首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein synthesis in vitro by etioplasts and chloroplasts from Phaseolus vulgaris was examined to study the factors regulating the development of etioplasts into chloroplasts. The properties of incorporation of (14)C-leucine into protein by etioplasts from plants grown 6.5 days in darkness are similar to those of chloroplasts from plants of the same age that were illuminated for 12 hours. However, the rate of incorporation per plastid by chloroplasts is 4 times higher than the rate of amino acid incorporation by etioplasts. When 6-day-old plants are placed in light, this 4-fold increase occurs within 6 hours and is maintained up to 36 hours. The difference in rate of amino acid incorporation into protein between etioplasts and chloroplasts represents a real difference in the ability of etioplasts and chloroplasts to synthesize protein. A difference in pool size of leucine between etioplasts and chloroplasts does not account for the difference in amino acid incorporation between etioplasts and chloroplasts. Also the difference in photosynthetic capabilities of etioplasts and chloroplasts does not account for the difference in the ability to incorporate amino acid into protein. Furthermore, there are no factors in homogenates of etiolated leaves which inactivate amino acid incorporation into protein by chloroplasts. The difference in rates of amino acid incorporation between etioplasts and chloroplasts is correlated with the state of development of the plastids. The plastids have increased ability to incorporate amino acid into protein when the plastids are undergoing growth and differentiation.  相似文献   

2.
Etioplasts capable of incorporating 14C-leucine into protein have been isolated from dark-grown pea and wheat plants. The requirements for leucine incorporation for etioplasts were similar to those for chloroplasts. An ATP-generating system, Mg2+, and GTP were required. The amino-acid-incorporation activity of etioplasts from wheat was comparable to that of chloroplasts on an RNA basis, whereas the activity of pea etioplasts was about 50% of the activity of pea chloroplasts. The incorporation of leucine into protein by etioplasts and chloroplasts from pea and wheat was inhibited by chloramphenicol, and to a slight extent by cycloheximide.  相似文献   

3.
Chlorophyll synthesis in barley is controlled by two different light-dependent NADPH:protochlorophyllide oxidoreductases, termed PORA and PORB. PORA is present abundantly in etioplasts but selectively disappears soon after the beginning of illumination. This negative light effect is mediated simultaneously at three different levels. First, the concentration of porA mRNA declines drastically during illumination of dark-grown seedlings. Second, the plastids' ability to import the precursor of PORA (pPORA) is reduced during the transition from etioplasts to chloroplasts. This effect is due to a rapid decline in the plastidic level of protochlorophyllide (Pchlide), which is required for the translocation of the pPORA. Third, PORA becomes selectively destabilized in illuminated seedlings. When illuminated, PORA-Pchlide-NADPH complexes formed in the dark photoreduce their Pchlide to Chlide and become simultaneously susceptible to attack by plastid proteases. The PORA-degrading protease activity is not detectable in etioplasts but is induced during illumination. In contrast to PORA, the second Pchlide-reducing enzyme, PORB, remains operative in both illuminated and green plants. Its translocation into plastids does not depend on its substrate, Pchlide.  相似文献   

4.
Isolation and incubation conditions were established for Petunia hybrida chloroplasts capable of performing in vitro protein and RNA synthesis. Under these conditions, chloroplasts from leaves as well as from the non-photoautotrophic mutant green cell culture AK-2401 are able to incorporate labeled amino acids into polypeptides. Intact chloroplasts can use light as an energy source; photosynthetically-inactive chloroplasts require the addition for ATP for this protein synthesis. Sodium dodecylsulphate polyacrylamide slab gel electrophoresis shows that in isolated leaf chloroplasts at least twenty-five radioactive polypeptide species are synthesized. The three major products synthesized have molecular weights of 52,000, 32,000 and 17,000. Coomassie brilliant-bluestained polypeptide patterns from plastids isolated from the mutant green cell culture AK-2401 differ considerably from those obtained from leaf chloroplasts. The pattern of radioactive polypeptides synthesized in these isolated cell culture plastids also shows differences. These results indicate that the difference in developmental stage observed between plastids from the cell culture AK-2401 and leaves is reflected in an altered expression of the chloroplast DNA.Abbreviations CAP D-threo-chloramphenicol - 2,4-D 2,4-dichlorophenoxyacetic acid - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - RuBPCase ribulose-1,5-bisphosphate carboxylase - SDS sodium dodecylsulphate  相似文献   

5.
The function of plastid ribosomes in pea (Pisum sativum L.) was investigated by characterizing the products of protein synthesis in vitro in plastids isolated at different stages during the transition from etioplast to chloroplast. Etioplasts and plastids isolated after 24, 48 and 96h of greening in continuous white light, use added ATP to incorporate labelled amino acids into protein. Plastids isolated from greening leaves can also use light as the source of energy for protein synthesis. The labelled polypeptides synthesized in isolated plastids were analysed by electrophoresis in sodium dodecyl sulphate-ureapolyacrylamide gels. Six polypeptides are synthesized in etioplasts with ATP as energy source. Only one of these polypeptides is present in a 150 000g supernatant fraction. This polypeptide has been identified as the large subunit of Fraction I protein (3-phospho-D-glycerate carboxylyase EC 4.1.1.39) by comparing the tryptic 'map' of its L-(35S)methionine-labelled peptides with the tryptic 'map' of large subunit peptides from Fraction I labelled with L-(35S)methionine in vivo. The same gel pattern of six polypeptides is seen when plastids isolated from greening leaves are incubated with either added ATP or light as the energy source. However, the rates of synthesis of particular polypeptides are different in plastids isolated at different stages of the etioplast to chloroplast transition. The results support the idea that plastid ribosomes synthesize only a small number of proteins, and that the number and molecular weight of these proteins does not alter during the formation of chloroplasts from etioplasts.  相似文献   

6.
Radiolabeled pyruvate, glucose, glucose-6-phosphate, acetate, and malate are all variously utilized for fatty acid and glycerolipid biosynthesis by isolated pea (Pisum sativum L.) root plastids. At the highest concentrations tested (3-5mM), the rates of incorporation of these precursors into fatty acids were 183, 154, 125, 99 and 57 nmol h-1 mg-1 protein, respectively. In all cases, cold pyruvate consistently caused the greatest reduction, whereas cold acetate consistently caused the least reduction, in the amounts of each of the other radioactive precursors utilized for fatty acid biosynthesis. Acetate incorporation into fatty acids was approximately 55% dependent on exogenously supplied reduced nucleotides (NADH and NADPH), whereas the utilization of the remaining precursors was only approximately 10 and 20% dependent on added NAD(P)H. In contrast, the utilization of all precursors was greatly dependent (85-95%) on exogenously supplied ATP. Palmitate, stearate, and oleate were the only fatty acids synthesized from radioactive precursors. Higher concentrations of each precursor caused increased proportions of oleate and decreased proportions of palmitate synthesized. Radioactive fatty acids from all precursors were incorporated into glycerolipids. The data presented indicate that the entire pathway from glucose, including glycolysis, to fatty acids and glycerolipids is operating in pea root plastids. This pathway can supply both carbon and reduced nucleotides required for fatty acid biosynthesis but only a small portion of the ATP required  相似文献   

7.
The enzyme catalysing the reduction of protochlorophyllide (Pchlide) to chlorophyllide (Chlide), NADPH:Pchlide oxidoreductase (POR; EC 1.6.99.1), is a nuclear-encoded protein that is post-translationally imported to the plastid. In barley and Arabidopsis thaliana , the reduction of Pchlide is controlled by two different PORs, PORA and PORB. To characterise the possible Pchlide dependency for the import reaction, radiolabelled precursor proteins of barley PORA and PORB (pPORA and pPORB, respectively) were used for in vitro assays with isolated plastids of barley and pea with different contents of Pchlide. To obtain plastids with different endogenous levels of Pchlide, several methods were used. Barley plants were grown in darkness or in greenhouse conditions for 6 days. Alternatively, greenhouse-grown pea plants were incubated for 4 days in darkness before plastid isolation, or chloroplasts isolated from greenhouse-grown plants were incubated with Δ -aminolevulinic acid (ALA), an early precursor in the Chl biosynthesis resulting in elevated Pchlide contents in the plastids. Both barley pPORA and pPORB were effectively imported into barley and pea chloroplasts isolated from the differentially treated plants, including those isolated from greenhouse-grown plants. The absence or presence of Pchlide did not significantly affect the import capacity of barley pPORA or pPORB. Assays performed on stroma-enriched fractions from chloroplasts and etioplasts of barley indicated that no post-import degradation of the proteins occurred in the stroma, irrespective of whether the incubation was performed in darkness or in light.  相似文献   

8.
The key regulatory enzyme of chlorophyll biosynthesis in higher plants, the light-dependent NADPH:protochlorophyllide oxidoreductase (POR), is a nuclear-encoded plastid protein. Its post-translational transport into plastids is determined by its substrate. The precursor of POR (pPOR) is taken up and processed to mature size by plastids only in the presence of protochlorophyllide (Pchlide). In etioplasts, the endogenous level of Pchlide saturates the demands for pPOR translocation. During the light-induced transformation of etioplasts into chloroplasts, the Pchlide concentration declined drastically, and isolated chloroplasts rapidly lost the ability to import the precursor enzyme. The chloroplasts' import capacity for the pPOR, however, was restored when their intraplastidic level of Pchlide was raised by incubating the organelles in the dark with delta-aminolevulinic acid, a common precursor of tetrapyrroles. Additional evidence for the involvement of intraplastidic Pchlide in regulating the transport of pPOR into plastids was provided by experiments in which barley seedlings were grown under light/dark cycles. The intraplastidic Pchlide concentration in these plants underwent a diurnal fluctuation, with a minimum at the end of the day and a maximum at the end of the night period. Chloroplasts isolated at the end of the night translocated pPOR, whereas those isolated at the end of the day did not. Our results imply that the Pchlide-dependent transport of the pPOR into plastids might be part of a novel regulatory circuit by which greening plants fine tune both the enzyme and pigment levels, thereby avoiding the wasteful degradation of the imported pPOR as well as photodestruction of free Pchlide.  相似文献   

9.
Abstract. H14CO3 was not incorporated into fatty acids by isolated pea leaf chloroplasts, which, therefore, do not possess a self-contained pathway for the synthesis of fatty acids from early intermediates of the Calvin cycle. Citrate, pyruvate, acetate and L-acetylcarnitine were all shown to act as sources of acetyl groups for fatty acid synthesis by pea leaf chloroplasts. L-acetylcarnitine was the best substrate, being incorporated into fatty acids at rates that were at least five-fold higher than those achieved with the other substrates. Citrate was incorporated into fatty acids at the lowest rate, followed by pyruvate, with acetate being incorporated at the second highest rate of all. When the isolated chloroplasts were ruptured, an inhibition of L-acetylcarnitine incorporation into fatty acids was noted, whilst acetate incorporation remained unaffected. L-acetylcarnitine also increased the ratio of monoenoic: saturated fatty acids synthesized, compared with a 1:1 ratio observed when citrate, pyruvate and acetate were supplied as substrates. It is suggested that L-carnitine and carnitine acyltransferases play a central role in plant acyl CoA metabolism by facilitating the transfer of activated acyl groups across membranes (acyl CoA barriers).  相似文献   

10.
The plastids from seedlings of the parasitic angiospermCuscuta japonica were ultrastructurally investigated. In shoot subapical cells from 3-d-old seedlings grown in the dark, the etioplasts contained prolamellar bodies and amorphous and dense inclusions. In the shoot subapical cells obtained from 6-d-old seedlings grown under light conditions for the last 3 d, the underdeveloped chloroplasts contained phytoferritin within the stroma as well as amorphous and dense inclusions that were limited by the thylakoid membranes. In the developing chloroplasts, electron-dense materials were detected within the transversely sectioned thylakoid lumens. This dense material presented two different images, depending upon the sectional plane. When transversely prepared, the materials appeared as somewhat thick, linear structures, whereas longitudinally sectioned thylakoids revealed very large crystalline inclusions. In the developed chloroplasts, the amounts of electron-dense material or crystalline inclusions were remarkably reduced in the thylakoid lumens, which were electron-translucent. Far fewer crystalline inclusions were observed in the developed chloroplasts of seedlings than in the developing chloroplasts. These results suggest that the crystalline inclusions may be temporarily reserved within the thylakoid lumens of chloroplasts in the Gjaponica seedlings.  相似文献   

11.
12.
Plastids isolated from developing leaves and embryos of oilseed rape (Brassica napus L.) were incubated with substrates in the light or the dark, with or without exogenous ATP. Incorporation of HCO-3, and carbon from a range of substrates into fatty acids and/or starch by leaf chloroplasts was absolutely light-dependent and was unaffected by provision of ATP. Incorporation of HCO-3 into fatty acids and/or starch by embryo plastids was also light-dependent. However, the light-dependent rates attained, when expressed on a comparable basis, were less than 32% of those from Glc6P (plus ATP), which was the most effective substrate for starch and fatty acid synthesis. In the light alone the rates of carbon incorporation from Glc6P, pyruvate and acetate into fatty acids, and from Glc6P into starch by embryo plastids were less than 27% of the respective ATP-dependent (dark) rates. Light had no effect on these ATP-dependent rates of synthesis by embryo plastids. While transporter activities for both glucose and Glc6P were present in embryo plastids, leaf chloroplasts did not have the latter activity. It is concluded that light at in vivo levels can contribute energy to carbon metabolism in embryo plastids. However, this contribution is likely to be small and these plastids are therefore largely dependent upon interaction with the cytosol for the ATP, reducing power and carbon precursors that are required for maximal rates of starch and fatty acid synthesis.  相似文献   

13.
Dark-grown pea seedlings (Pisum sativum L.) were irradiated for a short period each day with low intensity red light (662 nm), red light immediately followed by far red light (730 nm), or far red light alone. Other plants were transferred to a white light regime (14 hours light/10 hours dark). There was no change in the amount of RNA in the tissue on a fresh weight basis after the various treatments. However, compared with dark-grown seedlings, those plants irradiated with red light showed an increase in the net RNA content per stem apex. In addition there was a two- to three-fold increase in ribosomal RNA of the etioplasts relative to the total ribosomal RNA. These increases were comparable to those found in plants grown in the white light regime. The changes were much smaller if the dark-grown plants were irradiated either with red light followed by far red light, or with far red light alone. Thus continuous light is not essential for the production of ribosomal RNA in plastids, and the levels of ribosomal RNA found in chloroplasts can also be attained in etioplasts of pea leaves in the dark provided the leaf phytochrome is maintained in its active form.  相似文献   

14.
The aim of this work was to determine in what form carbon destined for starch synthesis crosses the membranes of plastids in developing pea (Pisum sativum L.) embryos. Plastids were isolated mechanically and incubated in the presence of ATP with the following 14C-labelled substrates: glucose, fructose, glucose 6-phosphate, glucose 1-phosphate, fructose 6-phosphate, fructose 1,6-bisphosphate, dihydroxyacetone phosphate. Glucose 6-phosphate was the only substrate that supported physiologically relevant rates of starch synthesis. Incorporation of label from glucose 6-phosphate into starch was dependent upon the integrity of the plastids and the presence of ATP. The rate of incorporation approached saturation at a glucose 6-phosphate concentration of less than 1 mM. It is argued that glucose 6-phosphate is likely to enter the plastid as the source of carbon for starch synthesis in vivo.Abbreviations ADPG PPase ADP-glucose pyrophosphorylase - DHAP dihydroxyacetone phosphate  相似文献   

15.
Spinach chloroplasts, isolated by techniques yielding preparations with high O2- evolving activity, showed rates of light-dependent acetate incorporation into lipids 3-4 fold higher than any previously reported. Incorporation rates as high as 500 nmol of acetate/h per mg of chlorophyll were measured in buffered sorbitol solutions containing only NaHCO3 and [1-14C]acetate, and as high as 800 nmol/h per mg of chlorophyll when 0.13 mM-Triton X-100 was also included in the reaction media. The fatty acids synthesized were predominantly oleic (70-80% of the total fatty acid radioactivity) and palmitic (20-25%) with only minor amounts (1-5%) of linoleic acid. Linolenic acid synthesis was not detected in the system in vitro. Free fatty acids accounted for 70-90% of the radioactivity incorporated and the remainder was shared fairly evenly between 1,2-diacylglycerols and polar lipids. Oleic acid constituted 80-90% of the free fatty acids synthesized, but the diacylglycerols and polar lipids contained slightly more palmitic acid than oleic acid. Triton X-100 stimulated the synthesis of diacylglycerols 3-6 fold, but stimulated free fatty acid synthesis only 1-1.5-fold. Added glycerol 1-phosphate stimulated both the synthesis of diacylglycerols and palmitic acid relative to oleic acid, but did not increase acetate incorporation into total chloroplast lipids. CoA and ATP, when added separately, stimulated acetate incorporation into chloroplast lipids to variable extents and had no effect on the types of lipid synthesized, but when added together resulted in 34% of the incorporated acetate appearing in long-chain acyl-CoA. Pyruvate was a much less effective precursor of chloroplast fatty acids than was acetate.  相似文献   

16.
Chloroplast biogenesis is a multistage process leading to fully differentiated and functionally mature plastids. Complex analysis of chloroplast biogenesis was performed on the structural and functional level of its organization during the photoperiodic plant growth after initial growth of seedlings in the darkness. We correlated, at the same time intervals, the structure of etioplasts transforming into mature chloroplasts with the changes in the photosynthetic protein levels (selected core and antenna proteins of PSI and PSII) and with the function of the photosynthetic apparatus in two plant species: bean (Phaseolus vulgaris L.) and pea (Pisum sativum L). We selected these plant species since we demonstrated previously that the mature chloroplasts differ in the thylakoid organization. We showed that the protein biosynthesis as well as photosynthetic complexes formation proceeds gradually in both plants in spite of periods of darkness. We found that both steady structural differentiation of the bean chloroplast and reformation of prolamellar bodies in pea were accompanied by a gradual increase of the photochemical activity in both species. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.  相似文献   

17.
A substituted pyridazinone (BASF 13-338) inhibited photosynthesis in spinach (Spinacia oleracea, Hybrid 102 Arthur Yates Ltd.) leaf discs and reduced the incorporation of [1-14C]acetate into trienoic acids of diacylgalactosylglycerol while causing radioactivity to accumulate in diacylgalac-tosylglycerol dienoic acids. Although BASF 13-338 inhibited photosynthesis in isolated spinach chloroplasts, it did not prevent dienoate desaturation. In discs, the labeling of fatty acids was affected by the inhibitor only in diacylgalactosylglycerol. Very little radioactivity was incorporated into trienes of phosphatidylcholine and the proportion of the label recovered in the fatty acids of phosphatidylcholine was not changed by BASF 13-338. The herbicides caused an increase in the proportion of the lipid 14C incorporated into diacylgalactosylglycerol and a decrease in labeling of phosphatidylcholine, whereas the proportion of 14C recovered in other lipids remained unchanged. Similar results were obtained with pea (Pisum sativum cv. Victory Freeze), linseed (Linum usitatissimum cv. Punjab), and wheat (Triticum aestivum cv. Karamu). With these species, a greater proportion of the label was incorporated into phosphatidylcholine and less into diacylgalactosylglycerol than with spinach. The data indicate that trienoate synthesis uses diacylgalactosylglycerol as substrate. BASF 13-338 appears to act at that step, and seems to cause in spinach a shift in polyenoate synthesis from the pathway involving microsomal phosphatidylcholine to the pathway operating inside the chloroplast.  相似文献   

18.
Lipid biosynthesis in relation to chloroplast development in barley   总被引:12,自引:0,他引:12  
During greening of detached leaves from dark-grown barley seedlings, the linolenic acid content of the lipids increases in the early stages of the formation of the chloroplast lamellar system. Primarily the fraction containing monogalactosyl diglyceride is enriched with linolenic acid. Incorporation of (14)C-labeled acetate into the leaf lipids of detached whole leaves is low, but increases 10- to 20-fold during greening. Increasing percentages of label appear in linolenic acid during the first 15 hr of greening, whereafter they remain constant. A constant, relatively high amount of acetate is incorporated into lipids when slices of leaves at various stages of greening are incubated by submersion in acetate solution, a treatment that blocks further chlorophyll synthesis during incubation. At the initial greening stages 75% of the label is channeled into steroids and other unsaponifiable lipids, but in advanced stages of chloroplast development 75% of the incorporated acetate is built into phospho-, sulfo- and galacto-lipids, and only 25% is channeled into unsaponifiable lipids. Experimental variation of the physiological conditions of the tissue during incubation resulted in differences in the amount of label found in the various phospho- and galacto-lipids. The amounts of labeling of the individual fatty acids in the lipid classes studied differ markedly and could be changed by varying the conditions of incubation. Labeling of linolenic acid was found to be highest in the monogalactosyl diglyceride fraction at all stages of greening.  相似文献   

19.
Dark-grown pea seedlings exposed to cyclic heat shocks or daily temperature changes undergo a morphogenetic development similar to that induced by far red light. The morphological changes observed include expansion of the leaves, shortening of the stems and opening of the hooks. Compared with control etioplasts, plastids of heat-treated seedlings are as large as fully mature chloroplasts and contain well developed, unstacked membranes. These morphogenetic changes correlate with elevated levels of SSU and LHCP mRNAs which, under these conditions, fluctuate in a circadian manner. In contrast, the ELIP mRNA remains under strict light control and shows circadian fluctuations only if the plants are exposed to a short period of illumination. We propose that periodic temperature changes, like light treatment, might serve as a 'Zeitgeber' signal for circadian rhythm. The data indicate a correlation between the existence of circadian oscillations and morphogenetic development.  相似文献   

20.
Cell cultures allow rapid kinetic labeling experiments that can provide information on precursor-product relationships and intermediate pools. T-87 suspension cells are increasingly used in Arabidopsis (Arabidopsis thaliana) research, but there are no reports describing their lipid composition or biosynthesis. To facilitate application of T-87 cells for analysis of glycerolipid metabolism, including tests of gene functions, we determined composition and accumulation of lipids of light- and dark-grown cultures. Fatty acid synthesis in T-87 cells was 7- to 8-fold higher than in leaves. Similar to other plant tissues, phosphatidylcholine (PC) and phosphatidylethanolamine were major phospholipids, but galactolipid levels were 3- to 4-fold lower than Arabidopsis leaves. Triacylglycerol represented 10% of total acyl chains, a greater percentage than in most nonseed tissues. The initial steps in T-87 cell lipid assembly were evaluated by pulse labeling cultures with [(14)C]acetate and [(14)C]glycerol. [(14)C]acetate was very rapidly incorporated into PC, preferentially at sn-2 and without an apparent precursor-product relationship to diacylglycerol (DAG). By contrast, [(14)C]glycerol most rapidly labeled DAG. These results indicate that acyl editing of PC is the major pathway for initial incorporation of fatty acids into glycerolipids of cells derived from a 16:3 plant. A very short lag time (5.4 s) for [(14)C]acetate labeling of PC implied channeled incorporation of acyl chains without mixing with the bulk acyl-CoA pool. Subcellular fractionation of pea (Pisum sativum) leaf protoplasts indicated that 30% of lysophosphatidylcholine acyltransferase activity colocalized with chloroplasts. Together, these data support a model in which PC participates in trafficking of newly synthesized acyl chains from plastids to the endoplasmic reticulum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号