首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Neurofibrillary tangles (NFTs) are pathological hallmarks of several neurodegenerative disorders, including Alzheimer's disease (AD). NFTs are composed of microtubule-binding protein tau, which assembles to form paired helical filaments (PHFs) and straight filaments. Here we show by atomic force microscopy that AD brain tissue and in vitro tau form granular and fibrillar tau aggregates. CD spectral analysis and immunostaining with conformation-dependent antibodies indicated that tau may undergo conformational changes during fibril formation. Enriched granules generated filaments, suggesting that granular tau aggregates may be an intermediate form of tau fibrils. The amount of granular tau aggregates was elevated in prefrontal cortex of Braak stage I cases compared to that of Braak stage 0 cases, suggesting that granular tau aggregation precedes PHF formation. Thus, granular tau aggregates may be a relevant marker for the early diagnosis of tauopathy. Reducing the level of these aggregates may be a promising therapy for tauopathies and for promoting healthy brain aging.  相似文献   

2.
MARKing tau for tangles and toxicity   总被引:5,自引:0,他引:5  
In healthy neurons, tau proteins regulate microtubule function in the axon. In the brains of individuals with Alzheimer's disease, tau is hyperphosphorylated and aggregated into intraneuronal deposits called neurofibrillary tangles (NFTs). Hyperphosporylation dislodges tau from the microtubule surface, potentially resulting in compromised axonal integrity and the accumulation of toxic tau peptides. Recent biochemical and animal model studies have re-evaluated tau phosphorylation and other aspects of neurofibrillar pathology. The results indicate that phosphorylation of tau's microtubule-binding domain by the protein kinase MARK primes tau for hyperphosphorylation by the kinases GSK-3 and Cdk5, which in turn triggers the aggregation of tau into filaments and tangles. Toxic consequences for the neuron might be exacerbated by tangle formation but are already evident during the early steps of the process.  相似文献   

3.
Neurofibrillary tangles (NFTs), which consist of highly phosphorylated tau, are hallmarks of neurodegenerative diseases including Alzheimer disease (AD). In neurodegenerative diseases, neuronal dysfunction due to neuronal loss and synaptic loss accompanies NFT formation, suggesting that a process associated with NFT formation may be involved in neuronal dysfunction. To clarify the relationship between the tau aggregation process and synapse and neuronal loss, we compared two lines of mice expressing human tau with or without an aggregation-prone P301L mutation. P301L tau transgenic (Tg) mice exhibited neuronal loss and produced sarcosyl-insoluble tau in old age but did not exhibit synaptic loss and memory impairment. By contrast, wild-type tau Tg mice neither exhibited neuronal loss nor produced sarcosyl-insoluble tau but did exhibit synaptic loss and memory impairment. Moreover, P301L tau was less phosphorylated than wild-type tau, suggesting that the tau phosphorylation state is involved in synaptic loss, whereas the tau aggregation state is involved in neuronal loss. Finally, increasing concentrations of insoluble tau aggregates leads to the formation of fibrillar tau, which causes NFTs to form.  相似文献   

4.
Neurofibrillary tangles (NFTs) are classic lesions of Alzheimer's disease. NFTs are bundles of abnormally phosphorylated tau, the paired helical filaments. The initiating mechanisms of NFTs and their role in neuronal loss are still unknown. Accumulating evidence supports a role for the activation of proteolytic enzymes, caspases, in neuronal death observed in brains of patients with Alzheimer's disease. Alterations in tau phosphorylation and tau cleavage by caspases have been previously reported in neuronal apoptosis. However, the links between the alterations in tau phosphorylation and its proteolytic cleavage have not yet been documented. Here, we show that, during staurosporine-induced neuronal apoptosis, tau first undergoes transient hyperphosphorylation, which is followed by dephosphorylation and cleavage. This cleavage generated a 10-kDa fragment in addition to the 17- and 50-kDa tau fragments previously reported. Prior tau dephosphorylation by a glycogen synthase kinase-3beta inhibitor, lithium, enhanced tau cleavage and sensitized neurons to staurosporine-induced apoptosis. Caspase inhibition prevented tau cleavage without reversing changes in tau phosphorylation linked to apoptosis. Furthermore, the microtubule depolymerizing agent, colchicine, induced tau dephosphorylation and caspase-independent tau cleavage and degradation. Both phenomena were blocked by inhibiting protein phosphatase 2A (PP2A) by okadaic acid. These experiments indicate that tau dephosphorylation precedes and is required for its cleavage and degradation. We propose that the absence of cleavage and degradation of hyperphosphorylated tau (due to PP2A inhibition) may lead to its accumulation in degenerating neurons. This mechanism may contribute to the aggregation of hyperphosphorylated tau into paired helical filaments in Alzheimer's disease where reduced PP2A activity has been reported.  相似文献   

5.
Cholesterol-dependent modulation of tau phosphorylation in cultured neurons   总被引:7,自引:0,他引:7  
One of the hallmarks of Alzheimer's disease (AD) is the abnormal state of tau. It is both highly phosphorylated and aggregated into paired helical filaments (PHFs) in neurofibrillary tangles (NFTs). However, the mechanism underlying the hyperphosphorylation of tau in NFTs and neuronal degeneration in AD remains to be elucidated. The fact that hyperphosphorylation of tau in NFTs are also found in the patients with Niemann-Pick disease, type C (NPC), which is a cholesterol storage disease associated with defective intracellular trafficking of exogenous cholesterol, implies that perturbation of cholesterol metabolism may be involved in tau phosphorylation and neurodegeneration. Here, we report that cholesterol deficiency induced by inhibition of cholesterol biosynthesis in cultured neurons results in hyperphosphorylation of tau, accompanied by axonal degeneration associated with microtubule depolymerization. These changes were prevented by concurrent treatment with beta-migrating very low-density lipoprotein (beta-VLDL) or cholesterol. We propose that intracellular cholesterol plays an essential role in the modulation of tau phosphorylation and the maintenance of microtubule stability.  相似文献   

6.
Prior work has shown that iron interacts with hyperphosphorylated tau, which contributes to the formation of neurofibrillary tangles (NFTs) in Alzheimer’s disease (AD), whereas iron chelator desferrioxamine (DFO) slows down the clinical progression of the cognitive decline associated with this disease. However, the effects of DFO on tau phosphorylation in the presence or absence of iron have yet to be determined. Using amyloid precursor protein (APP) and presenilin 1 (PS1) double transgenic mouse brain as a model system, we investigated the effects and potential mechanisms of intranasal administration of DFO on iron induced abnormal tau phosphorylation. High-dose iron treatment markedly increased the levels of tau phosphorylation at the sites of Thr205, Thr231 and Ser396, whereas highly induced tau phosphorylation was abolished by intranasal administration of DFO in APP/PS1 transgenic mice. Moreover, DFO intranasal administration also decreases Fe-induced the activities of cyclin-dependent kinase 5 (CDK5) and glycogen synthase kinase 3β (GSK3β), which in turn suppressing tau phosphorylation. Cumulatively, our data show that intranasal DFO treatment exerts its suppressive effects on iron induced tau phosphorylation via CDK5 and GSK3β pathways. More importantly, elucidation of DFO mechanism in suppressing tau phosphorylation may provide insights for developing therapeutic strategies to combat AD.  相似文献   

7.
Post-mortem diagnosis of Alzheimer's disease relies on high numbers of senile plaques and neurofibrillary tangles (NFTs) stained in distinct brain areas. NFTs mostly consist of hyperphosphorylated versions of the microtubule attached tau protein (PHF-tau) with more than 30 serine and threonine phosphorylation sites identified so far. Characterization of hyperphosphorylated tau regions and the hope to develop robust assays for early AD diagnosis relies mostly on phosphorylation-dependent monoclonal antibodies (mAbs) recognizing only disease-specific phosphorylation patterns. Here, we report that anti-PHF-tau mAb AT8 recognizes an epitope doubly phosphorylated at serine 202 and threonine 205, which was not influenced by a third phosphate group at serine 199. But mAb AT8 was cross-reactive to two doubly phosphorylated motifs containing either serines 199 and 202 or serines 205 and 208 of the human tau sequence. The epitope of anti-tau mAb Tau5 was mapped to the human tau sequence 218-225, which is not phosphorylated in vivo.  相似文献   

8.
Pinning down phosphorylated tau and tauopathies   总被引:4,自引:0,他引:4  
Neurofibrillary tangles (NFTs) are prominent neuronal lesions in a large subset of neurodegenerative diseases, including Alzheimer's disease (AD). NFTs are mainly composed of insoluble Tau that is hyperphosphorylated on many serine or threonine residues preceding proline (pSer/Thr-Pro). Tau hyperphosphorylation abolishes its biological function to bind microtubules and promotes microtubule assembly and precedes neurodegeneration. Not much is known about how tau is further regulated following phosphorylation. Notably, we have recently shown that phosphorylated Ser/Thr-Pro motifs exist in two distinct conformations. The conversion between two conformations in some proteins is catalyzed by the prolyl isomerase Pin1. Pin1 binds to tau phosphorylated specifically on the Thr231-Pro site and probably catalyzes cis/trans isomerization of pSer/Thr-Pro motif(s), thereby inducing conformational changes in tau. Such conformational changes can directly restore the ability of phosphorylated Tau to bind microtubules and promote microtubule assembly and/or facilitate tau dephosphorylation by its phosphatase PP2A, as PP2A activity is conformation-specific. Furthermore, Pin1 expression inversely correlates with the predicted neuronal vulnerability in normally aged brain and also with actual neurofibrillary degeneration in AD brain. Moreover, deletion of the gene encoding Pin1 in mice causes progressive age-dependent neuropathy characterized by motor and behavioral deficits, tau hyperphosphorylation, tau filament formation and neuronal degeneration. Distinct from all other mouse models where transgenic overexpression of specific proteins elicits tau-related pathologies, Pin1 is the first protein whose depletion causes age-dependent neurodegeneration and tau pathologies. Thus, Pin1 is pivotal in maintaining normal neuronal function and preventing age-dependent neurodegeneration. This could represent a promising interventive target to prevent neurodegenerative diseases.  相似文献   

9.
Neurofibrillary tangles (NFTs) consisting of the hyperphosphorylated microtubule-associated protein tau are a defining pathological characteristic of Alzheimer's disease (AD). Hyperphosphorylation of tau is hypothesized to impair the microtubule stabilizing function of tau, leading to the formation of paired helical filaments and neuronal death. Glycogen synthase kinase-3 (GSK-3) has been shown to be one of several kinases that mediate tau hyperphosphorylation in vitro. However, molecular mechanisms underlying overactivation of GSK-3 and its potential linkage to AD-like pathologies in vivo remain unclear. Here, we demonstrate that injection of wortmannin (a specific inhibitor of phosphoinositol-3 kinase) or GF-109203X (a specific inhibitor of protein kinase C) into the left ventricle of rat brains leads to overactivation of GSK-3, hyperphosphorylation of tau at Ser 396/404/199/202 and, most significantly, impaired spatial memory. The effects of wortmannin and GF-109203X are additive. Significantly, specific inhibition of GSK-3 activity by LiCl prevents hyperphosphorylation of tau, and spatial memory impairment resulting from PI3K and PKC inhibition. These results indicate that in vivo inhibition of phosphoinositol-3 kinase and protein kinase C results in overactivation of GSK-3 and tau hyperphosphorylation and support a direct role of GSK-3 in the formation of AD-like cognitive deficits.  相似文献   

10.
Bielska AA  Zondlo NJ 《Biochemistry》2006,45(17):5527-5537
Alzheimer's disease is characterized by two protein precipitates, extracellular amyloid plaques and intracellular neurofibrillary tangles (NFTs). The primary constituent of NFTs is a hyperphosphorylated form of the microtubule-binding protein tau. Hyperphosphorylation of tau on over 30 residues, primarily within proline-rich sequences, is associated with conformational changes whose nature is poorly defined. Peptides derived from the proline-rich region of tau (residues 174-242) were synthesized, and the conformations were analyzed for the nonphosphorylated and phosphorylated peptides. CD and NMR data indicate that phosphorylation of serine and threonine residues in proline-rich sequences induces a conformational change to a type II polyproline helix. The largest phosphorylation-dependent conformational changes observed by CD were for tau peptides incorporating residues 174-183 or residues 229-238. Phosphoserine and phosphothreonine residues exhibited ordered values of (3)J(alphaN) (3.1-6.2 Hz; mean = 4.7 Hz) compared to nonphosphorylated serine and threonine. Phosphorylation of a tau peptide consisting of tau residues 196-209 resulted in the disruption of a nascent alpha-helix. These results suggest that global reorganization of tau may occur upon hyperphosphorylation of proline-rich sequences in tau.  相似文献   

11.
Alzheimer's disease (AD) is characterized by the presence, in the brain of the patients, of two aberrant structures: intracellular neurofibrillary tangles (NFTs), containing an abnormal hyperphosphorylated form of tau protein, and extracellular senile plaques (SPs), mainly composed by fibrillar amyloid beta peptide. Another feature of AD is the neurodegeneration and dysfunction of basal forebrain cholinergic system. A possible connection among those AD characteristics could occur. Thus, the purpose of this short review is to summarize the involvement of nicotinic (nAChR) and muscarinic (mAChR) receptors on tau phosphorylation, in a direct way, or through the previous interaction of some of these receptors with amyloid beta. Several studies have demonstrated that nAChR activation results in a significantly increase of tau phosphorylation, whereas mAChR activation, may prevent tau phosphorylation.  相似文献   

12.
Mitotic-like tau phosphorylation by p25-Cdk5 kinase complex   总被引:1,自引:0,他引:1  
Among tau phosphorylation sites, some phosphoepitopes referred to as abnormal ones are exclusively found on tau aggregated into filaments in Alzheimer's disease. Recent data suggested that molecular mechanisms similar to those encountered during mitosis may play a role in abnormal tau phosphorylation. In particular, TG-3 phosphoepitope is associated with early stages of neurofibrillary tangles (NFTs). In this study, we reported a suitable cell model consisting of SH-SY5Y cells stably transfected with an inducible p25 expression vector. It allows investigation of tau phosphorylation by p25-Cdk5 kinase complex in a neuronal context and avoiding p25-induced cytotoxicity. Immunoblotting analyses showed that p25-Cdk5 strongly phosphorylates tau protein not only at the AT8 epitope but also at the AT180 epitope and at the Alzheimer's mitotic epitope TG-3. Further biochemical analyses showed that abnormal phosphorylated tau accumulated in cytosol as a microtubule-free form, suggesting its impact on tau biological activity. Since tau abnormal phosphorylation occurred in dividing cells, TG-3 immunoreactivity was also investigated in differentiated neuronal ones, and both TG-3-immunoreactive tau and nucleolin, another early marker for NFT, were also generated. These data suggest that p25-Cdk5 is responsible for the mitotic-like phosphoepitopes present in NFT and argue for a critical role of Cdk5 in neurodegenerative mechanisms.  相似文献   

13.
The microtubule associated protein tau is a major component of neurofibrillary tangles in Alzheimer disease brain, however the neuropathological processes behind the formation of neurofibrillary tangles are still unclear. Previously, 14-3-3 proteins were reported to bind with tau. 14-3-3 Proteins usually bind their targets through specific serine/threonine –phosphorylated motifs. Therefore, the interaction of tau with 14-3-3 mediated by phosphorylation was investigated. In this study, we show that the phosphorylation of tau by either protein kinase A (PKA) or protein kinase B (PKB) enhances the binding of tau with 14-3-3 in vitro . The affinity between tau and 14-3-3 is increased 12- to 14-fold by phosphorylation as determined by real time surface plasmon resonance studies. Mutational analyses revealed that Ser214 is critical for the phosphorylation-mediated interaction of tau with 14-3-3. Finally, in vitro aggregation assays demonstrated that phosphorylation by PKA/PKB inhibits the formation of aggregates/filaments of tau induced by 14-3-3. As the phosphorylation at Ser214 is up-regulated in fetal brain, tau's interaction with 14-3-3 may have a significant role in the organization of the microtubule cytoskeleton in development. Also as the phosphorylation at Ser214 is up-regulated in Alzheimer's disease brain, tau's interaction with 14-3-3 might be involved in the pathology of this disease.  相似文献   

14.
15.

Background

Neurofibrillary tangles (NFTs) are intraneuronal aggregates associated with several neurodegenerative diseases including Alzheimer's disease. These abnormal accumulations are primarily comprised of fibrils of the microtubule-associated protein tau. During the progression of NFT formation, disperse and non-interacting tau fibrils become stable aggregates of tightly packed and intertwined filaments. Although the molecular mechanisms responsible for the conversion of disperse tau filaments into tangles of filaments are not known, it is believed that some of the associated changes in tau observed in Alzheimer's disease, such as phosphorylation, truncation, ubiquitination, glycosylation or nitration, may play a role.

Results

We have investigated the effects of tau phosphorylation by glycogen synthase kinase-3β (GSK-3β) on tau filaments in an in vitro model system. We have found that phosphorylation by GSK-3β is sufficient to cause tau filaments to coalesce into tangle-like aggregates similar to those isolated from Alzheimer's disease brain.

Conclusion

These results suggest that phosphorylation of tau by GSK-3β promotes formation of tangle-like filament morphology. The in vitro cell-free experiments described here provide a new model system to study mechanisms of NFT development. Although the severity of dementia has been found to correlate with the presence of NFTs, there is some question as to the identity of the neurotoxic agents involved. This model system will be beneficial in identifying intermediates or side reaction products that might be neurotoxic.  相似文献   

16.
Abnormal phosphorylation and aggregation of tau protein are hallmarks of a variety of neurological disorders, including Alzheimer's disease (AD). Increased tau phosphorylation is assumed to represent an early event in pathogenesis and a pivotal aspect for aggregation and formation of neurofibrillary tangles. However, the regulation of tau phosphorylation in vivo and the causes for its increased stage of phosphorylation in AD are still not well understood, a fact that is primarily based on the lack of adequate animal models. Recently we described the reversible formation of highly phosphorylated tau protein in hibernating European ground squirrels. Hence, mammalian hibernation represents a model system very well suited to study molecular mechanisms of both tau phosphorylation and dephosphorylation under in vivo physiological conditions. Here, we analysed the extent and kinetics of hibernation-state dependent tau phosphorylation in various brain regions of three species of hibernating mammals: arctic ground squirrels, Syrian hamsters and black bears. Overall, tau protein was highly phosphorylated in torpor states and phosphorylation levels decreased after arousal in all species. Differences between brain regions, hibernation-states and phosphosites were observed with respect to degree and kinetics of tau phosphorylation. Furthermore, we tested the phosphate net turnover of tau protein to analyse potential alterations in kinase and/or phosphatase activities during hibernation. Our results demonstrate that the hibernation-state dependent phosphorylation of tau protein is specifically regulated but involves, in addition, passive, temperature driven regulatory mechanisms. By determining the activity-state profile for key enzymes of tau phosphorylation we could identify kinases potentially involved in the differentially regulated, reversible tau phosphorylation that occurs during hibernation. We show that in black bears hibernation is associated with conformational changes of highly phosphorylated tau protein that are typically related to neuropathological alterations. The particular hibernation characteristics of black bears with a continuous torpor period and an only slightly decreased body temperature, therefore, potentially reflects the limitations of this adaptive reaction pattern and, thus, might indicate a transitional state of a physiological process.  相似文献   

17.
To investigate how tau affects neuronal function during neurofibrillary tangle (NFT) formation, we examined the behavior, neural activity, and neuropathology of mice expressing wild-type human tau. Here, we demonstrate that aged (>20 months old) mice display impaired place learning and memory, even though they do not form NFTs or display neuronal loss. However, soluble hyperphosphorylated tau and synapse loss were found in the same regions. Mn-enhanced MRI showed that the activity of the parahippocampal area is strongly correlated with the decline of memory as assessed by the Morris water maze. Taken together, the accumulation of hyperphosphorylated tau and synapse loss in aged mice, leading to inhibition of neural activity in parahippocampal areas, including the entorhinal cortex, may underlie place learning impairment. Thus, the accumulation of hyperphosphorylated tau that occurs before NFT formation in entorhinal cortex may contribute to the memory problems seen in Alzheimer's disease (AD).  相似文献   

18.
Phosphorylation and glycosylation of the tau protein, which is implicated in neurodegenerative diseases, are intimately linked. In vivo pharmacological inhibition of tau deglycosylation may be a new way to suppress abnormal tau phosphorylation, known to be involved in the formation of neurofibrillary tangles in the brain.  相似文献   

19.
Glycogen synthase kinase-3 (GSK-3) has been proposed as the main kinase able to aberrantly phosphorylate tau in Alzheimer's disease (AD) and related tauopathies, raising the possibility of designing novel therapeutic interventions for AD based on GSK-3 inhibition. Lithium, a widely used drug for affective disorders, inhibits GSK-3 at therapeutically relevant concentrations. Therefore, it was of great interest to test the possible protective effects of lithium in an AD animal model based on GSK-3 overexpression. We had previously generated a double transgenic model, overexpressing GSK-3beta in a conditional manner, using the Tet-off system and tau protein carrying a triple FTDP-17 (frontotemporal dementia and parkinsonism linked to chromosome 17) mutation. This transgenic line shows tau hyperphosphorylation in hippocampal neurones accompanied by neurofibrillary tangles (NFTs). We used this transgenic model to address two issues: first, whether chronic lithium treatment is able to prevent the formation of aberrant tau aggregates that result from the overexpression of FTDP-17 tau and GSK-3beta; second, whether lithium is able to change back already formed NFTs in aged animals. Our data suggest that progression of the tauopathy can be prevented by administration of lithium when the first signs of neuropathology appear. Furthermore, it is still possible to partially reverse tau pathology in advanced stages of the disease, although NFT-like structures cannot be changed. The same results were obtained after shut-down of GSK-3beta overexpression, supporting the possibility that GSK-3 inhibition is not sufficient to reverse NFT-like aggregates.  相似文献   

20.
Hyperphosphorylation of the microtubule-associated protein tau is a characteristic feature of neurodegenerative tauopathies including Alzheimer disease. Over-activation of proline-directed kinases, such as cyclin-dependent kinase 5 (Cdk5) and glycogen synthase kinase 3 (GSK3), has been implicated in the aberrant phosphorylation of tau at proline-directed sites. In this study we tested the roles of Cdk5 and GSK3 in tau hyperphosphorylation in vivo using transgenic mice with p25-induced Cdk5 over-activation. We found that over-activation of Cdk5 in young transgenic animals does not induce tau hyperphosphorylation at sites recognized by the antibodies AT8, AT100, PHF-1, and TG3. In fact, we observed that Cdk5 over-activation leads to inhibition of GSK3. However, in old transgenic animals the inhibition of GSK3 is lost and results in increased GSK3 activity, which coincides with tau hyperphosphorylation at the AT8 and PHF-1 sites. Pharmacological inhibition of GSK3 in old transgenic mice by chronic treatment with lithium leads to a reduction of the age-dependent increase in tau hyperphosphorylation. Furthermore, we found that Cdk5, GSK3, and PP2A co-immunoprecipitate, suggesting a functional association of these molecules. Together, these results reveal the role of GSK3 as a key mediator of tau hyperphosphorylation, whereas Cdk5 acts as a modulator of tau hyperphosphorylation via the inhibitory regulation of GSK3. Furthermore, these findings suggest that disruption of regulation of GSK3 activity underlies tau hyperphosphorylation in neurodegenerative tauopathies. Hence, GSK3 may be a prime target for therapeutic intervention in tauopathies including Alzheimer disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号