共查询到20条相似文献,搜索用时 0 毫秒
1.
Fluorescence-activated cell sorting (FACS) was applied for quantitative screening of cDNA expression libraries in bacteria for rare fluorescent protein encoding cDNAs. Rare fluorescent cells, observed at a frequency of 1 in 200,000 bacteria in a cDNA expression library constructed from Astrangia lajollaensis, were detected, enriched, and purified by sorting, yielding three distinct green fluorescent proteins. Two of the isolated fluorescent proteins were found to be 2.5-fold brighter in whole cell fluorescence than the widely used and already optimized EGFP variant and possessed a novel cysteine-containing chromophore. FACS can possess significant advantages in the screening of cDNA libraries in bacteria, since desired genes may occur at low frequencies and possess unexpected properties. This strategy provides a high-throughput, quantitative approach for isolating fluorescent proteins from a more diverse range of organisms and should be extendable to proteins that are not intrinsically fluorescent with the use of available fluorescent indicators. 相似文献
2.
Atomic structures of periplasmic binding proteins and the high-affinity active transport systems in bacteria 总被引:12,自引:0,他引:12
F A Quiocho 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》1990,326(1236):341-51; discussion 351-2
We have determined and refined the X-ray crystal structures of six periplasmic binding proteins that serve as initial receptors for the osmotic-shock sensitive, active transport of L-arabinose, D-galactose/D-glucose, maltose, sulphate, leucine/isoleucine/valine and leucine. The tertiary structures and atomic interactions between proteins and ligands show common features that are important for understanding the function of the binding proteins. All six structures are ellipsoidal, consisting of two similar, globular domains. The ligand-binding site is located deep in the cleft between the two domains. Irrespective of the nature of the ligand (e.g. saccharide, sulphate dianion or leucine zwitterion), the specificities and affinities of the binding sites are achieved mainly through hydrogen-bonding interactions. Binding of ligands induces a large protein conformational change. Three different structures have been observed among the binding proteins: unliganded 'open cleft', liganded 'open cleft', and liganded 'closed cleft'. Here we discuss the functions of binding proteins in the light of numerous crystallographic and ligand-binding studies and propose a mechanism for the binding protein-dependent, high-affinity active transport. 相似文献
3.
Mo Guo Li-Ming Xu Bing Zhou Jie-Chao Yin Xian-Long Ye Gui-Ping Ren De-Shan Li 《Biotechnology letters》2014,36(3):609-616
We truncated the VP2 protein of infectious bursal disease virus into five fragments: V1–5. All fragments were displayed on the inner membrane of the Escherichia coli periplasm. After disruption of the outer membrane, spheroplasts that had anchored with the VP2 fragment were incubated with an anti-VP2 polyclonal antibody (pAb). Prey pairs were detected and quantitated by flow cytometry with V1, V3, V4 and V5 fragments reacting with the pAb. The antigenicity of all five fragments was analyzed, and our results indicated that epitopes were localized in V1, V3, V4 and V5, consistent with our flow cytometry analysis. Antigenicity analysis of purified VP2 fusion proteins using Western blots confirmed this. Our method provides a rapid, quantitative and simple strategy for identifying linear B cell epitopes. 相似文献
4.
Barth S Huhn M Matthey B Klimka A Galinski EA Engert A 《Applied and environmental microbiology》2000,66(4):1572-1579
The standard method of producing recombinant proteins such as immunotoxins (rITs) in large quantities is to transform gram-negative bacteria and subsequently recover the desired protein from inclusion bodies by intensive de- and renaturing procedures. The major disadvantage of this technique is the low yield of active protein. Here we report the development of a novel strategy for the expression of functional rIT directed to the periplasmic space of Escherichia coli. rITs were recovered by freeze-thawing of pellets from shaking cultures of bacteria grown under osmotic stress (4% NaCl plus 0.5 M sorbitol) in the presence of compatible solutes. Compatible solutes, such as glycine betaine and hydroxyectoine, are low-molecular-weight osmolytes that occur naturally in halophilic bacteria and are known to protect proteins at high salt concentrations. Adding 10 mM glycine betaine for the cultivation of E. coli under osmotic stress not only allowed the bacteria to grow under these otherwise inhibitory conditions but also produced a periplasmic microenvironment for the generation of high concentrations of correctly folded rITs. Protein purified by combinations of metal ion affinity and size exclusion chromatography was substantially stabilized in the presence of 1 M hydroxyecotine after several rounds of freeze-thawing, even at very low protein concentrations. The binding properties and cytotoxic potency of the rITs were confirmed by competitive experiments. This novel compatible-solute-guided expression and purification strategy might also be applicable for high-yield periplasmic production of recombinant proteins in different expression systems. 相似文献
5.
Mura C Kozhukhovsky A Gingery M Phillips M Eisenberg D 《Protein science : a publication of the Protein Society》2003,12(4):832-847
Intron splicing is a prime example of the many types of RNA processing catalyzed by small nuclear ribonucleoprotein (snRNP) complexes. Sm proteins form the cores of most snRNPs, and thus to learn principles of snRNP assembly we characterized the oligomerization and ligand-binding properties of Sm-like archaeal proteins (SmAPs) from Pyrobaculum aerophilum (Pae) and Methanobacterium thermautotrophicum (Mth). Ultracentrifugation shows that Mth SmAP1 is exclusively heptameric in solution, whereas Pae SmAP1 forms either disulfide-bonded 14-mers or sub-heptameric states (depending on the redox potential). By electron microscopy, we show that Pae and Mth SmAP1 polymerize into bundles of well ordered fibers that probably form by head-to-tail stacking of heptamers. The crystallographic results reported here corroborate these findings by showing heptamers and 14-mers of both Mth and Pae SmAP1 in four new crystal forms. The 1.9 A-resolution structure of Mth SmAP1 bound to uridine-5'-monophosphate (UMP) reveals conserved ligand-binding sites. The likely RNA binding site in Mth agrees with that determined for Archaeoglobus fulgidus (Afu) SmAP1. Finally, we found that both Pae and Mth SmAP1 gel-shift negatively supercoiled DNA. These results distinguish SmAPs from eukaryotic Sm proteins and suggest that SmAPs have a generic single-stranded nucleic acid-binding activity. 相似文献
6.
Periplasmic proteins were obtained from control cells and salt-adapted cells of the cyanobacterium Synechocystis sp. PCC 6803 using the method of cold osmotic shock. Two of these proteins (PP 1, apparent mol. mass 27.6 kDa, and PP 3,
apparent mol. mass 39.9 kDa) were accumulated in high amounts in the periplasm of salt-adapted cells, while the major periplasmic
protein (PP 2, apparent mol. mass 36.0 kDa) was accumulated independently from salt. After isolation from gels and partial
sequencing, the proteins could be assigned to proteins deduced from the complete genome sequence of Synechocystis. Neither salt-induced periplasmic proteins (PP 1, Slr0924 and PP 3, Slr1485) exhibited sequence similarity to proteins of
known function from databases. The major protein (PP 2-Slr0513) showed significant sequence similarities to iron-binding proteins.
All proteins included typical leader sequences at their N-terminus.
Received: 21 September 1998 / Accepted: 17 December 1998 相似文献
7.
Isolation of high-affinity peptide antagonists of 14-3-3 proteins by phage display. 总被引:11,自引:0,他引:11
The 14-3-3 proteins interact with diverse cellular molecules involved in various signal transduction pathways controlling cell proliferation, transformation, and apoptosis. To aid our investigation of the biological function of 14-3-3 proteins, we have set out to identify high-affinity antagonists. By screening phage display libraries, we have identified a set of peptides which bind 14-3-3 proteins. One of these peptides, termed R18, exhibited a high affinity for different isoforms of 14-3-3 with estimated K(D) values of 7-9 x 10(-)(8) M. Recognition of multiple isoforms of 14-3-3 suggests the targeting of R18 to a structure that is common among 14-3-3 proteins, such as the conserved ligand-binding groove. Indeed, mutations that alter critical residues in the ligand-binding site of 14-3-3 drastically decreased the level of 14-3-3-R18 association. R18 efficiently blocked the binding of 14-3-3 to the kinase Raf-1, a physiological ligand of 14-3-3, and effectively abolished the protective role of 14-3-3 against phosphatase-induced inactivation of Raf-1. The cocrystal structure of R18 in complex with 14-3-3zeta revealed the occupancy of the general binding groove of 14-3-3zeta by R18, explaining the potent inhibitory effect of R18 on 14-3-3-ligand interactions. Such a well-defined peptide will be an effective tool for probing the role of 14-3-3 in various signaling pathways, and may lead to the development of 14-3-3 antagonists with pharmacological applications. 相似文献
8.
pH-dependent expression of periplasmic proteins and amino acid catabolism in Escherichia coli 下载免费PDF全文
Stancik LM Stancik DM Schmidt B Barnhart DM Yoncheva YN Slonczewski JL 《Journal of bacteriology》2002,184(15):4246-4258
Escherichia coli grows over a wide range of pHs (pH 4.4 to 9.2), and its own metabolism shifts the external pH toward either extreme, depending on available nutrients and electron acceptors. Responses to pH values across the growth range were examined through two-dimensional electrophoresis (2-D gels) of the proteome and through lac gene fusions. Strain W3110 was grown to early log phase in complex broth buffered at pH 4.9, 6.0, 8.0, or 9.1. 2-D gel analysis revealed the pH dependence of 19 proteins not previously known to be pH dependent. At low pH, several acetate-induced proteins were elevated (LuxS, Tpx, and YfiD), whereas acetate-repressed proteins were lowered (Pta, TnaA, DksA, AroK, and MalE). These responses could be mediated by the reuptake of acetate driven by changes in pH. The amplified proton gradient could also be responsible for the acid induction of the tricarboxylic acid (TCA) enzymes SucB and SucC. In addition to the autoinducer LuxS, low pH induced another potential autoinducer component, the LuxH homolog RibB. pH modulated the expression of several periplasmic and outer membrane proteins: acid induced YcdO and YdiY; base induced OmpA, MalE, and YceI; and either acid or base induced OmpX relative to pH 7. Two pH-dependent periplasmic proteins were redox modulators: Tpx (acid-induced) and DsbA (base-induced). The locus alx, induced in extreme base, was identified as ygjT, whose product is a putative membrane-bound redox modulator. The cytoplasmic superoxide stress protein SodB was induced by acid, possibly in response to increased iron solubility. High pH induced amino acid metabolic enzymes (TnaA and CysK) as well as lac fusions to the genes encoding AstD and GabT. These enzymes participate in arginine and glutamate catabolic pathways that channel carbon into acids instead of producing alkaline amines. Overall, these data are consistent with a model in which E. coli modulates multiple transporters and pathways of amino acid consumption so as to minimize the shift of its external pH toward either acidic or alkaline extreme. 相似文献
9.
We have used cloned fragments from a Drosophila melanogaster hsp70 gene and a mouse hsp68 cDNA in recombinational screens of mouse genomic libraries. Using the mouse probe we have isolated two overlapping recombinant lambda phages comprising 22 kb of cloned DNA. Southern analysis has localized the homology with the Drosophila hsp70 coding region to a 2.2-kb fragment containing the mouse heat-shock gene. Insertion accompanying recombinational screening can disrupt interesting sequences; we have overcome this inconvenience by developing a simple one-step genetic selection for phage which have precisely excised the microplasmid probe. 相似文献
10.
11.
The concentrative inward transport of leucine in Saccharomyces carlsbergensis involves two transport systems (S1 and S2); S1 is a system of high affinity and low translocation velocity, and S2 is a system of low affinity and high translocation velocity. The inward transport process of the amino acid is discriminated into two kinetically defined steps: first, binding to periplasmic proteins and second, translocation across the plasmalemma. When cells were incubated with glucose to increase the metabolic energy charge, we observed that JTmax (maximum flux that each system can exhibit for the translocation step) increased for both systems. This increase in JTmax is due to variations in the parameters defining the initial step (Ks (apparent dissociation constant) and N (concentration of binding sites)): for S1, N1 increases and for S2, KS2 diminishes. Dissipation of the electrochemical proton gradient produced an increase of KS1 and a decrease of N2, resulting in a decrease of JTmax in both systems. Instead, osmotic shock decreases N1 and N2, which suggests that periplasmic components were removed, resulting also in a decrease of JTmax in both systems. These results are consistent with the proposition that the total unidirectional flux of the amino acid proceeds by means of a system of multiple components, with the simultaneous operation of two independent transport processes. We propose that the initial interaction of leucine with components of the cellular envelope might be the essential step for the subsequent translocation of the amino acid across the permeability barrier. 相似文献
12.
同源染色体联会时形成的联会复合体(Synaptonemal complex, SC)是由减数分裂前期Ⅰ多种蛋白质聚集而成的超级复合结构。生殖细胞特异性的核蛋白C(2)M(Crossover suppressor on 2 of Manheim)在染色体上高度聚集可以诱导SC的形成。本文采用酵母双杂交方法,利用C(2)M的诱饵表达载体筛选果蝇cDNA文库,共发现40个可能与C(2)M相互作用的蛋白,包括多种DNA及组蛋白结合蛋白、ATPase、转录调节因子。从筛选的结果中,选取wech和Psf1基因构建了转基因果蝇,并在生殖细胞中进行了基因沉默,结果显示联会复合体的消失受到延迟。上述结果表明Wech和Psf1蛋白可能与C(2)M形成复合物,共同参与联会复合体的形成或其稳定性的维持。 相似文献
13.
Yang CR Yeh S Leskov K Odegaard E Hsu HL Chang C Kinsella TJ Chen DJ Boothman DA 《Nucleic acids research》1999,27(10):2165-2174
14.
15.
M B Koopman E Baats C J van Vorstenbosch B A van der Zeijst J G Kusters 《Journal of general microbiology》1992,138(12):2697-2706
The major components of the periplasmic flagella of the spirochaete Serpulina (Treponema) hyodysenteriae strain C5 were purified and characterized. We demonstrate that the periplasmic flagella are composed of five major proteins (molecular masses 44, 37, 35, 34 and 32 kDa) and present their location, N-terminal amino acid sequence and immunological relationship. The 44 kDa and the 35 kDa protein are on the sheath of the periplasmic flagellum, whereas the 37, 34 and 32 kDa protein reside in the periplasmic flagellar core. The two sheath flagellar proteins are immunologically related but have different N-terminal amino acid sequences. The N-terminus of the 44 kDa protein shows homology with the sheath flagellins of other spirochaetes, but the 35 kDa protein does not. The three core proteins are immunologically cross-reactive and their N-terminal amino acid sequences are almost, but not completely, identical, indicating that the core proteins are encoded by three distinct genes. The core proteins show extensive N-terminal sequence similarities and an immunological relationship with periplasmic flagellar core proteins of other spirochaetes. 相似文献
16.
17.
Vanselow DG 《Biophysical journal》2002,82(5):2293-2303
Using a model for catalysis of a dynamic equilibrium, the role of constraint in catalysis is quantified. The intrinsic rigidity of proteins is shown to be insufficient to constrain the activated complexes of enzymes, irrespective of the mechanism. However, when minimization of the surface excess free energy of water surrounding a protein is considered, model proteins can be designed with regions of sufficient rigidity. Structures can be designed to focus surface tension or hydrophobic attraction as compressive stress. A monomeric structure has a limited ability to concentrate compressive stress and constrain activated complexes. Oligomeric or multidomain proteins, with domains surrounding a rigid core, have unlimited ability to concentrate stress, provided there are at least four domains. Under some circumstances, four is the optimum number, which could explain the frequency of tetrameric enzymes in nature. The minimum compressive stress in oligomers increases with the square of the radius. For tetramers of similar size to natural enzymes, this stress agrees reasonably well with that needed to constrain the activated complex. A similar principle applies to high affinity binding proteins. The models explain the trigonal pyramidal shape of fibroblast growth factor and provide a basis for interpretation of protein crystal structures. 相似文献
18.
Do Y. Yoon Sun Y. Yoon Woo S. Koh In S. Choe Tai W. Chung Mi Y. Han 《Biotechnology Techniques》1997,11(3):209-212
To measure the quantity of tyrosine phosphorylated proteins in cells, we have used a flow cytometry technique with fluorescein isothiocyanate-labeled anti-phosphotyrosine antibody (FITC-PY mAb). The analysis was applied to the phosphotyrosine titration and showed an optimum amount of FITC-PY mAb (30g/1×10cells). The staining specificity of our assay was tested by the addition of exogenous competitors, showing a specific inhibition by phosphotyrosine but not by phosphoserine, phosphothreonine, or tyrosine. The assay was also able to elucidate the inhibitory effect on tyrosine phosphorylation of genistein, a protein tyrosine kinase inhibitor. These results imply that immunofluorescent quantification assay using a flow cytometer could be a useful technique to determine the intracellular level of tyrosine phosphorylated protein. 相似文献
19.
Vishnu Kant Saravanan Vijayakumar Ganesh Chandra Sahoo Vahab Ali Kuljit Singh Shailendra S. Chaudhery 《Journal of biomolecular structure & dynamics》2019,37(2):481-492
OASS is a specific enzyme that helps Leishmania parasite to survive the oxidative stress condition in human macrophages. SAT C-terminal peptides in several organisms, including Leishmania, were reported to inhibit or reduce the activity of OASS. Small peptide and small molecules mimicking the SAT C-terminal residues are designed and tested for the inhibition of OASS in different organisms. Hence, in this study, all the possible tetra-peptide combinations were designed and screened based on the docking ability with Leishmania donovani OASS (Ld-OASS). The top ranked peptides were further validated for the stability using 50 ns molecular dynamic simulation. In order to identify the better binding capability of the peptides, the top peptides complexed with Ld-OASS were also subjected to molecular dynamic simulation. The docking and simulation results favored the peptide EWSI to possess greater advantage than previously reported peptide (DWSI) in binding with Ld-OASS active site. Also, screening of non-peptide inhibitor of Asinex Biodesign library based on the shape similarity of EWSI and DWSI was performed. The top similar molecules of each peptides were docked on to Ld-OASS active site and subsequently simulated for 20 ns. The results suggested that the ligand that shares high shape similarity with EWSI possess better binding capability than the ligand that shares high shape similarity with DWSI. This study revealed that the tetra-peptide EWSI had marginal advantage over DWSI in binding with Ld-OASS, thereby providing basis for defining a pharmacophoric scaffold for the design of peptidomimetic inhibitors as well as non-peptide inhibitors of Ld-OASS.
Communicated by Ramaswamy H. Sarma 相似文献
20.
Skerra A 《Journal of biotechnology》2001,74(4):257-275
The development of soluble receptor proteins that recognise given target molecules--ranging from small chemical compounds to macromolecular structures at a cell surface, for example--is of ever increasing importance in the life sciences and biotechnology. For the past century this area of application was dominated by antibodies, which were traditionally generated via immunisation of animals but have recently also become available by means of protein engineering methods. The so-called 'anticalins' offer an alternative type of ligand-binding proteins, which has been constructed on the basis of lipocalins as a scaffold. The central element of this protein architecture is a beta-barrel structure of eight antiparallel strands, which supports four loops at its open end. These loops form the natural binding site of the lipocalins and can be reshaped in vitro by extensive amino acid replacement, thus creating novel binding specificities. The bilin-binding protein (BBP) was employed as a model system for the preparation of a random library with 16 selectively mutagenized residues. Using bacterial phagemid display and colony screening techniques, several lipocalin variants--termed anticalins--have been selected from this library, exhibiting binding activity for compounds like fluorescein or digoxigenin. Anticalins possess high affinity and specificity for their prescribed ligands as well as fast binding kinetics, so that their functional properties are similar to those of antibodies. Compared with them, they exhibit however several advantages, including a smaller size, composition of a single polypeptide chain, and a simple set of four hypervariable loops that can be easily manipulated at the genetic level. Apart from haptenic compounds as targets, anticalins should also be able to recognise macromolecular antigens, provided that the random library is accordingly designed. Hence, they should not only serve as valuable reagents for bioanalytical purposes, but may also have a potential in replacing antibodies for medical therapy. 相似文献