共查询到20条相似文献,搜索用时 0 毫秒
1.
Isolation and Characterization of Clostridium butyricum DSM 5431 Mutants with Increased Resistance to 1,3-Propanediol and Altered Production of Acids 总被引:6,自引:0,他引:6
下载免费PDF全文

S. Abbad-Andaloussi C. Manginot-Durr J. Amine E. Petitdemange H. Petitdemange 《Applied microbiology》1995,61(12):4413-4417
Clostridium butyricum mutants were isolated from the parent strain DSM 5431 after mutagenesis with N-methyl-N(prm1)-nitro-N-nitrosoguanidine and two selection procedures: osmotic pressure and the proton suicide method. Isolated mutants were more resistant to glycerol and to 1,3-propanediol (1,3-PD) than was the wild type, and they produced more biomass. In batch culture on 62 g of glycerol per liter, the wild type produced more acetic acid than butyrate, with an acetate/butyrate ratio of 5.0, whereas the mutants produced almost the same quantities of both acids or more butyrate than acetate with acetate/butyrate ratios from 0.6 to 1.1. The total acid formation was higher in the wild-type strain. Results of analysis of key metabolic enzymatic activities were in accordance with the pattern of fermentation product formation: either the butyrate kinase activity increased or the acetate kinase activity decreased in cell extracts of the mutants. A decreased level of the hydrogenase and NADH-ferredoxin activities concomitant with an increase in ferredoxin-NAD(sup+) reductase activities supports the conclusion that the maximum percentage of NADH available and used for the formation of 1,3-PD was higher for the mutants (97 to 100%) than for the wild type (70%). In fed-batch culture, at the end of the fermentation (72 h for the wild-type strain and 80 to 85 h for the mutants), 44% more glycerol was consumed and 50% more 1,3-PD was produced by the mutants than by the wild-type strain. 相似文献
2.
Summary A fedbatch strategy was developed coupling the feeding of the two inhibitory substrates glycerol and ammonium to alkali consumption. A continuous, automated substrate addition was achieved responding directly to the needs of the culture. Thus substrate concentrations were kept on a constant low, but non limiting level. The feeding was applied for the cultivation of Clostridium butyricum DSM 5431 and mutants with increased product tolerance. Compared to fedbatch cultivations with intermittent feeding cultivation times were considerably shortened. 相似文献
3.
Production of 1,3-Propanediol by Clostridium butyricum VPI 3266 in continuous cultures with high yield and productivity 总被引:2,自引:0,他引:2
González-Pajuelo M Andrade JC Vasconcelos I 《Journal of industrial microbiology & biotechnology》2005,32(9):391-396
The effects of dilution rate and substrate feed concentration on continuous glycerol fermentation by Clostridium butyricum VPI 3266, a natural 1,3-propanediol producer, were evaluated in this work. A high and constant 1,3-propanediol yield (around
0.65 mol/mol), close to the theoretical value, was obtained irrespective of substrate feed concentration or dilution rate.
Improvement of 1,3-propanediol volumetric productivity was achieved by increasing the dilution rate, at a fixed feed substrate
concentration of 30, 60 or 70 g l−1. Higher 1,3-propanediol final concentrations and volumetric productivities were also obtained when glycerol feed concentration
was increased from 30 to 60 g l−1, at D=0.05–0.3 h−1, and from 60–70 g l−1, at D=0.05 and 0.1 h−1·30 g l−1 of 1,3-propanediol and the highest reported value of productivity, 10.3 g l−1 h−1, was achieved at D=0.30 h−1 and 60 g l−1 of feed glycerol. A switch to an acetate/butyrate ratio higher than one was observed for 60 g l−1 of feed glycerol and a dilution rate higher than 0.10 h−1; moreover, at D=0.30 h−1 3-hydroxypropionaldehyde accumulation was observed for the first time in the fermentation broth of C. butyricum. 相似文献
4.
Glycerol dehydratase activity: the limiting step for 1,3-propanediol production by Clostridium butyricum DSM 5431 总被引:2,自引:0,他引:2
S. Abbad-Andaloussi E. Guedon E. Spiesser H. Petitdemange 《Letters in applied microbiology》1996,22(4):311-314
S. ABBAD-ANDALOUSSI, E. GUEDON, E. SPIESSER AND H. PETITDEMANGE. 1996. Glycerol catabolism by Clostridium butyricum DSM 5431 into acetate, butyrate and 1,3-propanediol (1,3-PD) was studied in chemostat culture. The fact that the intracellular concentrations of NADH (18–22 μUmol g-1 dry cell mass) were extremely high suggested that the dehydratase activity was the rate limiting step in 1,3-PD formation. This limitation was proved by the addition of propionaldehyde, another substrate of propanediol dehydrogenase, into the culture medium. This resulted in an increase in (i) glycerol utilization, (ii) biomass formation and (iii) product biosynthesis. 相似文献
5.
The continuous fermentation of 1,3-propanediol from glycerol by Clostridium butyricum was subjected to cell recycling by filtration using hollow-fibre modules made from polysulphone. The performance of the culture
system was checked at a retention ratio (dilution rate/bleed rate) of 5, dilution rates between 0.2 h−1 and 1.0 h−1 and glycerol input concentrations of 32 g l−1 and 56 g l−1. The near-to-optimum propanediol concentration of 26.5 g l−1 (for 56 g l−1 glycerol) was maintained up to a dilution rate of 0.5 h−1 and then decreased while the propanediol productivity was highest at 0.7 h−1. The productivity could be increased by a factor of four in comparison to the continuous culture without cell recycling.
By application of the model of Zeng and Deckwer [(1995) Biotechnol Prog 11: 71–79] for cultures under substrate excess, it
was shown that the limitations resulted exclusively from product inhibition and detrimental influences from the cell recycling
system, such as shear stress, were not involved.
Received: 20 October 1997 / Received revision: 12 December 1997 / Accepted: 14 December 1997 相似文献
6.
Carbon and electron flow in Clostridium butyricum grown in chemostat culture on glucose-glycerol mixtures 总被引:1,自引:0,他引:1
Summary The metabolism of C. butyricum was manipulated, at neutral pH and in carbon limited chemostat cultures by changing the overall degree of reduction of the substrate, using mixtures of glucose and glycerol. Cultures grown on glucose alone produced only acids (acetate, butyrate and lactate). When the glycerol (in C moles)/glucose+glycerol (in C moles) ratio was progressively changed from 0 to 1 a corresponding increase of 1,3-propanediol production occured and an immediate and drastic decrease of the specific rate of acetate production was observed while the specific rate of butyrate production only decreased slightly. For glycerol (in C moles)/glucose+glycerol (in C moles) ratios higher than 0.5, the qNAD(P)H from Fd and the CO2/H2 molar ratio increased sharply, the first becoming positive and the second higher than 1. This indicates a complete reversion of the electron flow: part of reduced ferredoxin produced by the phosphoroclastic cleavage of pyruvate to acetyl-CoA was diverted from H2 formation toward NAD(P) reduction by the ferredoxin-NAD(P) reductase(s) in order to produce NAD(P)H. This change in the electron flow was associated to an increase in the specific rate and the yield of 1,3-propanediol production related to glycerol. 相似文献
7.
Microbial Conversion of Glycerol to 1,3-Propanediol: Physiological Comparison of a Natural Producer, Clostridium butyricum VPI 3266, and an Engineered Strain, Clostridium acetobutylicum DG1(pSPD5) 总被引:1,自引:0,他引:1
下载免费PDF全文

María Gonzlez-Pajuelo Isabelle Meynial-Salles Filipa Mendes Philippe Soucaille Isabel Vasconcelos 《Applied microbiology》2006,72(1):96-101
Clostridium acetobutylicum is not able to grow on glycerol as the sole carbon source since it cannot reoxidize the excess of NADH generated by glycerol catabolism. Nevertheless, when the pSPD5 plasmid, carrying the NADH-consuming 1,3-propanediol pathway from C. butyricum VPI 3266, was introduced into C. acetobutylicum DG1, growth on glycerol was achieved, and 1,3-propanediol was produced. In order to compare the physiological behavior of the recombinant C. acetobutylicum DG1(pSPD5) strain with that of the natural 1,3-propanediol producer C. butyricum VPI 3266, both strains were grown in chemostat cultures with glycerol as the sole carbon source. The same “global behavior” was observed for both strains: 1,3-propanediol was the main fermentation product, and the qH2 flux was very low. However, when looking at key intracellular enzyme levels, significant differences were observed. Firstly, the pathway for glycerol oxidation was different: C. butyricum uses a glycerol dehydrogenase and a dihydroxyacetone kinase, while C. acetobutylicum uses a glycerol kinase and a glycerol-3-phosphate dehydrogenase. Secondly, the electron flow is differentially regulated: (i) in C. butyricum VPI 3266, the in vitro hydrogenase activity is 10-fold lower than that in C. acetobutylicum DG1(pSPD5), and (ii) while the ferredoxin-NAD+ reductase activity is high and the NADH-ferredoxin reductase activity is low in C. acetobutylicum DG1(pSPD5), the reverse is observed for C. butyricum VPI 3266. Thirdly, lactate dehydrogenase activity is only detected in the C. acetobutylicum DG1(pSPD5) culture, explaining why this microorganism produces lactate. 相似文献
8.
Clostridium butyricum is one of the commonly used species for fermentative hydrogen production. While producing H2, it can produce acids (lactic, acetic and butyric acids) and CO2, as well as a small amount of ethanol. It has been proposed that elimination of competing pathways, such as the butyrate formation pathway, should increase H2 yields in Clostridium species. However, the application of this strategy has been hindered by the unavailability of genetic tools for these organisms. In this study, we successfully transferred a plasmid (pMTL007) to C. butyricum by inter-specific conjugation with Escherichia coli and disrupted hbd, the gene encoding β-hydroxybutyryl-CoA dehydrogenase in C. butyricum. Fermentation data showed that inactivation of hbd in C. butyricum eliminated the butyrate formation pathway, resulting in a significant increase in ethanol production and an obvious decrease in H2 yield compared with the wild type strain. However, under low partial pressure of H2, the hbd-deficient strain showed increased H2 production with the simultaneous decrease of ethanol production, indicating that H2 production by C. butyricum may compete for NADH with the ethanol formation pathway. Together with the discovery of a potential bifurcating hydrogenase, this study extends our understanding of the mechanism of H2 production by C. butyricum. 相似文献
9.
Lena Häggström 《Applied microbiology and biotechnology》1986,23(3-4):187-190
Summary The main fermentation end products in batch culture (unlimited glucose supply) of Clostridium barkeri were butyrate and lactate. The specific rate of butyrate production was linearly proportional to the growth rate while the specific rate of lactate production increased at low growth rates. In a glucose limited chemostat culture butyrate production was partly growth associated while acetate and lactate production was growth associated. Lactate was, however, only produced at high dilution rates. By varying the glucose concentration in the inflowing medium it was shown that lactate production was stimulated by a high feeding rate of the carbon source. These results are discussed in view of the fructose-1,6-diphosphate dependent lactate dehydrogenase activity in many other organisms. 相似文献
10.
11.
Regulation of carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixtures of glucose and glycerol. 总被引:1,自引:3,他引:1
下载免费PDF全文

The metabolism of Clostridium acetobutylicum was manipulated, at neutral pH and in chemostat culture, by changing the overall degree of reduction of the substrate, using mixtures of glucose and glycerol. Cultures grown on glucose alone produced only acids, and the intracellular enzymatic pattern indicated the absence of butyraldehyde dehydrogenase activity and very low levels of coenzyme A-transferase, butanol, and ethanol dehydrogenase activities. In contrast, cultures grown on mixtures of glucose and glycerol produced mainly alcohols and low levels of hydrogen. The low production of hydrogen was not associated with a change in the hydrogenase level but was correlated with the induction of a ferredoxin-NAD reductase and a decreased level of NADH-ferredoxin reductase. The production of alcohols was related to the induction of a NAD-dependent butyraldehyde dehydrogenase and to higher expression of NAD-dependent ethanol and butanol dehydrogenases. The coenzyme A-transferase was poorly expressed, and thus no acetone was produced. These changes in the enzymatic pattern, obtained with cultures grown on a mixture of glucose and glycerol, were associated with a 7-fold increase of the intracellular level of NADH and a 2.5-fold increase of the level of ATP. 相似文献
12.
Regulation of carbon flow in Selenomonas ruminantium grown in glucose-limited continuous culture. 总被引:2,自引:3,他引:2
下载免费PDF全文

We have applied a model that permits the estimation of the sensitivity of flux through branch point enzymes (D. C. LaPorte, K. Walsh, and D. E. Koshland, J. Biol. Chem. 259:14068-14075, 1984) in order to analyze the control of flux through the lactate-acetate branch point of Selenomonas ruminantium grown in glucose-limited continuous culture. At this branch point, pyruvate is the substrate of both the NAD-dependent L-(+)-lactate dehydrogenase (LDH) and the pyruvate:ferredoxin oxidoreductase (PFOR). The LDH was purified, and it exhibited positive cooperativity for the binding of pyruvate. The LDH had an [S].5 for pyruvate of 0.43 mM, a Hill coefficient of 2.4, and a K' equal to 0.13 mM. The PFOR, assayed in cell extracts, exhibited Michaelis-Menten kinetics for pyruvate, with a Km of 0.49 mM. Carbon flux through the LDH and the PFOR increased 80-fold and 3-fold, respectively, as the dilution rate was increased from 0.07 to 0.52 h-1 in glucose-limited continuous culture. There was nearly a twofold increase, from 6.5 to 11.2 mumol min-1 mg of protein-1 in the specific activity (i.e., maximum velocity) of the LDH at dilution rates of 0.11 and 0.52 h-1, respectively. A flux equation was used to calculate the intracellular concentration of pyruvate; a fourfold increase in pyruvate, from 0.023 to 0.093 mM, was thereby predicted as the dilution rate was increased from 0.07 to 0.52 h-1. When these calculated values of intracellular pyruvate concentration were inserted into the flux equation, the predicted values of flux through the LDH and the PFOR were found to match closely the flux actually measured in the chemostat-grown cells. Thus, the 80-fold increase in flux through the LDH was due to a twofold increase in the maximum velocity of the LDH and a fourfold increase in the intracellular pyruvate concentration. In addition, the flux through the LDH exhibited ultrasensitivity to changes in both the maximum velocity of the LDH and the intracellular concentration of pyruvate. The flux through the PFOR exhibited ultrasensitivity to changes in the maximum velocity of the LDH and hyperbolic sensitivity to changes in the intracellular concentration of pyruvate. 相似文献
13.
Metabolic and energetic aspects of the growth of Clostridium butyricum on glucose in chemostat culture 总被引:8,自引:0,他引:8
The influence of a number of environmental parameters on the fermentation of glucose, and on the energetics of growth of Clostridium butyricum in chemostat culture, have been studied. With cultures that were continuously sparged with nitrogen gas, glucose was fermented primarily to acetate and butyrate with a fixed stoichiometry. Thus, irrespective of the growth rate, input glucose concentration specific nutrient limitation and, within limits, the culture pH value, the acetate/butyrate molar ratio in the culture extracellular fluids was uniformly 0.74±0.07. Thus, the efficiency with which ATP was generated from glucose catabolism also was constant at 3.27±0.02 mol ATP/mol glucose fermented. However, the rate of glucose fermentation at a fixed growth rate, and hence the rate of ATP generation, varied markedly under some conditions leading to changes in the Y
glucose and Y
ATP values. In general, glucose-sufficient cultures expressed lower yield values than a correponding glucose-limited culture, and this was particularly marked with a potassium-limited culture. However, with a glucose-limited culture increasing the input glucose concentration above 40g glucose·l-1 also led to a significant decrease in the yield values that could be partially reversed by increasing the sparging rate of the nitrogen gas. Finally glucose-limited cultures immediately expressed an increased rate of glucose fermentation when relieved of their growth limitation. Since the rate of cell synthesis did not increase instantaneously, again the yield values with respect to glucose consumed and ATP generated transiently decreased.Two conditions were found to effect a change in the fermentation pattern with a lowering of the acetate/butyrate molar ratio. First, a significant decrease in this ratio was observed when a glucose-limited culture was not sparged with nitrogen gas; and second, a substantial (and progressive) decrease was observed to follow addition of increasing amounts of mannitol to a glucose-limited culture. In both cases, however, there was no apparent change in the Y
ATP value.These results are discussed with respect to two imponder-ables, namely the mechanism(s) by which C. butyricum might partially or totally dissociate catabolism from anabolism, and how it might dispose of the excess reductant [as NAD(P)H] that attends both the formation of acetate from glucose and the fermentation of mannitol. With regards to the latter, evidence is presented that supports the conclusion that the ferredoxin-mediated oxidation of NAD(P)H, generating H2, is neither coupled to, nor driven by, an energy-yielding reaction. 相似文献
14.
An anaerobic continuous flow (CF) culture method was used in order to study the effect of Peptostreptococcus magnus and Streptococcus parvulus, anaerobic gram-positive cocci which are members of intestinal bacterial flora, on growth and cytotoxin-activity of Clostridium difficile. The growth- and the cytotoxin activity-patterns of C. difficile in an established CF culture of P. magnus were similar to those of C. difficile alone. On the other hand, in the mixed culture system of C. difficile and S. parvulus, the cytotoxin levels were significantly lower as compared with C. difficile alone in spite of the fact that no differences existed between growth of C. difficile in mixed and single culture systems. The culture filtrate of P. magnus did not influence the growth and cytotoxin production of C. difficile, nor did that of S. parvulus have any effect on growth of C. difficile in static culture. The cytotoxin activity of C. difficile was, however, suppressed by the culture filtrate of S. parvulus. Furthermore, when P. magnus or S. parvulus was statically cultured in a medium containing cytotoxic culture filtrate of C. difficile, the toxin in the medium was not inactivated. 相似文献
15.
Robert A. Holt Andrew J. Cairns J. Gareth Morris 《Applied microbiology and biotechnology》1988,27(4):319-324
Summary The pink-pigmented, amylolytic and pectinolytic bacterium Clostridium puniceum in anaerobic batch culture at pH 5.5 and 25–30°C produced butan-1-ol as the major product of fermentation of glucose or starch. The alcohol was formed throughout the exponential phase of growth and surprisingly little acetone was simultaneously produced. Furthermore, acetic and butyric acids were only accumulated in low concentrations, and under optimal conditions were completely re-utilised before the fermentation ceased. Thus, in a minimal medium containing 4% w/v glucose as sole source of carbon and energy, after 65 h at 25°C, pH 5.5 all of the glucose had been consumed to yield (g product/100 g glucose utilised) butanol 32, acetone 3 and ethanol 2. Butanol was again the major product of glucose fermentation during phosphate-limited chemostat culture wherein, although the organism eventually lost its capacity to sporulate and to synthesize granulose, production of butanol continued for at least 100 volume changes. Under no growth condition was the organism capable of producing more than 13.3 g l-1 of butanol. At pH 5.5, growth on pectin was slow and yielded a markedly lesser biomass concentration than when growth was on glucose or starch; acetic acid was the major fermentation product with lower concentrations of methanol, acetone, butanol and butyric acid. At pH 7, growth on all substrates produced virtually no solvents but high concentrations of both acetic and butyric acids. 相似文献
16.
A. S. Afschar H. Biebl K. Schaller K. Schügerl 《Applied microbiology and biotechnology》1985,22(6):394-398
Summary To increase the solvent productivity of the acetone-butanol fermentation, a continuous culture of Clostridium acetobytylicum with cell recycling was used. At a dry cell mass concentration of 8 g l-1 and a dilution rate of D=0.64 h-1, a solvent productivity of 5.4 g l-1 h-1 was attained. To prevent degeneration of the culture, which occurs with high concentrations of solvents (acetone, butanol and ethanol), different reactor cascades were used. A two-stage cascade with cell recycling and turbidostatic cell concentration control turned out to be the best solution, the first stage of which was kept at relatively low cell and product concentrations. A solvent productivity of 3 and 2.3 g l-1 h-1, respectively, was achieved at solvent concentrations of 12 and 15 g l-1.Symbols
D
Dilution rate (h-1)
-
r
p
solvent productivity (g l-1 h-1)
-
s
residual glucose concentration (g l-1)
-
V
R
reactor volume (l)
-
V
O
overall volume (l)
-
x
(dry) cell mass concentration (g l-1)
-
Y
P/S
solvent yield (g g-1) 相似文献
17.
Collet C Girbal L Péringer P Schwitzguébel JP Soucaille P 《Archives of microbiology》2006,185(5):331-339
The objective of the present study was to characterize the metabolism of Clostridium thermolacticum, a thermophilic anaerobic bacterium, growing continuously on lactose (10 g l−1) and to determine the enzymes involved in the pathways leading to the formation of the fermentation products. Biomass and metabolites concentration were measured at steady-state for different dilution rates, from 0.013 to 0.19 h−1. Acetate, ethanol, hydrogen and carbon dioxide were produced at all dilution rates, whereas lactate was detected only for dilution rates below 0.06 h−1. The presence of several key enzymes involved in lactose metabolism, including beta-galactosidase, glyceraldehyde-3-phosphate dehydrogenase, pyruvate:ferredoxin oxidoreductase, acetate kinase, ethanol dehydrogenase and lactate dehydrogenase, was demonstrated. Finally, the intracellular level of NADH, NAD+, ATP and ADP was also measured for different dilution rates. The production of ethanol and lactate appeared to be linked with the re-oxidation of NADH produced during glycolysis, whereas hydrogen produced should come from reduced ferredoxin generated during pyruvate decarboxylation. To produce more hydrogen or more acetate from lactose, it thus appears that an efficient H2 removal system should be used, based on a physical (membrane) or a biological approach, respectively, by cultivating C. thermolacticum with efficient H2 scavenging and acetate producing microorganisms. 相似文献
18.
Microbial strains produce numerous volatile substances in the anaerobic conditions of the human intestines. The availability of CO(2) is known to be a prerequisite for bacterial growth in general. In experiments with anaerobic Lactobacillus brevis and Clostridium butyricum bacteria in the Portable Microbial Enrichment Unit (PMEU) it was shown that these strains interact; this interaction being mediated by CO(2) emission. CO(2) promoted clostridial growth in pure cultures and mixed cultures with lactobacilli. The growth of C. butyricum in pure cultures was much delayed or did not start at all without CO(2) from outside. Conversely, the onset of growth was provoked by a short (15 min) CO(2) burst. In mixed cultures the presence of lactobacilli in equal numbers speeded up the onset of clostridial growth by 10 h. If C. butyricum cultures designated as PMEU 1, 2, and 3 in cultivation syringes were chained by connecting the gas flow thereby allowing the volatiles of the preceding syringe culture to bubble to the next one, the growth started in 20, 10, or 6 h, respectively. This effect of gaseous emissions from other cultures speeding up the bacterial growth initiation was abolished if the gas was passed through sodium hydroxide to remove the CO(2). The positive contribution of lactobacilli to the growth of butyric-acid-producing clostridia documented in this simulation experiment with PMEU has in vivo implications and indicates molecular communication between the species. CO(2) is a necessary signal for the growth of clostridia, and lactobacilli can promote clostridial growth in mixed cultures where both bacteria grow well with mutual benefit. 相似文献
19.
D. Michel-Savin R. Marchal J. P. Vandecasteele 《Applied microbiology and biotechnology》1990,33(2):127-131
Summary Production of butyrate has been studied in continuous cultures of Clostridium tyrobutyricum. Production of acids, gases and cell biomass were determined under conditions of glucose limitation by varying either the glucose input or the dilution rate. Addition of acetate or butyrate to the cultures was also tested. The results led to the proposition that inhibition by acids acting as incouplers of energy production could provide a physiological explanation for most of the phenomena observed. It readily accounted for the higher productivities but lower product concentrations obtained in continuous culture with respect to batch or fed-batch conditions. It also explained the decrease in the ratios of butyrate to total acids and in cell yield observed at higher glucose input as well as the behaviour of the cultures under conditions of excess glucose. It could also possibly account for the partial conversion of added acetate to butyrate observed at moderate growth rates.
Offprint requests to: J. P. Vandecasteele 相似文献