共查询到20条相似文献,搜索用时 15 毫秒
1.
Smith IF Plant LD Boyle JP Skinner RA Pearson HA Peers C 《Journal of neurochemistry》2003,85(5):1109-1116
Prolonged hypoxia exerts profound effects on cell function, and has been associated with increased production of amyloid beta peptides (A beta Ps) of Alzheimer's disease. Here, we have investigated the effects of chronic hypoxia (2.5% O2, 24 h) on capacitative Ca2+ entry (CCE) in primary cultures of rat type-I cortical astrocytes, and compared results with those obtained in astrocytes exposed to A beta Ps. Chronic hypoxia caused a marked enhancement of CCE that was observed after intracellular Ca2+ stores were depleted by bradykinin application or by exposure to thapsigargin (1 microM). Exposure of cells for 24 h to 1 microM A beta P(1-40) did not alter CCE. Enhancement of CCE was not attributable to cell hyperpolarization, as chronically hypoxic cells were significantly depolarized as compared with controls. Mitochondrial inhibition [by FCCP (10 microM) and oligomycin (2.5 microg/mL)] suppressed CCE in all three cell groups, but more importantly there were no significant differences in the magnitude of CCE in the three astrocyte groups under these conditions. Similarly, the antioxidants melatonin and Trolox abolished the enhancement of CCE in hypoxic cells. Our results indicate that chronic hypoxia augments CCE in cortical type-I astrocytes, a finding which is not mimicked by A beta P(1-40) and appears to be dependent on altered mitochondrial function. 相似文献
2.
The operation of capacitative Ca(2+) entry (CCE) in human breast cancer (SKBR3) and non-tumorigenic (HBL100) cell lines was investigated as an alternative Ca(2+) entry route in these cells. Ca(2+) readdition after thapsigargin-induced store depletion showed activation of CCE in both cell lines. SKBR3 cells exhibited retarded store depletion and CCE decay kinetics compared to the non-tumorigenic HBL100 cells, suggesting alterations in Ca(2+) homeostasis. CCE was also highly permeable to Mn(2+) and to a lesser extent to Sr(2+), but not to Ba(2+). In HBL100 cells, CCE is contributed (30%) by a Ca(2+)/Mn(2+) permeable route insensitive to low (1 microM) Gd(3+) and a Ca(2+)/Sr(2+)/Mn(2+) permeable non-selective pathway (70%) sensitive to 1 microM Gd(3+). In SKBR3 cells, the relative contribution to CCE of both routes was opposite to that in non-tumorigenic cells. 相似文献
3.
Yagodin Sergey Holtzclaw Lynne A. Russell James T. 《Molecular and cellular biochemistry》1995,149(1):137-144
We have analysed Ca2+ waves induced by norepinephrine in rat cortical astrocytes in primary culture using fluorescent indicators fura-2 or fluo-3. The temporal pattern of the average [Ca2+]i responses were heterogeneous from cell to cell and most cells showed an oscillatory response at concentrations of agonist around EC50 (200 nM). Upon receptor activation, [Ca2+]i signals originated from a single cellular locus and propagated throughout the cell as a wave. Wave propagation was supported by specialized regenerative calcium release loci along the length of the cell. The periods of oscillations, amplitudes, and the rates of [Ca2+]i rise of these subcellular oscillators differ from each other. These intrinsic kinetic properties of the regenerative loci support local waves when stimulation is continued over long periods of time. The presence of local waves at specific, invariant cellular sites and their inherent kinetic properties provide for the unique and reproducible pattern of response seen in a given cell. We hypothesize that these loci are local specializations in the endoplasmic reticulum where the magnitude of the regenerative Ca2+ release is higher than other regions of the cell. Removal of extracellular Ca2+ or blockade of Ca2+ channels by inorganic cations (Cd2+ and Ni2+) during stimulation of adrenergic receptors alter the sustained plateau component of the [Ca2+]i response. In the absence of Ca2+ release, due to store depletion with thapsigargin, agonist occupation alone does not induce Ca2+ influx in astrocytes. This finding suggests that, under these conditions, receptor-operated Ca2+ entry is not operative. Furthermore, our experiments provide evidence for local Ca2+ oscillations in cells which can support both wave propagation as well as spatially discrete Ca2+ signalling. 相似文献
4.
We investigated the existence of a capacitative Ca2+ entry (CCE) pathway in ROS 17/2.8 osteoblast-like cells and its responsiveness to 1,25-dihydroxy-vitamin D3 [1,25(OH)2D3]. Depletion of inner Ca2+ stores with thapsigargin or 1,25(OH)2D3 in the absence of extracellular Ca2+ transiently elevated cytosolic Ca2+ ([Ca2+]i); after recovery of basal values, Ca2+ re-addition to the medium markedly increased Ca2+ entry, reflecting pre-activation of a CCE pathway. Recovery of the Ca2+ overshoot that followed the induced CCE was mainly mediated by the plasma membrane Ca2+-ATPase. Addition of 1,25(OH)2D3 to the declining phase of the thapsigargin-induced CCE did not modify further [Ca2+]i, indicating that steroid activation of CCE was dependent on store depletion. Pre-treatment with 1 microM Gd3+ inhibited 30% both thapsigargin- and 1,25(OH)2D3-stimulated CCE, whereas 2.5 microM Gd3+ was required for maximal inhibition ( approximately 85%). The activated CCE was permeable to both Mn2+ and Sr2+. Mn2+ entry sensitivity to Gd3+ was the same as that of the CCE. However, 1-microM Gd3+ completely prevented capacitative Sr2+ influx, whereas subsequent Ca2+ re-addition was reduced only 30%. These results suggest that in ROS 17/2.8 cells CCE induced by thapsigargin or 1,25(OH)2D3 is contributed by at least two cation entry pathways: a Ca2+/Mn2+ permeable route insensitive to very low micromolar (1 microM) Gd3+ accounting for most of the CCE and a minor Ca2+/Sr2+/Mn2+ permeable route highly sensitive to 1 microM Gd3+. The Ca2+-mobilizing agonist ATP also stimulated CCE resembling the Ca2+/Sr2+/Mn2+ permeable entry activated by 1,25(OH)2D3. The data demonstrates for the first time, the presence of a hormone-responsive CCE pathway in an osteoblast cell model, raising the possibility that it could be an alternative Ca2+ influx route through which osteotropic agents influence osteoblast Ca2+ homeostasis. Copyright Wiley-Liss, Inc. 相似文献
5.
细胞内钙库排空产生一种信号,诱导细胞膜上的钙库操纵的钙通道(SOC)开放,使Ca^2 由细胞外进入细胞内,称为容量性钙内流(CCE),或钙释放激活的钙通道(CRAC),可能由果蝇一过性受体电位(trp)和trp样(trpl)基因编码,钙库排空和通道开放之间的偶联机制不清,目前主要提出三种机制:(1)弥散信使;(2)蛋白质-蛋白质之间的相互作用;(3)囊泡分泌。本文综述了CCE的分子代表 ,可能机制及电生理表型。 相似文献
6.
Microfluorimetric measurements of intracellular calcium ion concentration [Ca(2+)](i) were employed to examine the effects of chronic hypoxia (2.5% O(2), 24 h) on Ca(2+) stores and capacitative Ca(2+) entry in human neuroblastoma (SH-SY5Y) cells. Activation of muscarinic receptors evoked rises in [Ca(2+)](i) which were enhanced in chronically hypoxic cells. Transient rises of [Ca(2+)](i) evoked in Ca(2+)-free solutions were greater and decayed more slowly following exposure to chronic hypoxia. In control cells, these transient rises of [Ca(2+)](i) were also enhanced and slowed by removal of external Na(+), whereas the same manoeuvre did not affect responses in chronically hypoxic cells. Capacitative Ca(2+) entry, observed when re-applying Ca(2+) following depletion of intracellular stores, was suppressed in chronically hypoxic cells. Western blots revealed that presenilin-1 levels were unaffected by chronic hypoxia. Exposure of cells to amyloid beta peptide (1-40) also increased transient [Ca(2+)](i) rises, but did not mimic any other effects of chronic hypoxia. Our results indicate that chronic hypoxia causes increased filling of intracellular Ca(2+) stores, suppressed expression or activity of Na(+)/Ca(2+) exchange and reduced capacitative Ca(2+) entry. These effects are not attributable to increased amyloid beta peptide or presenilin-1 levels, but are likely to be important in adaptive cellular remodelling in response to prolonged hypoxic or ischemic episodes. 相似文献
7.
8.
Evidence on the operation of ATP-induced capacitative calcium entry in breast cancer cells and its blockade by 17beta-estradiol 总被引:1,自引:0,他引:1
Little is known about the regulation of cytosolic calcium Ca(2+) levels ([Ca(2+)](i)) in breast cancer cells. We investigated the existence of capacitative calcium entry (CCE) in the tumorigenic cell line MCF-7 and its responsiveness to ATP. MCF-7 cells express purinergic receptors as well as estrogen receptors (ER). Depletion of calcium stores with thapsigargin (TG, 500 nM) or ATP (10 microM) in the absence of extracellular Ca(2+), resulted in a rapid and transient elevation in [Ca(2+)](i). After recovery of basal levels, Ca(2+) readmission (1.5 mM) to the medium increased Ca(2+) influx (twofold over basal), reflecting pre-activation of a CCE pathway. Cells pretreated with TG were unable to respond to ATP, thus indicating that the same Ca(2+) store is involved in their response. Moreover, IP(3)-dependent ATP-induced calcium mobilization and CCE were completely blocked using compound U-73122, an inhibitor of phospholipase C. Compound 2-APB (75 microM) and Gd(3+) (10 microM), antagonists of the CCE pathway, completely prevented ATP-stimulated capacitative Ca(2+) entry. CCE in MCF-7 cells was highly permeable to Mn(2+) and to the Ca(2+) surrogate Sr(2+). Mn(2+) entry sensitivity to Gd(3+) matched that of the Ca(2+) entry pathway. 17Beta-estradiol blocked ATP-induced CCE, but was without effect on TG-induced CCE. Besides, the estrogen blockade of the ATP-induced CCE was completely abolished by preincubation of the cells with an ER monoclonal antibody. ER alpha immunoreactivity could also be detected in a purified plasma membrane fraction of MCF-7 cells. These results represent the first evidence on the operation of a ATP-responsive CCE pathway in MCF-7 cells and also indicate that 17beta-estradiol interferes with this mechanism by acting at the cell surface level. 相似文献
9.
10.
Involvement of TRPC in the abnormal calcium influx observed in dystrophic (mdx) mouse skeletal muscle fibers 总被引:19,自引:0,他引:19
Vandebrouck C Martin D Colson-Van Schoor M Debaix H Gailly P 《The Journal of cell biology》2002,158(6):1089-1096
Duchenne muscular dystrophy results from the lack of dystrophin, a cytoskeletal protein associated with the inner surface membrane, in skeletal muscle. The absence of dystrophin induces an abnormal increase of sarcolemmal calcium influx through cationic channels in adult skeletal muscle fibers from dystrophic (mdx) mice. We observed that the activity of these channels was increased after depletion of the stores of calcium with thapsigargin or caffeine. By analogy with the situation observed in nonexcitable cells, we therefore hypothesized that these store-operated channels could belong to the transient receptor potential channel (TRPC) family. We measured the expression of TRPC isoforms in normal and mdx adult skeletal muscles fibers, and among the seven known isoforms, five were detected (TRPC1, 2, 3, 4, and 6) by RT-PCR. Western blot analysis and immunocytochemistry of normal and mdx muscle fibers demonstrated the localization of TRPC1, 4, and 6 proteins at the plasma membrane. Therefore, an antisense strategy was used to repress these TRPC isoforms. In parallel with the repression of the TRPCs, we observed that the occurrence of calcium leak channels was decreased to one tenth of its control value (patch-clamp technique), showing the involvement of TRPC in the abnormal calcium influx observed in dystrophic fibers. 相似文献
11.
The role of intracellular Ca2+ stores and capacitative Ca2+ entry on EGF-induced cell proliferation was investigated in mouse mammary epithelial cells. We have previously demonstrated that EGF enhances Ca2+ mobilization (release of Ca2+ from intracellular Ca2+ stores) and capacitative Ca2+ entry correlated with cell proliferation in mouse mammary epithelial cells. To confirm their role on EGF-induced cell cycle progression, we studied the effects of 2,5-di-tert-butylhydroquinone (DBHQ), a reversible inhibitor of the Ca2+ pump of intracellular Ca2+ stores, and SK&F 96365, a blocker of capacitative Ca2+ entry, on mitotic activity induced by EGF. Mitotic activity was examined using an antibody to PCNA for immunocytochemistry. SK&F 96365 inhibited capacitative Ca2+ entry in a dose-dependent manner (I50: 1-5 microM). SK&F 96365 also inhibited EGF-induced cell proliferation in the same range of concentration (I50: 1-5 microM). DBHQ suppressed [Ca2+]i response to UTP and thus depleted completely Ca2+ stores at 5 microM. DBHQ also inhibited EGF-induced cell proliferation at an I50 value of approximately 10 microM. The removal of these inhibitors from the culture medium increased the reduced mitotic activity reversibly. Using a fluorescent assay of DNA binding of ethidium bromide, no dead cells were detected in any of the cultures. These results indicate that the inhibitory effects of SK&F 96365 and DBHQ on cell proliferation were due to the inhibition of capacitative Ca2+ entry and Ca2+ mobilization suggesting the importance of capacitative Ca2+ entry and Ca2+ mobilization in the control of EGF-induced cell cycle progression in mouse mammary epithelial cells. 相似文献
12.
Chinopoulos C Gerencser AA Doczi J Fiskum G Adam-Vizi V 《Journal of neurochemistry》2004,91(2):471-483
Exposure of neurones in culture to excitotoxic levels of glutamate results in an initial transient spike in [Ca2+]i followed by a delayed, irreversible [Ca2+]i rise governed by rapid kinetics, with Ca2+ originating from the extracellular medium. The molecular mechanism responsible for the secondary Ca2+ rise is unknown. Here, we report that the delayed Ca2+ entry in cortical neurones is diminished by 2-aminoethoxydiphenyl borate (2-APB: IC50 = 62 +/- 9 microm) and La3+ (IC50 = 7.2 +/- 3 microm), both known to inhibit transient receptor potential (TRP) and store-operated Ca2+ (SOC) channels. Application of thapsigargin, however, failed to exacerbate the delayed Ca2+ deregulation, arguing against a store depletion event as the stimulus for induction of the secondary [Ca2+]i rise. In addition, these neurones did not exhibit SOC entry. Unexpectedly, application of ryanodine or caffeine significantly inhibited glutamate-induced delayed Ca2+ deregulation. In basal Ca2+ entry experiments, La3+ and 2-APB modulated the rapid rise in [Ca2+]i caused by exposure of neurones to Ca2+ after pre-incubating in a calcium-free medium. This basal Ca2+ influx was mitigated by extracellular Mg2+ but not aggravated by thapsigargin, ryanodine or caffeine. These results indicate that 2-APB and La3+ influence non-store-operated Ca2+ influx in cortical neurones and that this route of Ca2+ entry is involved in glutamate-induced delayed Ca2+ deregulation. 相似文献
13.
The correct spatial and temporal control of Ca2+ signaling is essential for such cellular activities as fertilization, secretion, motility, and cell division. There has been a long-standing interest in the role of caveolae in regulating intracellular Ca2+ concentration. In this review we provide an updated view of how caveolae may regulate both Ca2+ entry into cells and Ca2+ -dependent signal transduction 相似文献
14.
The regulatory mechanism of Ca2+ influx into the cytosol from the extracellular space in non-excitable cells is not clear. The "capacitative calcium entry" (CCE) hypothesis suggested that Ca2+ influx is triggered by the IP(3)-mediated emptying of the intracellular Ca2+ stores. However, there is no clear evidence for CCE and its mechanism remains elusive. In the present work, we have provided the reported evidences to show that inhibition of IP(3)-dependent Ca2+ release does not affect Ca2+ influx, and the experimental protocols used to demonstrate CCE can stimulate Ca2+ influx by means other than emptying of the Ca2+ stores. In addition, we have presented the reports showing that IP(3)-mediated Ca2+ release is linked to a Ca2+ entry from the extracellular space, which does not increase cytosolic [Ca2+] prior to Ca2+ release. Based on these and other reports, we have provided a model of Ca2+ signaling in non-excitable cells, in which IP(3)-mediated emptying of the intracellular Ca2+ store triggers entry of Ca2+ directly into the store, through a plasma membrane TRPC channel. Thus, emptying and direct refilling of the Ca2+ stores are repeated in the presence of IP(3), giving rise to the transient phase of oscillatory Ca2+ release. Direct Ca2+ entry into the store is regulated by its filling status in a negative and positive manner through a Ca2+ -binding protein and Stim1/Orai complex, respectively. The sustained phase of Ca2+ influx is triggered by diacylglycerol (DAG) through the activation of another TRPC channel, independent of Ca2+ release. The plasma membrane IP(3) receptor (IP(3)R) plays an essential role in Ca2+ influx, by interacting with the DAG-activated TRPC, without the requirement of binding to IP(3). 相似文献
15.
Rojas H Colina C Ramos M Benaim G Jaffe EH Caputo C DiPolo R 《Journal of neurochemistry》2007,100(5):1188-1202
We have previously demonstrated that rat cerebellar Type-1 astrocytes express a very active genistein sensitive Na(+)/Ca(2+) exchanger, which accounts for most of the total plasma membrane Ca(2+) fluxes and for the clearance of loads induced by physiological agonists. In this work, we have explored the mechanism by which the reverse Na(+)/Ca(2+) exchange is involved in agonist-induced Ca(2+) signaling in rat cerebellar astrocytes. Microspectrofluorometric measurements of Cai(2+) with Fluo-3 demonstrate that the Cai(2+) signals associated long (> 20 s) periods of reverse operation of the Na(+)/Ca(2+) exchange are amplified by a mechanism compatible with calcium-calcium release, while those associated with short (< 20 s) pulses are not amplified. This was confirmed by pharmacological experiments using ryanodine receptors agonist (4-chloro-m-cresol) and the endoplasmic reticulum ATPase inhibitor (thapsigargin). Confocal microscopy demonstrates a high co-localization of immunofluorescent labeled Na(+)/Ca(2+) exchanger and RyRs. Low (< 50 micromol/L) or high (> 500 micromol/L) concentrations of L-glutamate (L-Glu) or L-aspartate causes a rise in which is completely blocked by the Na(+)/Ca(2+) exchange inhibitors KB-R7943 and SEA0400. The most important novel finding presented in this work is that L-Glu activates the reverse mode of the Na(+)/Ca(2+) exchange by inducing Na(+) entry through the electrogenic Na(+)-Glu-co-transporter and not through the ionophoric L-Glu receptors, as confirmed by pharmacological experiments with specific blockers of the ionophoric L-Glu receptors and the electrogenic Glu transporter. 相似文献
16.
17.
This study aimed to investigate cGMP-regulated store-operated Ca(2+)entry in human 7721 hepatoma cells. [Ca(2+)](i)was measured using Fura2/AM. After incubation of the cells with 4 microm thapsigargin, Ca(2+)entry was evoked by application of 1 mMm Ca(2+)to extracellular solution and was blocked by 3 m m Ni(2+), indicating the presence of store-operated Ca(2+)entry in human 7721 hepatoma cell line. Application of 8-Br-cGMP reduced the [Ca(2+)](i)in hepatoma 7721 cells by 80%. These data demonstrated for the first time that store-operated Ca(2+)entry pathway is present in human hepatoma cells, which is regulated by cGMP. 相似文献
18.
Akbari Y Hitt BD Murphy MP Dagher NN Tseng BP Green KN Golde TE LaFerla FM 《Biochemical and biophysical research communications》2004,322(4):1145-1152
Mutations in presenilin-1 and 2 (PS) lead to increased intracellular calcium stores and an attenuation in the refilling mechanism known as capacitative calcium entry (CCE). Previous studies have shown that the mechanism by which PS modulates intracellular calcium signaling is dependent on gamma-secretase activity. Although the modulation of intracellular calcium signaling can lead to alterations in CCE, it is plausible that PS can also directly affect CCE independent of the effect it exerts on intracellular stores. To investigate this possibility, we studied the effects of the dominant negative variant of PS1 known as DeltaTM1-2, which lacks the first two transmembrane domains of PS1 and in which gamma-secretase activity is abrogated. We demonstrate that, like other dominant negative isoforms of PS1, DeltaTM1-2 expression leads to reduced intracellular calcium. However, unlike other dominant negative isoforms, DeltaTM1-2 leads to a deficit rather than a potentiation of CCE. These data suggest that changes in the structural components of presenilin can modulate CCE independent of its function in gamma-secretase activity and intracellular calcium stores. 相似文献
19.
Jeremy T. Smyth Sung‐Yong Hwang Takuro Tomita Wayne I. DeHaven Jason C. Mercer James W. Putney 《Journal of cellular and molecular medicine》2010,14(10):2337-2349
The process of store-operated Ca2+ entry (SOCE), whereby Ca2+ influx across the plasma membrane is activated in response to depletion of intracellular Ca2+ stores in the endoplasmic reticulum (ER), has been under investigation for greater than 25 years; however, only in the past 5 years have we come to understand this mechanism at the molecular level. A surge of recent experimentation indicates that STIM molecules function as Ca2+ sensors within the ER that, upon Ca2+ store depletion, rearrange to sites very near to the plasma membrane. At these plasma membrane-ER junctions, STIM interacts with and activates SOCE channels of the Orai family. The molecular and biophysical data that have led to these findings are discussed in this review, as are several controversies within this rapidly expanding field. 相似文献
20.
Involvement of extracellular calcium influx in the self-incompatibility response of Papaver rhoeas 总被引:9,自引:0,他引:9
Franklin-Tong VE Holdaway-Clarke TL Straatman KR Kunkel JG Hepler PK 《The Plant journal : for cell and molecular biology》2002,29(3):333-345
We have previously demonstrated that increases in cytosolic free Ca2+ are triggered by the self-incompatibility (SI) response in incompatible Papaver rhoeas (the field poppy) pollen. However, one key question that has not been answered is whether extracellular Ca2+ may be involved. To address this question, we have used an ion-selective vibrating probe to measure changes in extracellular Ca2+ fluxes around poppy pollen tubes. Our data reveal several findings. First, we confirm that there is an oscillating Ca2+ influx directed at the apex of the pollen tube; we also provide evidence that Ca2+ influx also occurs at the shanks of pollen tubes. Second, upon challenge with self-incompatibility (S) proteins, there is a stimulation of Ca2+ influx along the shank of incompatible pollen tubes, approximately 50 microm behind the pollen tube tip. This demonstration of SI-induced Ca2+ influx suggests a role for influx of extracellular Ca2+ in the SI response. 相似文献