首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The carotid sinus nerve (CSN), important in cardiorespiratory modulation, mainly contains C fibers (CSCFs). Previous studies have demonstrated that selective stimulation of bronchopulmonary C fibers (PCFs) via right atrial injection of capsaicin (Cap; approximately 0.25 microg) results in an apnea (approximately 3 s) associated with hypotension and bradycardia. The present study was undertaken to determine the effects of activating CSCFs on cardiorespiratory activities. Intracarotid injection of Cap was performed before and after bilateral transection of the CSN in anesthetized and spontaneously breathing rats. Our results showed that 1) low doses of Cap (up to 2 ng) produced an increase in minute ventilation by elevating both tidal volume and respiratory frequency with the threshold dosage at 1.0 ng (P < 0.05); 2) high doses (4-64 ng) generated an apnea (prolongation of expiratory duration by approximately 8-fold) and hypertension (P < 0.05); 3) bilateral transection of the CSN reduced excitatory and inhibitory respiratory responses by 30 and 81%, respectively, and increased the hypertension by 88% (P < 0.05); and 4) the same doses of Cap delivered into the right atrium to stimulate PCFs failed to evoke detectable cardiorespiratory responses. Our results suggest that compared with PCFs, CSCFs are more sensitive to Cap stimulation and that activation of these fibers significantly modulates cardiorespiratory activity in anesthetized rats.  相似文献   

2.
To determine the role of postinspiratory inspiratory activity of the diaphragm in the biphasic ventilatory response to hypoxia in unanesthetized rats, we examined diaphragmatic activity at its peak (DI), at the end of expiration (DE), and ventilation in adult unanesthetized rats during poikilocapnic hypoxia (10 % O2) sustained for 20 min. Hypoxia induced an initial increase in ventilation followed by a consistent decline. Tidal volume (VT), frequency of breathing (fR), DI and DE at first increased, then VT and DE decreased, while fR and DI remained enhanced. Phasic activation of the diaphragm (DI-DE) increased significantly at 10, 15 and 20 min of hypoxia. These results indicate that 1) the ventilatory response of unanesthetized rats to sustained hypoxia has a typical biphasic character and 2) the increased end-expiratory activity of the diaphragm limits its phasic inspiratory activation, but this increase cannot explain the secondary decline in tidal volume and ventilation.  相似文献   

3.
The age-dependent participation of endogenous vasopressin (VP) during the development of DOCA-salt hypertension was studied in young (28-day-old) and adult (75-day-old) Brattleboro rats. VP-deficient homozygous (DI) rats were compared to heterozygous (non-DI) littermates which do synthetize VP. Six weeks of DOCA-salt treatment did not increase blood pressure (BP) in adult DI rats. On the other hand, in young DI animals there was a significant rise of systolic and mean arterial pressure accompanied by the hypertrophy of the left ventricle. This moderate DOCA-salt hypertension of young DI rats contrasted with severe hypertension of young non-DI rats. Increased BP response of young VP-deficient DOCA-salt treated rats was independent of the saline intake or blood volume expansion which were similar in young hypertensive and adult normotensive DI animals. It could be concluded that vasopressin is not essential for the induction of DOCA-salt hypertension in young rats even if VP is responsible for the magnitude of BP elevation. In contrast to young animals vasopressin is very important for the development of DOCA-salt hypertension in adult rats.  相似文献   

4.
Low tidal volume (Vt) ventilation is protective against ventilator-induced lung injury but can promote development of atelectasis. Periodic deep inflation (DI) can open the lung, but if delivered too frequently may cause damage via repeated overdistention. We therefore examined the effects of varying DI frequency on lung mechanics, gas exchange, and biomarkers of injury in mice. C57BL/6 males were mechanically ventilated with positive end-expiratory pressure (PEEP) of 2 cmH2O for 2 h. One high Vt group received a DI with each breath (HV). Low Vt groups received 2 DIs after each hour of ventilation (LV) or 2 DIs every minute (LVDI). Control groups included a nonventilated surgical sham and a group receiving high Vt with zero PEEP (HVZP). Respiratory impedance was measured every 4 min, from which tissue elastance (H) and damping (G) were derived. G and H rose progressively during LV and HVZP, but returned to baseline after hourly DI during LV. During LVDI and HV, G and H remained low and gas exchange was superior to that of LV. Bronchoalveolar lavage fluid protein was elevated in HV and HVZP but was not different between LV and LVDI. Lung tissue IL-6 and IL-1beta levels were elevated in HVZP and lower in LVDI compared with LV. We conclude that frequent DI can safely improve gas exchange and lung mechanics and may confer protection from biotrauma. Differences between LVDI and HV suggest that an optimal frequency range of DI exists, within which the benefits of maintaining an open lung outweigh injury incurred from overdistention.  相似文献   

5.
Oxidative damage to surfactant can decrease lung function in vivo. In the current study, our two objectives were: 1) to examine whether the adverse effects of oxidized surfactant would be accentuated in animals exposed to high tidal volume ventilation, and 2) to test whether supplementation with surfactant protein A (SP-A) could improve the function of oxidized surfactant in vivo. The first objective was addressed by evaluating the response of surfactant-deficient rats administered normal or oxidized surfactant and then subjected to low tidal volume (6 ml/kg) or high tidal volume (12 ml/kg) mechanical ventilation. Under low tidal volume conditions, rats administered oxidized surfactant had impaired lung function, as determined by lung compliance and arterial blood gas analysis, compared with nonoxidized controls. Animals subjected to high tidal volume ventilation had impaired lung function compared with low tidal volume groups, regardless of the oxidative status of the surfactant. The second experiment demonstrated a significantly superior physiological response in surfactant-deficient rats receiving SP-A containing oxidized surfactant compared with oxidized surfactant. Lavage analysis at the end of the in vivo experimentation showed no differences in the recovery of oxidized surfactant compared with nonoxidized surfactant. We conclude that minimizing excessive lung stretch during mechanical ventilation is important in the context of exogenous surfactant supplementation and that SP-A has an important biophysical role in surfactant function in conditions of oxidative stress. Furthermore, the oxidative status of the surfactant does not appear to affect the alveolar metabolism of this material.  相似文献   

6.
目的对现有大鼠体外循环模型予以改进,降低模型复制难度,并使之更适合用于研究体外循环对肺功能的影响。方法成年雄性SD大鼠16只,体重300~350g,各8只分别用于建模和供血。经右颈静脉、左股静脉引流,右股动脉人工灌注建立体外循环,血气分析监测内环境变化。实验过程中,保留大鼠自主呼吸,不进行机械通气。结果成功建成8只大鼠体外循环模型并按计划顺利脱离人工循环。体外循环期间转流量为70~80mL/(kg·min),血流动力学监测和血气分析结果基本正常。结论进一步简化了建立大鼠体外循环模型的操作,最显著的改进之处在于避免了机械通气对大鼠肺功能潜在的不良效应,从而更加适合用于研究体外循环对肺功能的影响。  相似文献   

7.
The efficiency of ventilation by high-frequency oscillation (HFO) applied to the thorax (external HFO) has been compared with that of HFO applied through a tracheal cannula (internal HFO) in a group of normal rats. Anesthetized, paralyzed, tracheotomized rats were placed in a whole-body plethysmograph. External HFO was achieved by varying the pressure surrounding the animal by means of a piston pump connected to the body plethysmograph; internal HFO was obtained in the same animals by connecting the pump to the tracheal cannula. Arterial CO2 and O2 partial pressures were measured in blood sampled from a carotid artery and were compared for external and internal HFO applied at 20 Hz with matched tidal volumes of 0.8, 1.4, 1.9, and 2.4 ml/kg. With increasing tidal volume, the mean arterial CO2 partial pressure decreased progressively from 68 to 30 Torr and was identical in the two modes of HFO; no difference was noted for the CO2 elimination or for the arterial O2 partial pressure. These results indicate that, in terms of gas exchange, external and internal HFO are equally efficient in normal rats.  相似文献   

8.
H K Bin Talib  J Kunes  J Zicha 《Life sciences》1992,51(24):PL243-PL248
Our previous study revealed major ion transport alterations that resulted in a pronounced elevation of red cell Na+ content in DOCA-salt treated homozygous vasopressin-deficient (DI) Brattleboro rats in which only a moderate increase of systolic blood pressure occurred. In contrast, no changes of red cell Na+ content were observed in heterozygous vasopressin-secreting (non-DI) Brattleboro rats with a severe DOCA-salt hypertension. Using a chronic supplementation of DI rats with an antidiuretic agonist dDAVP (1-desamino-8-D-arginine vasopressin) we did not demonstrate any significant changes of red cell ion transport in dDAVP-treated DI rats with a fully developed DOCA-salt hypertension. The absence of ion transport alterations seems to be mainly due to dDAVP-induced correction of altered K+ metabolism seen in DOCA-salt treated DI animals. It can be concluded that DOCA-salt hypertension can develop even without red cell ion transport alterations which are usually caused by cell K+ depletion.  相似文献   

9.
Factors affecting cold-induced hypertension in rats   总被引:3,自引:0,他引:3  
A 3- to 4-week exposure of rats to a cold environment (5 +/- 2 degrees C) induces hypertension, including elevation of systolic, diastolic, and mean blood pressures and cardiac (left ventricular) hypertrophy. The studies described here were designed to investigate some factors affecting both the magnitude and the time course for development of cold-induced hypertension. The objective of the first study was to determine whether there was an ambient temperature at which the cold-induced elevation of blood pressure did not occur. The objective of the second experiment was to determine whether body weight at the time of exposure to cold affected the magnitude and time course for development of hypertension. To assess the first objective, male rats were housed in a chamber whose temperature was maintained at 5 +/- 2 degrees C while others were housed in an identical chamber at 9 +/- 2 degrees C. After 7 days of exposure to cold, the rats exposed to the colder temperature had a significant elevation of blood pressure (140 +/- 2 mm Hg) compared with the group maintained at 9 degrees C (122 +/- 3 mm Hg). The rats exposed to 9 degrees C had no significant elevation of systolic blood pressure at either 27 or 40 days after initiation of exposure to cold. At the latter time, the temperature in the second chamber was reduced to 5 +/- 2 degrees C. By the 25th day of exposure to this ambient temperature, the rats had a significant increase in systolic blood pressure above their levels at 9 degrees C. Thus, there appears to be a threshold ambient temperature for elevation of blood pressure during exposure to cold. That temperature appears to lie somewhere between 5 and 9 degrees C. The second objective was assessed by placing rats varying in weight from approximately 250 to 430 g in air at 5 degrees C. There was a highly significant direct relationship (r = 0.96) between body weight at the time of introduction to cold and the number of days required to increase systolic blood pressure by 10 mm Hg above pre-cold exposure level. The third objective was to make an initial assessment of potential differences among strains of rats with respect to development of cold-induced hypertension. To this end, rats of the Fischer 344 strain were used. Systolic blood pressures of these rats also increased during chronic exposure to cold.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
The relation between blood pressure level and extracellular fluid volume and its distribution was studied in rats subjected to the following hypertensive stimuli--1K1C and 2K1C renal artery constriction, subtotal nephrectomy-salt and DOCA-salt. In all experimental groups the blood pressure increase was accompanied by increased extracellular fluid volume which was not always distributed proportionally between intravascular (PV) and interstitial (IFV) compartments. The blood pressure rise was further potentiated by plasma volume expansion so that the increased PV/IFV ratio was associated with a more pronounced hypertensive response (1K1C vs 2K1C, DOCA-salt vs subtotal nephrectomy-salt). However, adequate expansion of interstitial fluid is a necessary prerequisite for the hypertensive response. In DOCA-salt treated DI Brattleboro rats (lacking antidiuretic vasopressin action) plasma volume expansion per se was not accompanied by severe DOCA-salt hypertension. It is concluded that the expansion of both compartments of extracellular space, i.e. plasma volume and interstitial fluid volume, was necessary for a full development of severe hypertension. The expansion of only one of these compartments was accompanied by a mild blood pressure increase or blood pressure did not change significantly.  相似文献   

11.
The major goal of this study was to compare gas exchange, tidal volume (VT), and dynamic lung pressures resulting from high-frequency airway oscillation (HFAO) with the corresponding effects in high-frequency chest wall oscillation (HFCWO). Eight anesthetized paralyzed dogs were maintained eucapnic with HFAO and HFCWO at frequencies ranging from 1 to 16 Hz in the former and 0.5 to 8 Hz in the latter. Tracheal (delta Ptr) and esophageal (delta Pes) pressure swings, VT, and arterial blood gases were measured in addition to respiratory impedance and static pressure-volume curves. Mean positive pressure (25-30 cmH2O) in the chest cuff associated with HFCWO generation decreased lung volume by approximately 200 ml and increased pulmonary impedance significantly. Aside from this decrease in functional residual capacity (FRC), no change in lung volume occurred as a result of dynamic factors during the course of HFCWO application. With HFAO, a small degree of hyperinflation occurred only at 16 Hz. Arterial PO2 decreased by 5 Torr on average during HFCWO. VT decreased with increasing frequency in both cases, but VT during HFCWO was smaller over the range of frequencies compared with HFAO. delta Pes and delta Ptr between 1 and 8 Hz were lower than the corresponding pressure swings obtained with conventional mechanical ventilation (CMV) applied at 0.25 Hz. delta Pes was minimized at 1 Hz during HFCWO; however, delta Ptr decreased continuously with decreasing frequency and, below 2 Hz, became progressively smaller than the corresponding values obtained with HFAO and CMV.  相似文献   

12.
Factors influencing the mechanical performance of neonatal high-frequency ventilators of diverse design were assessed under controlled conditions. Each of eight ventilators was coupled to in vitro models of the neonatal respiratory system simulating disease of varying severity. The principal performance characteristics examined were frequency dependence and load dependence of tidal volume delivered, peak inspiratory flow rate, and waveforms of pressure at either end of the endotracheal tube. Despite wide diversity of ventilator designs, including jets, flow interrupters, and oscillators, common features emerged. In almost all devices tidal volume increased with endotracheal tube size, was invariant with respiratory system compliance, and decreased with frequency of oscillation. Peak inspiratory flow rates for a given tidal volume and frequency were smallest in the group of oscillators compared with jets and flow interrupters. Proximal pressure was a poor indicator of distal pressure. These findings suggest that delivered tidal volume may be sensitive to endotracheal tube size and airway patency but relatively insensitive to changes in lung tissue or chest wall mechanical properties. In these regards high-frequency ventilation differs from pressure-limited conventional mechanical ventilation. Comparison of data obtained at different clinical centers using high-frequency ventilators of varying design may be possible by taking these factors into account.  相似文献   

13.
The pattern of breathing of male rats was studied after stimulating respiration with carbon dioxide at different levels of general anaesthesia. Anaesthesia was induced by the inhalation of halothane or by the i.p. injection of urethane. Ventilation values were measured in intubated rats in body plethysmograph. It was found that a linear relationship between minute ventilation and tidal volume was maintained during the decrease of minute ventilation due to deepening of anaesthesia. The slope of the relationship after stimulating respiration with carbon dioxide also diminished during deeper anaesthesia. The duration of inspiration did not alter significantly, despite marked changes in tidal volume. Tidal volume correlated with the duration of expiration at different anaesthesia levels. In vagotomized rats, the duration of expiration shortened as ventilation was depressed by deepening anaesthesia.  相似文献   

14.
C E Hall  S Ayachi  O Hall 《Life sciences》1976,18(9):1001-1007
Female Fischer 344 rats sensitized to the development of salt hypertension by unilateral nephrectomy were given water, 1% NaCl solution or 5% sucrose + 1% NaCl solution to drink. Rats on saline alone drank about twice the fluid volume of those on water, whereas those on the sucrose-saline solution drank four to six times as much. No Fischer 344 rats ever developed hypertension, defined as a systolic pressure exceeding 150 mm Hg, during the six months of the study. However, the group on saline averaged slightly higher arterial pressures than those on water on 13 of the 14 occasions that blood pressure was measured, and the average pressure over the entire experimental period was also significantly increased. The rats on sucrose-saline had a group mean blood pressure which was always significantly higher than that of the group on water and usually greater also than that of the group on saline, and the average pressure over the entire experimental period was significantly augmented above that in either of the other groups. Rats on either of the saline solutions also had a slight but significant degree of heart and kidney enlargement, greatest in the sucrose-saline group, which is attributed to the higher pressures developed, even though they remained within the normotensive range.  相似文献   

15.
目的: 在初步验证超快反应聚合物基质光纤氧传感器及其测定系统记录颈动脉氧分压(PaO2)连续动态变化使用基础上,为了分析探讨肺通气对PaO2连续动态变化的影响,我们设计本活体整体动物实验观察研究。方法: 选择杂种山羊4只,全身麻醉气管插管空气机械通气下,切皮直接暴露把后接测定系统的氧传感器直接插入左侧颈动脉连续记录PaO2动态变化。正常分钟通气量机械通气分别通过三种潮气量实施:正常潮气量(潮气量VT=15 ml/kg、呼吸频率Rf=20 bpm)、减半潮气量(VT减半、Rf加倍)和加倍潮气量(VT加倍、Rf减半)。三种潮气量通气时间分别稳定10~15 min,选取后180 s分析计算PaO2平均值、呼吸间PaO2变化的升降幅度和肺-颈动脉延迟时间。以ANOVA及两两比较统计学差异分析不同潮气量的影响。结果: 活体山羊正常通气量机械通气实验时心率和血压均稳定;肺-颈动脉延迟时间为1.4~1.8 s(约为此时的3次心跳)。机械通气正常潮气量下PaO2平均值在(102.94±2.40,99.38~106.16)mmHg,升降幅度是(21.43±1.65,19.21~23.59)mmHg,占平均值的(20.80±1.34,18.65~22.22)%;减半潮气量下,PaO2平均值维持在(101.01±4.25,94.09~105.66)mmHg,虽略降但不显著(与正常机械通气比较P>0.05),但PaO2升降变化幅度却显著降低为(18.14±1.43,16.46~20.05) mmHg,占平均值的(17.95±1.07,16.16~18.98)%(与正常机械通气比较P<0.01);加倍潮气量机械通气下,虽仅略升的PaO2平均值维持在(106.42±4.74,101.19~114.08)mmHg(与正常机械通气比较P>0.05,与减半潮气量机械通气比较P<0.05),但PaO2升降幅度却显著增大为(26.58±1.88,23.46~28.46)mmHg,占平均值的24.99%±1.58%(与正常机械通气和减半潮气量比较P均<0.01)。结论: 正常肺通气的吸气和呼气是颈动脉PaO2上升和下降的始动因素。正常通气量机械通气下减半潮气量和倍增潮气量显著改变PaO2升降幅度,但PaO2平均值仅小幅改变,而肺-颈动脉延迟时间相近。  相似文献   

16.
17.
The effect of long-term intake of 0.6% NaCl solution on survival of Brattleboro rats, both homozygous for diabetes insipidus (DI) and heterozygous (non-DI), was investigated. Studies included whether the survival of animals could be influenced a) by the age at which the high salt intake started (either from prepuberty, i.e. from the 4th week, or after sexual maturation, i.e. from the 12th week of age); b) by uninephrectomy (UNX) which elicited hypertension in DI rats drinking saline from youth. All non-DI and those DI rats that drank saline only from adulthood, survived for the whole duration of the experimental, i.e. 14 weeks. Only 43% of animals survived in the group of DI rats drinking saline from youth. This high mortality was reduced by UNX carried out either simultaneously or 8 weeks after the onset of saline drinking. DI rats consumed several times more saline than non-DI rats. Nevertheless, the consumption was greater in the low-mortality than in the high-mortality group. Salt intake was moderately lowered by UNX. Plasma Na+ concentration was higher in rats of the high-mortality group and it was not affected by UNX. In DI rats plasma volume was greater than in non-DI rats and its values in the low-mortality group exceeded those ones of the high-mortality group. It was decreased by UNX in the low-mortality group but this was not true for the high-mortality group. It is concluded that high mortality in DI rats consuming saline from prepuberty is abolished by the intervention producing hypertension. The role of hypertension in a protection against the toxic effects of salt is discussed.  相似文献   

18.
A motion platform was developed that oscillates an animal in a foot-to-head direction (z-plane). The platform varies the frequency and intensity of acceleration, imparting periodic sinusoidal inertial forces (pG(z)) to the body. The aim of the study was to characterize ventilation produced by the noninvasive motion ventilator (NIMV) in animals with healthy and diseased lungs. Incremental increases in pG(z) (acceleration) with the frequency held constant (f = 4 Hz) produced almost linear increases in minute ventilation (VE). Frequencies of 2-4 Hz produced the greatest VE and tidal volume (VT) for any given acceleration between +/-0.2 and +/-0.8 G. Increasing the force due to acceleration produced proportional increases in both transpulmonary and transdiaphragmatic pressures. Increasing transpulmonary pressure by increasing pG(z) produced linear increases in VT, similar to spontaneous breathing. NIMV reversed deliberately induced hypoventilation and normalized the changes in arterial blood gases induced by meconium aspiration. In conclusion, a novel motion platform is described that imparts periodic sinusoidal acceleration forces at moderate frequencies (4 Hz) to the whole body in the z-plane. These forces, when properly adjusted, are capable of highly effective ventilation of normal and diseased lungs. Such noninvasive ventilation is accomplished at airway pressures equivalent to atmospheric or continuous positive airway pressure, with acceleration forces less than +/-1 G(z).  相似文献   

19.
Ischemia-reperfusion not only damages the affected organ but also leads to remote organ injuries. Hepatic inflow interruption usually occurs during hepatic surgery. To investigate the influence of liver ischemia-reperfusion on lung injury and to determine the contribution of tidal volume settings on liver ischemia-reperfusion-induced lung injury, we studied anesthetized and mechanically ventilated rats in which the hepatic inflow was transiently interrupted twice for 15 min. Two tidal volumes, 6 ml/kg as a low tidal volume (IR-LT) and 24 ml/kg as a high tidal volume (IR-HT), were assessed after liver ischemia-reperfusion, as well as after a sham operation, 6 ml/kg (NC-LT) and 24 ml/kg (NC-HT). Both the IR-HT and IR-LT groups had a gradual decline in the systemic blood pressure and a significant increase in plasma TNF-alpha concentrations. Of the four groups, only the IR-HT group developed lung injury, as assessed by an increase in the lung wet-to-dry weight ratio, the presence of significant histopathological changes, such as perivascular edema and intravascular leukocyte aggregation, and an increase in the bronchoalveolar lavage fluid TNF-alpha concentration. Furthermore, only in the IR-HT group was airway pressure increased significantly during the 6-h reperfusion period. These findings suggest that liver ischemia-reperfusion caused systemic inflammation and that lung injury is triggered when high tidal volume ventilation follows liver ischemia-reperfusion.  相似文献   

20.
A pressure plethysmograph for measuring respiratory volume in mice during exposure to virus aerosols is described. The respiratory frequency and tidal volume were measured, and from these data the minute ventilation was calculated. The mean respiratory frequency of adult, male mice was 255 per min; the mean tidal volume of 0.18 ml was inversely related to respiratory frequency. The standardized mean minute ventilation rate was 1.46 ml per g of body weight. The respiratory frequency and tidal volume of CD-1 and HA/ICR strains of mice of the same age were similar. The respiratory retention rate for a 2.7-mum aerosol of vesicular stomatitis virus was 41%, and 58% of the virus retained was found in the trachea and lung.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号