首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Superoxide anion production by polymorphonuclear leukocytes stimulated with phorbol 12-myristate 13-acetate is known to be inhibited by a number of inhibitors and substrates of serine proteases, in particular by tosylphenylalanylchloromethane (TosPheCH2Cl) and to a lesser extent by tosyllysylchloromethane (TosLysCH2Cl). We have reinvestigated the characteristics of this inhibition, in view of the fact that other serine protease inhibitors with similar specificities, phenylmethanesulfonyl fluoride and leupeptin, were without effect. We found that the inhibition of phorbol-ester-induced superoxide production after cell preincubation with the chloromethanes followed saturation kinetics, with Kinact and kinact values of 100 microM and 31 min-1 for TosPheCH2Cl and 2 mM and 18 min-1 for TosLysCh2Cl. We also showed that the two compounds, which can inhibit protein kinase C in vitro, inhibited neither its activity in vivo, nor its translocation induced by phorbol myristate acetate. Furthermore the intracellular non-protein sulfhydryl group content was not affected by the treatment with the chloromethanes. Finally, addition of the inhibitors to stimulated cells also led to a time-dependent, concentration-dependent inhibition of superoxide production. Altogether, our results suggest that the chloromethane target is neither a protease nor protein kinase C and is not involved in NADPH oxidase activation, but rather in maintenance of its activity. The possible identity of this protein is discussed.  相似文献   

2.
Down regulation of phorbol diester receptors was studied with respect to proteolysis of protein kinase C, which is activated by Ca2+, phospholipids, and diacylglycerols and which binds to phorbol diesters. We used FRSK cells, a cell line derived from fetal rat skin keratinocytes, because in these cells specific binding of phorbol 12,13-dibutyrate decreased rapidly (50% decrease in 30 min). This decrease (down regulation) was inhibited by some protease inhibitors, such as N-tosyl-L-phenylalanine chloromethyl ketone (TPCK), N-p-tosyl-L-lysine chloromethyl ketone (TLCK), and leupeptin, but not by inhibitors of lysosomal hydrolases. On treatment with 12-O-tetradecanoylphorbol 13-acetate, protein kinase C was rapidly translocated from the cytosol to the membranes and then decreased. This decrease in protein kinase C was also inhibited by TPCK, TLCK, and leupeptin. The decrease in membrane activity of protein kinase C was associated with increase in cytosolic activity of a protein kinase that was smaller in molecular weight (Mr 40,000-60,000) than protein kinase C, did not depend on Ca2+/phosphatidylserine/diacylglycerol, and did not bind to phorbol 12,13-dibutyrate. These results indicate that down regulation of phorbol diester receptors is probably caused by nonlysosomal proteolysis of protein kinase C. The kinase formed by cleavage may be an active catalytic site of protein kinase C.  相似文献   

3.
In this study, we report that phenylarsine oxide and ethanol, both of which suppress a number of polymorphonuclear leucocyte functions including superoxide production, prevented the phorbol myristate acetate-induced cell death in a dose-dependent manner. These reagents had an inhibitory effect even after polymorphonuclear leucocytes were stimulated to produce superoxide by treatment with phorbol myristate acetate. The results indicate that activation of protein kinase C and subsequent superoxide release do not directly cause phorbol myristate acetate-induced cell death. Phenylarsine oxide or ethanol prevents cell death by affecting pathways downstream from those involved in the superoxide production.  相似文献   

4.
The effects of carbobenzyloxy-leucine-tyrosine-chloromethylketone (zLYCK), an inhibitor of chymotrypsin, were investigated on the activation pathways of the human neutrophil respiratory burst. At 10 microM zLYCK, a parallel inhibition was observed of superoxide production stimulated with the chemo-attractant FMLP and of chymotrypsin-like activity of human neutrophils. By contrast, superoxide production induced by PMA was minimally affected by zLYCK. The known transduction pathways triggered by FMLP were analyzed. zLYCK did not affect either the FMLP-induced cytosolic free calcium transient, inositol 1,4,5 trisphosphate formation, nor the PMA-induced phosphorylation of the 47-kDa substrate of protein kinase C. zLYCK did not affect the activity of protein kinase C extracted from neutrophils. In Ca(2+)-depleted cells, in which phosphatidylinositol 4,5-biphosphate breakdown does not occur, zLYCK inhibited the FMLP-induced respiratory burst in cells primed by low doses of PMA. The activity of the NADPH oxidase tested with active membranes from stimulated neutrophils or in a cell-free system was not inhibited by zLYCK. We conclude that: 1) zLYCK inhibits superoxide production through the inhibition of a chymotrypsin-like protease of the neutrophil, 2) zLYCK inhibits FMLP-induced activation of NADPH oxidase through a pathway independent of PtdInsP2 breakdown and cytosolic free calcium, and 3) zLYCK may prove a useful probe for the characterization of its target protease in neutrophil activation.  相似文献   

5.
Human neutrophils (PMN) possess at least two distinct mechanisms for the ingestion of IgG-opsonized pathogens; one is independent of and the other is dependent on products of the respiratory burst. Oxidant-mediated ingestion is not induced by exposure to the IgG-opsonized target but requires additional stimulation by phorbol esters or cytokines. The purpose of the present work is to elucidate the signal transduction pathways underlying these two distinct phagocytic mechanisms. Both phorbol ester- and cytokine-stimulated ingestion of IgG-opsonized targets and superoxide anion production were inhibited by the protein kinase C (PKC) inhibitors TFP and H7. In contrast, neither phagocytosis nor superoxide anion generation induced by stimulation with IgG-opsonized targets alone was affected by either of these inhibitors, even when IgG opsonization was increased to generate equal levels of ingestion and superoxide anion as that observed with cytokine stimulation. Moreover, TNF-alpha and IgG-opsonized target stimulation of PMN showed marked synergy in translocation of PKC activity from the cytosol to the plasma membrane. These data indicate that a pathway for activation of the respiratory burst which is dependent on protein kinase C is involved in oxidant-mediated amplification of ingestion. Cytokine stimulation of PMN not only augments IgG-dependent ingestion and generation of superoxide anion but also changes the signaling pathway for these two IgG-dependent functions from PKC-independent to PKC-dependent. In this regard, cytokine stimulation differentiates two pathways for activation of PMN by IgG.  相似文献   

6.
In the present study, we investigated how chrysotile-stimulated macrophages generate superoxide using murine peritoneal macrophages, with special attention to the modulatory role of phospholipase A(2) (PLA(2)). We examined the effects of the following inhibitors and antagonists for signaling molecules on the superoxide anion (O(-)(2)) production of chrysotile-stimulated macrophages: p-bromophenacyl bromide (pBPB) and mepacrine for PLA(2); islet-activating protein (IAP) for G-protein; H-7 for protein kinase C (PKC); AA861 for 5-lipoxygenase (5-LO); indomethacin for cyclo-oxygenase (COX); ETYA for both 5-LO and COX; hexanolamine PAF for platelet-activating factor (PAF). The PLA(2) and PKC inhibitors effectively inhibited the chrysotile-induced superoxide anion production of macrophages, but not the G-protein inhibitor, the 5-LO and COX inhibitors, and the PAF antagonist. We also examined the effects of the PLA(2) inhibitors on macrophages stimulated by phorbol 12-myristate 13-acetate (PMA) which directly activates PKC. The two structurally different PLA(2) inhibitors showed differential effects on the PMA-induced superoxide generation: pBPB inhibited it but mepacrine did not. These results suggested that (1) PLA(2) and PKC modulate the chrysotile-induced O(2) production, and (2) two different kinds of PLA(2) work upstream and downstream of PKC, but (3) G-protein, 5-LO and COX metabolites, and PAF have no modulatory role in the reaction.  相似文献   

7.
Using inhibitors and activators of protein kinase C, it was demonstrated that in isolated plasma membranes of target cells estradiol-17 beta selectively stimulates protein phosphorylation by endogenous protein kinase C. In estradiol-dependent tissues, estradiol effectuates the translocation of protein kinase C from the cytosol to the membrane fraction within 10-12 minutes. Estradiol activates protein kinase C in cellular membranes of target tissues via a mechanism which is different from that of phorbol ester (TPA): 3H-estradiol, in contrast with 3H-TPA, it is not bound by protein kinase C and, in contrast with TPA, estradiol-17 beta does not activate purified protein kinase C in vitro. In this case, the specific stimulation of protein kinase C translocation to membranes and the estradiol-induced increase in the phosphorylation of plasma membrane proteins seem to be due to the estradiol-induced activation of the transmembrane system of polyphosphoinositide degradation, eventually resulting in the formation of diacylglycerol, a protein kinase C activator.  相似文献   

8.
Endotoxin is a well established elicitor of cytokine production in mononuclear cells. Nevertheless, the path of signal transduction between the crucial contact of the cells with endotoxin (lipopolysaccharide) and the synthesis and release of the mediators is yet poorly understood. In particular, the involvement of Ca2+ and protein kinase C in this process is still a matter of controversy. Here, it will be demonstrated that removal of extracellular Ca2+ by EGTA does not have a significant effect on the endotoxin-stimulated production of tumor necrosis factor-alpha (TNF-alpha) and on total protein synthesis in rat Kupffer cells. However, the release of prostaglandin E2 could not be raised above the basal level under these conditions. Treatment with inhibitors of protein kinase C such as the isoquinoline derivative, H-7, or staurosporin is without influence on TNF-alpha synthesis. The depletion of protein kinase C through preincubation of rat Kupffer cells with phorbol 12-myristate 13-acetate for 24 h was also without effect on TNF-alpha production. The effectiveness of these inhibitors under the conditions used was ascertained by measurement of the O2- release from the same cell batches. Superoxide production known as protein kinase C-dependent in Kupffer cells (Dieter et al. (1986) Eur. J. Biochem. 86, 451-457) was suppressed in a dose-dependent manner by staurosporin or after prolonged pretreatment with the phorbol ester. H-7 decreased superoxide production only slightly in high doses that severely harm the Kupffer cells. Prostaglandin E2 release, although clearly protein-kinase C-dependent in phagocytosing rat Kupffer cells, is not decreased following exposure to lipopolysaccharide in the presence of protein kinase C inhibitors.  相似文献   

9.
Zymosan and phorbol ester induced in liver macrophages the release of arachidonic acid, prostaglandin E2, and superoxide; the calcium ionophore A 23187 elicited a release of arachidonic acid and prostaglandin E2 but not of superoxide, and exogenously added arachidonic acid led to the formation of prostaglandin E2 only. The zymosan- and phorbol-ester-induced release of arachidonic acid, prostaglandin E2, and superoxide was dose-dependently inhibited by staurosporine and K252a, two inhibitors of protein kinase C, and by pretreatment of the cells with phorbol ester which desensitized protein kinase C. The release of arachidonic acid or prostaglandin E2 following the addition of A 23187 or arachidonic acid was not affected by these treatments. Zymosan and phorbol ester but not A 23187 or arachidonic acid induced a translocation of protein kinase C from the cytosol to membranes in intact cells. These results demonstrate an involvement of protein kinase C in the zymosan- and phorbol-ester-induced release of arachidonic acid, prostaglandin E2, and superoxide; the release of arachidonic acid and prostaglandin E2 elicited by A 23187 and the formation of prostaglandin E2 from exogenously added arachidonic acid, however, is independent of an activation of protein kinase C.  相似文献   

10.
Exposure to ethanol for several days increases the expression of dihydropyridine-sensitive, voltage-dependent Ca2+ channels in brain and in the neural cell line PC12. Since protein phosphorylation is a major mechanism by which ion channels are regulated, we used protein kinase inhibitors to investigate whether ethanol-induced up-regulation of Ca2+ channels involves activation of a protein kinase. Sphingosine and polymixin B, which inhibit protein kinase C and calmodulin-dependent kinases, prevented the enhancement of 45Ca2+ uptake induced by exposure of PC12 cells to ethanol for 4 days. In addition, sphingosine blocked the ability of ethanol to increase the number of [3H]dihydropyridine binding sites in PC12 cell membranes. Sphingosine's effect was prevented by simultaneous exposure to phorbol 12,13-dibutyrate, a potent activator of protein kinase C. Therefore, protein kinase C appears to be involved in the up-regulation of dihydropyridine-sensitive Ca2+ channels during prolonged exposure to ethanol.  相似文献   

11.
We recently identified Vav as a Ras-activating guanine nucleotide exchange factor (GEF) stimulated by a T-cell antigen receptor-coupled protein tyrosine kinase (PTK). Here, we describe a novel, protein kinase-independent alternative pathway of Vav activation. Phorbol ester, 1,2-diacylglycerol, or ceramide treatment of intact T cells, Vav immunoprecipitates, or partially purified Vav generated by in vitro translation or COS-1 cell transfection stimulated the Ras exchange activity of Vav in the absence of detectable tyrosine phosphorylation. GEF activity of gel-purified Vav was similarly stimulated by phorbol myristate acetate (PMA). Stimulation was resistant to PTK and protein kinase C inhibitors but was blocked by calphostin, a PMA and diacylglycerol antagonist. In vitro-translated Vav lacking its cysteine-rich domain, or mutated at a single cysteine residue within this domain (C528A), was not stimulated by PMA but was fully activated by p56lck. This correlated with increased binding of radiolabeled phorbol ester to COS-1 cells expressing wild-type, but not C528A-mutated, Vav. Thus, Vav itself is a PMA-binding and -activated Ras GEF. Recombinant interleukin-1 alpha stimulated Vav via this pathway, suggesting that diglyceride-mediated Vav activation may couple PTK-independent receptors which stimulate production of lipid second messengers to Ras in hematopoietic cells.  相似文献   

12.
Neuromodulin (also designated GAP-43, B-50, and F-1) is a prominent protein kinase C substrate attached to the membranes of neuronal growth cones during development and to presynaptic membranes in discrete subsets of adult synapses. In this study, we have examined the relationship between the attachment of neuromodulin to membranes and its phosphorylation by protein kinase C. To address this issue, we have compared wild-type and mutant neuromodulins expressed in cells that normally lack the protein. Wild-type neuromodulin expressed in Chinese hamster ovary cells was associated with membranes, incorporated [3H]palmitic acid, and was phosphorylated in response to phorbol ester treatment. Substitution of serine 41, the in vitro protein kinase C site, abolished the phorbol ester response, indicating that serine 41 serves as the sole protein kinase C phosphorylation site in vivo. Substitution of the putative fatty acylation sites, cysteines 3 and 4, abolished membrane association as well as [3H]palmitic acid labeling of neuromodulin. Fatty acylation therefore appears to serve as the mechanism for anchoring neuromodulin to membranes. Surprisingly, the soluble cysteine substitution mutant was phosphorylated by protein kinase C at a rate indistinguishable from that of the wild-type protein. Therefore, membrane association may not be required for the phosphorylation of neuromodulin by protein kinase C.  相似文献   

13.
We report here by using stopped-flow fluorometry with three different fluorescent probes that a serine protease triggers the initial step of transmembrane signalling in cytotoxic T cells. When cytotoxic T cells (mouse LC7, H-2b anti H-2d) bound to the specific target cells (mouse mastocytoma P815, H-2d), cytotoxic T cells first increased their membrane fluidity, and calcium then was released from intracellular stores. After that, there was a calcium influx from the external medium into the T cells. All of these steps, however, were blocked by serine protease inhibitors (soybean trypsin inhibitor, N alpha-p-tosyl-L-lysine chloromethyl ketone and tosylphenylalanyl chloromethyl ketone). Bovine pancreatic trypsin and chymotrypsin in the external medium mimicked the signalling events which were triggered by the serine protease on the T cell surfaces. From the reaction time (within 1 s) and its specificity, this serine protease in cytotoxic T cells was considered to be different from a protease which works at the killing stage.  相似文献   

14.
Degradation of serum amyloid A and apolipoproteins by serum proteases   总被引:3,自引:0,他引:3  
We have investigated the protease activity, present in human serum, that digests the serum amyloid A (SAA) protein. SAA radiolabeled with 125I was incubated at 37 degrees C with serum and plasma and analyzed for degradation products by alkaline urea-polyacrylamide gel electrophoresis and gel filtration chromatography. Serum initially digested SAA to intermediates of 3000-5000 in molecular weight, and these were further degraded to smaller peptides with prolonged incubation. SAA was not degraded by plasma anticoagulated with ethylenediaminetetraacetic acid (EDTA) or heparin. Recalcification of plasma anticoagulated with EDTA led to the generation of protease activity against SAA whereas EDTA plasma defibrinated with thrombin was inactive. We employed both nonselective and selective protease inhibitors and synthetic substrates for kallikrein and plasmin to further characterize the serum protease. These studies demonstrated that degradation of SAA is not directly attributable to enzymes involved in coagulation, kinin formation, or fibrinolysis, but the unidentified protease may be activated by one of the clotting factors. The specificity of the SAA degradation was demonstrated in experiments with three of the well-characterized apolipoproteins. Apolipoproteins A-I, C-I, and C-III-1, which also associate with the plasma high-density lipoproteins, were not degraded by serum although they were good substrates for purified thrombin and plasmin.  相似文献   

15.
The protein kinase C inhibitor C-I reduced superoxide production by human neutrophils in response to phorbol myristate acetate by greater than 50%. In contrast to its effects in oxidative metabolism, 100 microM C-I caused minimal inhibition (5-18%) of lysozyme release in response to phorbol myristate acetate. Enzyme release produced by the formylated oligopeptide FMLP was enhanced by 23-54% in neutrophils pretreated with 100 microM C-I. These findings suggest that protein kinase C activation is not required for phorbol myristate acetate induced enzyme release. Enhancement of FMLP stimulated degranulation by C-I suggests that protein kinase C activation may have inhibitory effects on the release of granule enzymes by human neutrophils.  相似文献   

16.
MraY is an established target for the discovery of antibacterial agents. The conventional assay for MraY uses radioactive substrate and analysis of products after paper chromatography or butanol extraction. Synthesis of radiolabeled substrate has been done in vitro using purified enzymes or by growing cells on radiolabeled precursors. The authors report a simple and rapid method to chemically radiolabel MraY substrate, UDP-MurNAc-pentapeptide. Specific activity obtained by this method was more than 100 times higher than the conventionally labeled substrate, and yields are high enough to support the requirements of high-throughput screening (HTS). The authors have developed a microplate-based homogeneous assay for MraY in which the product is captured on wheat germ agglutinin (WGA) scintillation proximity assay (SPA) beads. The assay was validated by showing inhibition by specific inhibitors of MraY but not by inhibitors of other enzymes of peptidoglycan synthesis. The assay uses wild-type membranes of Escherichia coli, giving it an advantage over recently described assays that need the protein to be overexpressed. In addition, it has an advantage over the high-throughput MraY-MurG coupled assay reported in the literature because it is MraY specific, and therefore hits obtained in this assay do not need further deconvolution. It has potential for use in HTS approaches to find novel inhibitors of MraY.  相似文献   

17.
Proteinkinase-C (PKC) stimulating phorbolesters induce in vitro insulin resistance of isolated adipocytes. This effect might be explained by an inhibition of insulin signal transduction at the level of the insulin receptor kinase. There is now some evidence that a phospholipase C is a potential candidate as a signal transducer at the postreceptor level. In order to determine whether phorbol esters might inhibit insulin signalling also at the level of a phospholipase C, we studied the insulin dependent [3H] phosphatidylinositol 4-monophosphate (PIP) hydrolysis of fat cell membranes. PIP hydrolysis was measured after in vitro stimulation with and without insulin. Insulin stimulated PIP hydrolysis in a dose dependent way. When plasma membranes from phorbolester (TPA) treated fat cells were used, this insulin stimulated phospholipase C activity was suppressed, provided, membranes have been prepared in a buffer containing serine phosphatase inhibitors. These data suggest that fat cell membranes contain an insulin dependent phospholipase C which is inhibited by TPA most likely via serine phosphorylation through proteinkinase C.  相似文献   

18.
Calcium-dependent proteases: an enzyme system active at cellular membranes?   总被引:8,自引:0,他引:8  
Proteases having a neutral pH optimum and an absolute requirement for calcium ion are found in virtually all mammalian cells. Association of calcium-dependent proteases and a specific inhibitor protein with biological membranes seems to be an important regulatory feature of this proteolytic system, and it is likely that membranes are preferred sites for calcium-dependent protease action. Several recent hypotheses for the physiological function of calcium-dependent proteolysis are consistent with a membrane-associated protease action. Calcium-dependent proteases may participate in cell membrane fusion: the proteolysis of membrane proteins, which is required for the efficient fusion of erythrocytes, may be catalyzed by these enzymes. There is also evidence for the involvement of calcium-dependent proteolysis in postsynaptic membrane remodeling in the hippocampus after long-term potentiation. Although the relationship of the proteolysis to synaptic function is not known, it could have important physiological or pathophysiological consequences. Finally, it has recently been suggested that calcium-dependent proteolysis may be a physiologically significant mechanism for activating membrane-associated protein kinase C after exposure of some cell types to phorbol esters or other mitogens. Further pursuit of these hypotheses may reveal a novel role for intracellular calcium-regulated proteolysis in membrane-associated cell functions.  相似文献   

19.
Superoxide production from paraquat in a pulmonary microvascular endothelial cell (PMEC) suspension was demonstrated using 2-methyl-6-(p-methoxyphenyl)-3,7-dihydroimidazo[1,2-alpha]pyraz in-3-one (MCLA), a chemiluminescence probe, to detect superoxide anions. Increased rates of superoxide production from paraquat, which were sensitive to superoxide dismutase (SOD), required the presence of reduced nicotinamide adenine dinucleotide phosphate (NADPH) in the reaction medium, and occurred instantaneously after the addition of NADPH, which is impermeable to cell membranes. NADH as an electron donor was not as effective, and xanthine or succinate had no influence. Paraquat was anaerobically reduced in the presence of NADPH and PMECs to yield a one-electron reduced radical, and the reduction was inhibited by NADP+. Diphenyleneiodonium, an inhibitor of flavoprotein reductases, also markedly inhibited both paraquat reduction and superoxide production. These results indicate that NADPH-dependent superoxide production from paraquat probably occurs by a flavoprotein with NADPH-dependent reductase activity in cell membranes. NADPH-dependent superoxide production from paraquat was also reproduced using adherent PMECs on wells. Under these conditions, superoxide production was enhanced with agonists, including interleukin-1beta, A23187, and phorbol 12-myristate 13-acetate. The effect of the former two was blocked with staurosporine, while the latter's effect was suppressed with calyculin A.  相似文献   

20.
It has been reported that respiratory bursts with N-formylmethionylleucylphenylalanine, A23187, phorbol ester and fatty acids are switched off and on by modulating the net charges of plasma membranes in guinea-pig neutrophils (Miyahara, M. et al. (1987), Biochim. Biophys. Acta, 929, 253-262). In the present study, this was further extended in cells treated with protein kinase C inhibitors which completely suppressed the phorbol ester-dependent respiratory burst. This suggested that the initiation of the respiratory burst, which is generally accepted as linked to protein kinase C activation, might also be implicated in the net charge changes of plasma membranes. The above results were also supported by data obtained with a cell-free system reconstituted with plasma membranes and cytosolic fractions from unstimulated neutrophils, guanosine 5'-[gamma-thio]triphosphate and NADPH. Arachidonate stimulated NADPH oxidase activity accompanied by a marked phosphorylation of membrane proteins. The phosphorylation was sensitive to H-7, but it did not appear to be essential for the respiratory burst, because the oxidase activation was insensitive to H-7. Pretreating the plasma membranes with positively charged cetylamine inhibited the oxidase activation by arachidonate. These results suggest that a charge-dependent process, which does not use protein kinase C, may play an important role in the reaction leading to NADPH oxidase activation, and this may be related to the interaction of plasma membranes with the cytosolic activation factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号