS and included proteins putatively involved in recognition as well as proteins whose PTMs are regulated by OGs. Our findings underscore the importance of cell wall as a source of molecules playing a role in the perception of pathogens and provide candidate proteins involved in the response to OGs.  相似文献   

9.
Activation of MAPK homologues by elicitors in tobacco cells   总被引:20,自引:3,他引:17  
Elicitors of plant defence reactions (such as cryptogein, an elicitin produced by Phytophthora cryptogea , or oligogalacturonides (OGs)), induced in tobacco cell suspensions ( Nicotiana tabacum var Xanthi) a rapid and transient activation of two protein kinases (PKs) with apparent molecular masses of 50 and 46 kDa, respectively. These PKs activated and phosphorylated at tyrosine residues, phosphorylated myelin basic protein (MBP) at serine/threonine residues. Both are recognized by anti-MAPK antibodies. The two MBP kinases possessed the same kinetics of activation, and their activation depended, to the same extent, on different exogenously applied compounds (staurosporine, lanthanum, EGTA). We demonstrate here that the activation of the MBP kinases is calcium dependent and sensitive to staurosporine, a protein kinase inhibitor which annihilates all known responses of tobacco cells to cryptogein. The activation of MBP kinases appeared to be independent of the production of active oxygen species (AOS) and insensitive to calyculin A, a protein phosphatase type 1 and 2A inhibitor. The activation of MAPKs is discussed in relation to the early responses induced by cryptogein.  相似文献   

10.
11.
Oligogalacturonides (OGs) released from the plant cell wall regulate several defense responses, as well as various aspects of plant growth and development. In these latter effects, OGs exhibit auxin-antagonist activity. To shed light on the mechanism by which OGs antagonise auxin, we analysed the ability of these oligosaccharides to inhibit the activity of four auxin-up-regulated promoters [pGm-GH3 of soybean (Glycine max L. Merr.), pNt114 of tobacco (Nicotiana tabacum L.), and prolB and prolD of Agrobacterium rhizogenes] driving the expression of the beta-glucuronidase reporter gene (GUS) in transgenic tobacco seedlings. Our results indicate that OGs at submicromolar concentrations inhibit the activation by auxin of pNt114, prolB and prolD, but not that of pGm-GH3. Comparative analysis of the kinetics of activation of the four promoters in response to the hormone shows that, while pGm-GH3 is rapidly activated, the other three promoters exhibit a delayed activation, with a lag of at least 4 h before the appearance of GUS activity. The lack of effect of the OGs on early auxin-responsive genes was confirmed by RNA gel blot analysis of the tobacco genes Nt-GH3 and Nt-iaa2.3/2.5. Our results suggest that the auxin-antagonist action of OGs affects the expression of late but not of early auxin-responsive genes.  相似文献   

12.
13.
14.
15.
The plant defense elicitor cryptogein triggers well-known biochemical events of early signal transduction at the plasma membrane of tobacco (Nicotiana tabacum) cells, but microscopic observations of cell responses related to these early events were lacking. We determined that internalization of the lipophilic dye FM4-64, which is a marker of endocytosis, is stimulated a few minutes after addition of cryptogein to tobacco Bright Yellow-2 (BY-2) cells. This stimulation is specific to the signal transduction pathway elicited by cryptogein because a lipid transfer protein, which binds to the same receptor as cryptogein but without triggering signaling, does not increase endocytosis. To define the nature of the stimulated endocytosis, we quantified clathrin-coated pits (CCPs) forming on the plasma membrane of BY-2 cells. A transitory stimulation of this morphological event by cryptogein occurs within the first 15 min. In the presence of cryptogein, increases in both FM4-64 internalization and clathrin-mediated endocytosis are specifically blocked upon treatment with 5 microm tyrphostin A23, a receptor-mediated endocytosis inhibitor. The kinetics of the transient increase in CCPs at the plasma membrane coincides with that of transitory reactive oxygen species (ROS) production occurring within the first 15 min after elicitation. Moreover, in BY-2 cells expressing NtrbohD antisense cDNA, which are unable to produce ROS when treated with cryptogein, the CCP stimulation is inhibited. These results indicate that the very early endocytic process induced by cryptogein in tobacco is due, at least partly, to clathrin-mediated endocytosis and is dependent on ROS production by the NADPH oxidase NtrbohD.  相似文献   

16.
We previously reported that the signal transduction of cryptogein, an elicitor of defense reactions in Nicotiana tabacum cells, involves upstream protein phosphorylation. In the present study, induction of these early physiological events was further investigated with inhibitors of protein phosphatase (PP), okadaic acid, and calyculin A. Calyculin A mimicked the effects of cryptogein, inducing an influx of calcium, an extracellular alkalinization, and the production of active oxygen species (AOS), suggesting that during cryptogein signal transduction the balance between specific protein kinase (PK) and PP activities was modified. To identify the phosphorylated proteins that could be involved early in the elicitor signaling pathway, we analyzed by 2-D electrophoresis the in vivo phosphorylation status of proteins after cryptogein, staurosporine, and calyculin A treatments of tobacco cells (5 min). Of about 100 phospho-labeled polypeptides, 19 showed increased 32P incorporation after 5 min of cryptogein treatment. Phosphorylation of 12 of the 19 polypeptides depended upon calcium influx. Staurosporine inhibited the phosphorylations induced by cryptogein whereas calyculin A activated the phosphorylation of 18 of these polypeptides. This study highlighted the role of PKs and/or constitutive active PPs whose activation and inhibition, respectively, resulted in an increased phosphorylation of proteins that may be involved in cryptogein signal transduction. Identification of the phosphoproteins is in progress and will increase our knowledge of signal transduction pathways implicated in plant defense responses.  相似文献   

17.
18.
19.
Cryptogein is a 10-kD protein secreted by the oomycete Phytophthora cryptogea that induces a hypersensitive response on tobacco (Nicotiana tabacum var. Xanthi) plants and a systemic acquired resistance against various pathogens. The mode of action of this elicitor has been studied using tobacco cell suspensions. Our previous data indicated that within minutes, cryptogein signaling involves various events including changes in ion fluxes, protein phosphorylation, sugar metabolism, and, eventually, cell death. These results suggested that transport of sugars could be affected and, thus, involved in the complex relationships between plant and microorganisms via elicitors. This led us to investigate the effects of cryptogein on glucose (Glc) uptake and mitochondrial activity in tobacco cells. Cryptogein induces an immediate inhibition of Glc uptake, which is not attributable to plasma membrane (PM) depolarization. Conversely, cryptogein-induced valine uptake is because of PM depolarization. Inhibition of the PM Glc transporter(s) was shown to be mediated by a calcium-dependent phosphorylation process, and is independent of active oxygen species production. This inhibition was associated with a strong decrease in O(2) uptake rate by cells and a large mitochondrial membrane depolarization. Thus, inhibition of Glc uptake accompanied by inhibition of phosphorylative oxidation may participate in hypersensitive cell death. These results are discussed in the context of competition between plants and microorganisms for apoplastic sugars.  相似文献   

20.
Characterization of the cryptogein binding sites on plant plasma membranes   总被引:15,自引:0,他引:15  
Cryptogein is a 98-amino acid proteinaceous elicitor of tobacco defense reactions. Specific binding of cryptogein to high affinity binding sites on tobacco plasma membranes has been previously reported (K(d) = 2 nM; number of binding sites: 220 fmol/mg of protein). In this study, biochemical characterization of cryptogein binding sites reveals that they correspond to a plasma membrane glycoprotein(s) with an N-linked carbohydrate moiety, which is involved in cryptogein binding. Radiation inactivation experiments performed on tobacco plasma membrane preparations indicated that cryptogein bound specifically to a plasma membrane component with an apparent functional molecular mass of 193 kDa. Moreover, using the homobifunctional cross-linking reagent disuccinimidyl suberate and tobacco plasma membranes incubated with (125)I-cryptogein, we identified, after SDS-polyacrylamide gel electrophoresis and autoradiography, two (125)I-cryptogein linked N-glycoproteins of about 162 and 50 kDa. Similar results were obtained using Arabidopsis thaliana and Acer pseudoplatanus plasma membrane preparations, whereas cryptogein did not induce any effects on the corresponding cell suspensions. These results suggest that either cryptogein binds to nonfunctional binding sites, homologues to those present in tobacco plasma membranes, or that a protein involved in signal transduction after cryptogein recognition is absent or inactive in both A. pseudoplatanus and A. thaliana.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号