首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Neoechinulin A is an indole alkaloid with several biological activities. We previously reported that this compound protects neuronal PC12 cells from cytotoxicity induced by the peroxynitrite generator 3-morpholinosydnonimine (SIN-1), but the target proteins and precise mechanism of action of neoechinulin A were unclear. Here, we employed a phage display screen to identify proteins that bind directly with neoechinulin A. Our findings identified two proteins, chromogranin B and glutaredoxin 3, as candidate target binding partners for the alkaloid. QCM analyses revealed that neoechinulin A displays high affinity for both chromogranin B and glutaredoxin 3. RNA interference-mediated depletion of chromogranin B decreased the sensitivity of PC12 cells against SIN-1. Our results suggested chromogranin B is a plausible target of neoechinulin A.  相似文献   

2.
We have investigated the protective effects of water-soluble cationic Mn(III) porphyrins against peroxynitrite (ONOO-)-induced DNA damage in the cells of Salmonella typhimurium TA4107/pSK1002 and lipid peroxidation of red blood cell membranes. Mn(III) tetrakis (N-methylpyridinium-4-yl) porphine (TMPyP) and the brominated form, Mn(III) octabromo-tetrakis (N-methylpyridinium-4-yl) porphine (OBTMPyP) effectively reduced the damage and peroxidation induced by N-morpholino sydnonimine (SIN-1), which gradually generates ONOO- from O2*- and *NO produced through hydrolysis. Mn(III)OBTMPyP became 10-fold more active than the non-brominated form. In the presence of authentic ONOO-, the Mn(III) porphyrins were ineffective against damage and strongly enhanced lipid peroxidation, while the coexistence of ascorbic acid inhibited peroxidation. Using a diode array spectrophotometry, the reactions of Mn(III)TMPyP with authentic ONOO- and SIN-1 were measured. Mn(III)TMPyP is known to be catalytic for ONOO- decomposition in the presence of antioxidants. OxoMn(IV)TMPyP with SIN-1 was rapidly reduced back to Mn(III) without adding any oxidants. Further, in the SIN-1 system, the concentration of NO2- and NO3- were colorimetrically determined by Griess reaction based on the two-step diazotization. NO2- increased by addition of Mn(III) porphyrin and the ratio of NO2- to NO3- was 4-7 times higher than that (1.05) of SIN-1 alone. This result suggests that O2*- from SIN-1 acts as a reductant and *NO cogenerated is oxidized to NO2-, a primarily decomposition product of *NO. Under the pathological conditions where biological antioxidants are depleted and ONOO- and O2*- are extensively generated, the Mn(III) porphyrins will effectively cycle ONOO- decomposition using O2*-.  相似文献   

3.
Volume-regulated anion channels (VRACs) are critically important for cell volume homeostasis, and under pathological conditions contribute to neuronal damage via excitatory amino (EAA) release. The precise mechanisms by which brain VRACs are activated and/or modulated remain elusive. In the present work we explored the possible involvement of nitric oxide (NO) and NO-related reactive species in the regulation of VRAC activity and EAA release, using primary astrocyte cultures. The NO donors sodium nitroprusside and spermine NONOate did not affect volume-activated d-[3H]aspartate release. In contrast, the peroxynitrite (ONOO-) donor 3-morpholinosydnomine hydrochloride (SIN-1) increased volume-dependent EAA release by approx. 80-110% under identical conditions. Inhibition of ONOO- formation with superoxide dismutase completely abolished the effects of SIN-1. Both the volume- and SIN-1-induced EAA release were sensitive to the VRAC blockers NPPB and ATP. Further pharmacological analysis ruled out the involvement of cGMP-dependent reactions and modification of sulfhydryl groups in the SIN-1-inducedmodulation of EAA release. The src family tyrosine kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo [3,4-d]pyrimidine (PP2), but not its inactive analog PP3, abolished the effects of SIN-1. A broader spectrum tyrosine kinase inhibitor tyrphostin A51, also completely eliminated the SIN-1-induced EAA release. Our data suggest that ONOO- up-regulates VRAC activity via a src tyrosine kinase-dependent mechanism. This modulation may contribute to EAA-mediated neuronal damage in ischemia and other pathological conditions favoring cell swelling and ONOO- production.  相似文献   

4.
Heme oxygenase-1 (HO-1), the rate-limiting enzyme in catalyzing heme degradation into biliverdin, free iron, and carbon monoxide (CO), serves as a protective enzyme against oxidative and nitrosative stresses. In the present study, we investigated the cytoprotective effects of HO-1 upregulation and its product CO against the peroxynitrite-induced PC12 cell death. PC12 cells treated with 3-morphoinosydonimine (SIN-1), a generator of peroxynitrite (ONOO-), underwent apoptotic cell death as evidenced by dissipation of mitochondrial transmembrane potential (DeltaPsim), release of mitochondrial cytochrome c into cytoplasm, cleavage of poly(ADP-ribose)polymerase and fragmentation of internucleosomal DNA. Pretreatment of PC12 cells with a low non-toxic concentration of SIN-1 (0.5 mM) induced HO-1 expression and abrogated the cell death caused by subsequent challenge with high dose SIN-1 (2.5 mM). Furthermore, pretreatment of PC12 cells with SnCl2, a potent inducer of HO-1 expression, increased endogenous production of CO (HO activity) and rescued the PC12 cells from peroxynitrite-induced apoptosis. The cytoprotective effect of SnCl2 was abolished when the HO activity was inhibited by zinc protoporphyrin IX (ZnPP IX). PC12 cells treated directly with the CO-releasing molecule, tricarbonyldichlororuthenium (II) dimer ([Ru(CO)3Cl2]2) became tolerant to the depolarization of DeltaPsim and apoptosis induced by high dose peroxynitrite. Taken together, these data demonstrate that the adaptive protection against peroxynitrite-induced apoptotic death in PC12 cells is mediated by CO formed as a consequence of HO-1 induction.  相似文献   

5.
Choi WT  Youn YC  Han ES  Lee CS 《Neurochemical research》2004,29(10):1807-1816
The present study investigated the effect of 1-methylated beta-carbolines (harmaline, harmalol and harmine) on change in the mitochondrial membrane permeability and cell death due to reactive nitrogen species in differentiated PC12 cells. beta-Carbolines, caspase inhibitors (z-LEHD.fmk and z-DQMD.fmk) and antioxidants (N-acetylcysteine, dithiothreitol, melatonin, carboxy-PTIO and uric acid) depressed cell viability loss due to 3-morpholinosydnonimine (SIN-1) in PC12 cells. beta-Carbolines inhibited the nuclear damage, the decrease in mitochondrial transmembrane potential, the cytochrome c release, the formation of reactive oxygen species and the depletion of GSH caused by SIN-1 in PC12 cells. beta-Carbolines decreased the SIN-1-induced formations of 3-nitrotyrosine, malondialdehyde and carbonyls in PC12 cells. The results show that 1-methylated beta-carbolines attenuate SIN-1-induced mitochondrial damage. This results in the inhibition of caspase-9 and -3 and apoptotic cell death in PC12 cells by suppressing the toxic actions of reactive oxygen and nitrogen species, including the GSH depletion.  相似文献   

6.
Koo BS  Lee WC  Chung KH  Ko JH  Kim CH 《Life sciences》2004,75(19):2363-2375
A number of studies indicate that free radicals are involved in the neurodegeneration in Alzheimer's disease (AD). The role of superoxide anion (O2*-) in neuronal cell injury induced by reactive oxygen species (ROS) was examined in PC12 cells using pyrogallol (1,2,3-benzenetrior), a donor to release O2*-. Pyrogallol induced PC12 cell death at concentrations, which evidently increased intracellular O2*-, as assessed by O2*- sensitive fluorescent precursor hydroethidine (HEt). A water extract of Curcuma longa L. (Zingiberaceae) (CLE), having O2*- scavenging activity rescued PC12 cells from pyrogallol-induced cell death. Hypoxia/reoxygenation injury of PC12 cells was also blocked by CLE. The present study was also conducted to examine the effect of CLE on H2O2 -induced toxicity in rat pheochromocytoma line PC12 by measuring cell lesion, level of lipid peroxidation and antioxidant enzyme activities. Following a 30 min exposure of the cells to H2O2 (150 microM), a marked decrease in cell survival, activities of glutathione peroxidase and catalase as well as increased production of malondialdehyde (MDA) were found. Pretreatment of the cells with CLE (0.5-10 microg/ml) prior to H2O2 exposure significantly elevated the cell survival, antioxidant enzyme activities and decreased the level of MDA. The above-mentioned neuroprotective effects are also observed with tacrine (THA, 1 microM), suggesting that the neuroprotective effects of cholinesterase inhibitor might partly contribute to the clinical efficacy in AD treatment. Further understanding of the underlying mechanism of the protective effects of these radical scavengers reducing intracellular O2*- on neuronal cell death may lead to development of new therapeutic treatments for hypoxic/ischemic brain injury.  相似文献   

7.
Activin is a member of the transforming growth factor-beta superfamily which comprises a growing list of multifunctional proteins that function as modulators of cell proliferation, differentiation, hormone secretion and neuronal survival. This study examined the neuroprotective effect of both Activin A and B in serum withdrawal and oxidative stress apoptotic cellular models and investigated the expression of pro- and anti-apoptotic proteins, which may account for the mechanism of Activin-induced neuroprotection. Here, we report that recombinant Activin A and B are neuroprotective against serum deprivation- and toxin- [either the parkinsonism-inducing neurotoxin, 6-hydroxydopamine (6-OHDA) or the peroxynitrite donor, 3-(4-morpholinyl) sydnonimine hydrochloride (SIN-1)] induced neuronal death in human SH-SY5Y neuroblastoma cells. Furthermore, we demonstrate for the first time that transient transfection with Activin betaA or betaB significantly protect SH-SY5Y and rat pheochromocytoma PC12 cells against serum withdrawal-induced apoptosis. This survival effect is mediated by the Bcl-2 family members and involves inhibition of caspase-3 activation; reduction of cleaved poly-ADP ribose polymerase and phosphorylated H2A.X protein levels and elevation of tyrosine hydroxylase expression. These results indicate that both Activin-A and -B share the potential to induce neuroprotective activity and thus may have positive impact on aging and neurodegenerative diseases to retard the accelerated rate of neuronal degeneration.  相似文献   

8.
There is mounting evidence implicating the accumulation of intracellular reactive oxygen species (ROS) and reactive nitrogen species (RNS) in the pathogenesis of neurodegenerative disorders, including Alzheimer's disease. Recently, considerable attention has been focused on identifying naturally occurring antioxidants that are able to reduce excess ROS and RNS, thereby protecting against oxidative stress and neuron death. The present study investigated the possible protective effects of piceatannol (trans-3,4,3',5'-tetrahydroxystilbene), which is present in grapes and other foods, on hydrogen-peroxide- and peroxynitrite-induced oxidative cell death. PC12 rat pheochromocytoma (PC12) cells treated with hydrogen peroxide or SIN-1 (a peroxynitrite-generating compound) exhibited apoptotic death, as determined by nucleus condensation and cleavage of poly(ADP-ribose)polymerase (PARP). Piceatannol treatment attenuated hydrogen-peroxide- and peroxynitrite-induced cytotoxicity, apoptotic features, PARP cleavage and intracellular ROS and RNS accumulation. Treatment of PC12 cells with hydrogen peroxide or SIN-1 led to down-regulation of Bcl-X(L) and activation of caspase-3 and -8, which were also inhibited by piceatannol treatment. Hydrogen peroxide or SIN-1 treatment induced phosphorylation of the c-Jun-N-terminal kinase (JNK), which was inhibited by piceatannol treatment. Moreover, SP600125 (a JNK inhibitor) significantly inhibited hydrogen-peroxide- and peroxynitrite-induced PC12 cell death, revealing inactivation of the JNK pathway as a possible molecular mechanism for the protective effects of piceatannol against hydrogen-peroxide- and peroxynitrite-induced apoptosis of PC12 cells. Collectively, these findings suggest that the protective effect of piceatannol against hydrogen-peroxide- and peroxynitrite-induced apoptosis of PC12 cells is associated with blocking the activation of JNK and the down-regulation of Bcl-XL.  相似文献   

9.
Peroxynitrite is a strong oxidant produced by rapid interaction between superoxide anion and nitric oxide radicals and induces oxidative stress and cell death. Treatment of PC12 cells with 3-morpholinosydnonimine (SIN-1), a generator of peroxynitrite, induced the expression of heme oxygenase-1 (HO-1), an antioxidant cytoprotective enzyme. Inhibition of the HO activity by zinc protoporphyrin IX or knockdown of HO-1 gene expression with siRNA exacerbated the SIN-1-induced apoptosis. After SIN-1 treatment, there was a time-related increase in nuclear localization and subsequent binding of NF-E2-related factor 2 (Nrf2) to the antioxidant-responsive element (ARE). Transfection of PC12 cells with dominant-negative Nrf2 abolished the SIN-1-induced increase in Nrf2-ARE binding and subsequent upregulation of HO-1 expression, leading to enhanced cell death. Upon exposure of PC12 cells to SIN-1, the phosphatidylinositol 3-kinase (PI3K) activity was increased in a time-dependent manner. Pretreatment of cells with LY294002, a pharmacologic inhibitor of PI3K or transfection with the kinase-dead mutant Akt abrogated the SIN-1-induced Nrf2 activation and HO-1 expression. Taken together, these results suggest that peroxynitrite activates Nrf2 via PI3K/Akt signaling and enhances Nrf2-ARE binding, which leads to upregulation of HO-1 expression. The SIN-1-induced HO-1 upregulation may confer the adaptive survival response against nitrosative stress.  相似文献   

10.
High mobility group box-1 (HMGB1), a non-histone DNA-binding protein, is massively released into the extracellular space from neuronal cells after ischemic insult and exacerbates brain tissue damage in rats. Minocycline is a semisynthetic second-generation tetracycline antibiotic which has recently been shown to be a promising neuroprotective agent. In this study, we found that minocycline inhibited HMGB1 release in oxygen-glucose deprivation (OGD)-treated PC12 cells and triggered the activation of p38mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases (ERK1/2). The ERK kinase (MEK)1/2 inhibitor U-0126 and p38MAPK inhibitor SB203580 blocked HMGB1 release in response to OGD. Furthermore, HMGB1 triggered cell death in a dose-dependent fashion. Minocycline significantly rescued HMGB1-induced cell death in a dose-dependent manner. In light of recent observations as well as the good safety profile of minocycline in humans, we propose that minocycline might play a potent neuroprotective role through the inhibition of HMGB1-induced neuronal cell death in cerebral infarction.  相似文献   

11.
Kaundal RK  Shah KK  Sharma SS 《Life sciences》2006,79(24):2293-2302
Oxidative stress induced cell injury is reported to contribute to the pathogenesis of cerebral ischemia. Reactive oxygen species such as hydrogen peroxide (H2O2) and superoxide radical along with nitric oxide and peroxynitrite generated during ischemia-reperfusion injury, causes the overactivation of poly (ADP-ribose) polymerase (PARP) leading to neuronal cell death. In the present study we have evaluated the effects of PARP inhibitor, 8-hydroxy-2 methyl-quinazolin-4-[3H]one (NU1025) in H2O2 and 3-morphilinosyndonimine (SIN-1) induced cytotoxicity in PC12 cells as well as in middle cerebral artery occlusion (MCAO) induced focal cerebral ischemia in rats. Exposure of PC12 cells to H2O2 (0.4 mM) and SIN-1 (0.8 mM) resulted in a significant decrease in cell viability after 6 h. Pretreatment with NU1025 (0.2 mM) restored cell viability to approximately 73 and 82% in H2O2 and SIN-1 injured cells, respectively. In MCAO studies, NU1025 was administered at different time points (1 h before reperfusion, immediately before reperfusion, 3 h after reperfusion and 6 h after reperfusion). NU1025 at 1 and 3 mg/kg reduced total infarct volume to 25% and 45%, respectively, when administered 1 h before reperfusion. NU1025 also produced significant improvement in neurological deficits. Neuroprotection with NU1025 was associated with reduction in PAR accumulation, reversal of brain NAD depletion and reduction in DNA fragmentation. Results of this study demonstrate the neuroprotective activity of NU1025 and suggest its potential in cerebral ischemia.  相似文献   

12.
We have examined potent peroxynitrite ion (ONOO-) generator 3-morpholinosydnonimine (SIN-1)-induced neurotoxicity in control wild-type (control(wt)) mice, metallothionein double knockout (MT(dko)) mice, metallothionein-transgenic (MT(trans)) mice, and in cultured human dopaminergic (SK-N-SH) neurons to determine the neuroprotective potential of metallothionein against ONOO(-)-induced neurodegeneration in Parkinson disease (PD). SIN-1-induced lipid peroxidation, reactive oxygen species synthesis, caspase-3 activation, and apoptosis were attenuated by metallothionein gene overexpression and augmented by metallothionein gene down-regulation. A progressive nigrostriatal dopaminergic neurodegeneration in weaver mutant (wv/wv) mice was associated with enhanced nitrite ion synthesis, metallothionein down-regulation, and significantly reduced dopamine synthesis and 18F-DOPA uptake as determined by high-resolution micropositron emission tomography neuroimaging. The striatal (18)F-DOPA uptake was significantly higher in MT(trans) mice than in MT(dko) and alpha-synuclein knockout (alpha-Syn(ko)) mice. These observations provide further evidence that nitric oxide synthase activation and ONOO- synthesis may be involved in the etiopathogenesis of PD, and that metallothionein gene induction may provide neuroprotection.  相似文献   

13.
Oxidative stress caused by hydrogen peroxide (H(2)O(2)) plays an important role in the pathogenesis of Alzheimer's disease (AD). The prominent damages caused by H(2)O(2) include the ruin of membrane integrity, loss of intracellular neuronal glutathione (GSH), oxidative damage to DNA as well as the subsequent caspase-3 and p53 activation. Icariin is a flavonoid extracted from the traditional Chinese herb Epimedium brevicornum Maxim. We have previously reported that icariin has a good curative effect on patients with mild cognitive impairment (MCI), AD animal and cell models. However, the molecular mechanism of how icariin exerts neuroprotective effects is still not well understood. To address this question, we exposed undifferentiated neuronal cell lines (PC12 cells) to hydrogen peroxide (H(2)O(2)) and investigated the possible neuroprotective mechanisms of icariin. Vitamin E was used as a positive control. We observed that H(2)O(2) activated the JNK/p38 mitogen-activated protein kinase (MAPK) and induced PC12 cells apoptosis in a concentration-dependent manner. More over, we demonstrated that icariin protected PC12 cells by attenuating LDH leakage, reducing GSH depletion, preventing DNA oxidation damage and inhibiting subsequent activation of caspase-3 and p53, which are the main targets of H(2)O(2)-induced cell damage. In addition, we also found that icariin's neuroprotective effect may partly correlate with its inhibitory effect on JNK/p38 MAPK pathways. Therefore, our findings suggest that icariin is a candidate for a novel neuroprotective drug to against oxidative-stress induced neurodegeneration.  相似文献   

14.
Dopamine (50 or 100 microM) attenuated the nuclear damage and cell death due to 500 microM SIN-1, a donor of superoxide and nitric oxide, in differentiated PC12 cells whereas 200 microM dopamine did not depress cell death. Dopamine at 50-100 microM for a 4-h treatment did not show a significant cytotoxic effect on PC12 cells. Dopamine (100 microM) inhibited the decrease in mitochondrial transmembrane potential, cytochrome c release, activation of caspase-3, formation of reactive oxygen species, and depletion of glutathione (GSH) due to 500 microM SIN-1 in PC12 cells. The reaction of dopamine with peroxynitrite reduced an amount of peroxynitrite. The results suggest that dopamine exhibits a biphasic effect against the cytotoxicity of SIN-1 depending on concentrations. Dopamine at 50-100 microM may attenuate the reactive nitrogen species-induced viability loss in PC12 cells by suppressing the mitochondrial membrane permeability change through inhibition of the formation of reactive species, including peroxynitrite.  相似文献   

15.
A number of studies indicate that reactive oxygen species (ROS) are involved in neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). The neuroprotective effects of salvianolic acid B (SalB) from Radix Salviae miltiorrhizae (RSM) against hydrogen peroxide (H2O2)-induced rat pheochromocytoma line PC12 injury were evaluated in the present study. Vitamin E, a potent antioxidant, was employed as a positive control agent. Following exposure of cells to H2O2 (150 microM), a marked decrease in cell survival and activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px), as well as increased levels of malondialdehyde (MDA) production and lactate dehydrogenase (LDH) release were observed. In parallel, H2O2 caused significant elevation in intracellular Ca2+ level and caspase-3 activity, and induced apoptotic death as determined by flow cytometric assay. However, pretreatment of the cells with SalB (0.1-10 microM) prior to H2O2 exposure blocked these H2O2-induced cellular events noticeably. Moreover, SalB exhibited significantly higher potency as compared to Vitamin E. The present findings indicated that SalB exerts neuroprotective effects against H2O2 toxicity, which might be of importance and contribute to its clinical efficacy for the treatment of neurodegenerative diseases.  相似文献   

16.
Gouffi K  Santini CL  Wu LF 《FEBS letters》2002,522(1-3):65-70
Misfolding of the prion protein yields amyloidogenic isoforms, and it shows exacerbating neuronal damage in neurodegenerative disorders including prion diseases. Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) potently stimulate neuritogenesis and survival of neuronal cells in the central nervous system. Here, we tested these neuropeptides on neurotoxicity in PC12 cells induced by the prion protein fragment 106-126 [PrP (106-126)]. Concomitant application of neuropeptide with PrP(106-126) (5x10(-5) M) inhibited the delayed death of neuron-like PC12 cells. In particular, PACAP27 inhibited the neurotoxicity of PrP(106-126) at low concentrations (>10(-15) M), characterized by the deactivation of PrP(106-126)-stimulated caspase-3. The neuroprotective effect of PACAP27 was antagonized by the selective PKA inhibitor, H89, or the MAP kinase inhibitor, U0126. These results suggest that PACAP27 attenuates PrP(106-126)-induced delayed neurotoxicity in PC12 cells by activating both PKA and MAP kinases mediated by PAC1 receptor.  相似文献   

17.
Nitrosative stress with subsequent inflammatory cell death has been associated with many neurodegenerative disorders. Expression of inducible nitric-oxide synthase and production of nitric oxide (NO) have been frequently elevated in many inflammatory disorders. NO can rapidly react with superoxide anion, producing more reactive peroxynitrite. In the present study, exposure of rat pheochromocytoma (PC12) cells to the peroxynitrite donor 3-morpholinosydnonimine hydrochloride (SIN-1) induced apoptosis, which accompanied depletion of intracellular glutathione (GSH), c-Jun N-terminal kinase activation, mitochondrial membrane depolarization, the cleavage of poly(ADP-ribose)polymerase, and DNA fragmentation. During SIN-1-induced apoptotic cell death, expression of inducible cyclooxygenase (COX-2), and peroxisome proliferator-activated receptor-gamma (PPARgamma) was elevated. SIN-1 treatment resulted in elevated production of 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)), an endogenous PPARgamma activator. Preincubation with 15d-PGJ(2) rendered PC12 cells resistant to nitrosative stress induced by SIN-1. 15d-PGJ(2) fortified an intracellular GSH pool through up-regulation of glutamylcysteine ligase, thereby preventing cells from SIN-1-induced GSH depletion. The above findings suggest that 15d-PGJ(2) may act as a survival mediator capable of augmenting cellular thiol antioxidant capacity through up-regulation of the intracellular GSH synthesis in response to the nitrosative insult.  相似文献   

18.
A series of 21-arylidenepregnenolone derivatives and their corresponding epoxides were synthesized. The neuroprotective effects of these steroidal compounds against amyloid-β(25-35) (Aβ(25-35))- and hydrogen peroxide (H(2)O(2))-induced neurotoxicity in PC12 cells, and oxygen-glucose deprivation (OGD)-induced neurotoxicity in SH-SY5Y cells were evaluated. The bioassay results indicated that several 3β-pregn-21-benzylidene-20-one derivatives displayed potent in vitro neuroprotective effects in different screening models, for example, compounds 2b, 3a, 3b, and 3s showing significant activities against Aβ(25-35)-induced neurotoxicity in PC12 cells, 2b showing significant activities against H(2)O(2)-induced neurotoxicity in PC12 cells, and 2g, 3b, and 3e showing potent protection against OGD insult. The results suggested that introduction of an arylidene group into steroidal nucleus played an important role in neuroprotective activity, while the formation of epoxy group at C-5,6 could be also important for the neuroprotective activity in some degree. The pharmacological data reported here are helpful for the design of novel steroidal neuroprotective candidates.  相似文献   

19.
Oxidative stress has been implicated as a major mechanism underlying the pathogenesis of neurodegenerative disorders. ROS (reactive oxygen species) can cause cell death via apoptosis. NGF (nerve growth factor) differentiated rat PC12 cells have been extensively used to study the differentiation and apoptosis of neurons. This study has investigated the protective effects of puerarin in H2O2-induced apoptosis of differentiated PC12 cells, and the possible molecular mechanisms involved. Differentiated PC12 cells were incubated with 700 μM H2O2 in the absence or presence of different doses of puerarin (4, 8 and 16 μM). Apoptosis was assessed by MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay, TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling) analysis and Annexin V-PI (propidium iodide) double staining flow cytometry. Protein levels of phospho-Akt and phospho-BAD (Bcl-2/Bcl-XL-antagonist, causing cell death) were assayed by Western blotting. After stimulation with H2O2 for 18 h, the viability of differentiated PC12 cells decreased significantly and a large number of cells underwent apoptosis. Differentiated PC12 cells were rescued from H2O2-induced apoptosis at different concentrations of puerarin in a dose-dependent manner. This was through increased production of phospho-Akt and phospho-BAD, an effect that could be reversed by wortmannin, an inhibitor of PI3K (phosphoinositide 3-kinase). The results suggest that puerarin may have neuroprotective effect through activation of the PI3K/Akt signalling pathway.  相似文献   

20.
Alzheimer's disease (AD) is a common neurodegenerative disorder, but the initiating molecular processes contributing to neuronal death are not well understood. AD is associated with elevated soluble and aggregated forms of amyloid beta (Abeta) and with oxidative stress. Furthermore, there is increasing evidence for a detrimental role of iron in the pathogenic process. In this context, iron chelation by compounds such as 3-hydroxypyridin-4-one, deferiprone (Ferriprox) may have potential neuroprotective effects. We have evaluated the possible neuroprotective actions of deferiprone against a range of AD-relevant insults including ferric iron, H(2)O(2) and Abeta in primary mouse cortical neurones. We have investigated the possible neuroprotective actions of deferiprone (1, 3, 10, 30 or 100 microM) in primary neuronal cultures following exposure to ferric iron [ferric nitrilotriacetate (FeNTA); 3 and 10 microM], H(2)O(2) (100 microM) or Abeta1-40 (3, 10 and 20 microM). Cultures were treated with deferiprone or vehicle either immediately or up to 6 h after the insult in a 24-well plate format. In order to elucidate a possible neuroprotective action of deferiprone against Parkinson's disease relevant insults another group of experiments were performed in the human neuroblastoma catecholaminergic SHSY-5Y cell line. SHSY-5Y cells were treated with MPP(+) iodide, the active metabolite of the dopaminergic neurotoxin MPTP and the neuroprotective actions of deferiprone evaluated. Cytotoxicity was assessed at 24 h by lactate dehydrogenase release, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide turnover (FeNTA and hydrogen peroxide) and morphometric analysis of cell viability by Hoechst 33324/propidium iodide (FeNTA, Abeta and MPP(+)) or 6-carboxyfluorescein diacetate and annexin V-Cy3 (Abeta). The present study demonstrates that deferiprone protects against FeNTA, hydrogen peroxide, MPP(+) and Abeta1-40-induced neuronal cell death in vitro, which is consistent with previous in vitro and in vivo studies that have demonstrated similar protection with other iron chelators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号