首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以莴苣幼苗为受体,用培养皿法检测从细果角茴香中分离得到的二氢血根碱对莴苣幼苗根生长和根毛发育的影响,并采用根尖细胞有丝分裂检测和单细胞凝胶电泳法对其可能的作用机制进行了初步研究.结果显示:较低浓度(25、50μmol/L)二氢血根碱能显著促进莴苣根的生长,较高浓度(200、300μmol/L)二氢血根碱显著抑制根的生长;二氢血根碱(10、20、30、40、50μmol/L)对莴苣幼苗根毛发育有极显著的抑制作用,且两者均表现了浓度依赖性.较低浓度(25、50μmol/L)二氢血根碱使根尖细胞有丝分裂指数显著增加,而对根尖细胞DNA没有显著影响;较高浓度(200、300μmol/L)二氢血根碱使根尖细胞有丝分裂指数显著下降,同时根尖细胞DNA受到显著性损伤.研究发现,低浓度的二氢血根碱对莴苣幼苗根生长的促进作用主要是由于根尖细胞有丝分裂活力增加所致;而高浓度二氢血根碱对莴苣幼苗根的抑制作用极可能是由于根尖细胞DNA受到损伤,使得细胞分裂活力降低,分裂期细胞数目减少,从而导致根生长受到抑制.  相似文献   

2.
During the period of dry nursery seedling raising of late double cropping indica rice in South China, both chemical fertilizer and farmyard manure did not show obvious effect on the growth of shoot and root in young seedlings at 4-leaf stage (18-day-old seedling), but had significant effects on root growth in old seedlings with 6-7 leaves (27-day-old seedling) at suitable seeding densities (65-125g m~(-2)). There were satistically significant differences (at 0.01 or 0.05 levels)between treatments in root number and rooting ability of root-pruned seedlings.  相似文献   

3.
Large and high nitrogen (N) concentration seedlings frequently have higher survival and growth in Mediterranean forest plantations than seedlings with the opposite traits, which has been linked to the production of deeper and larger root systems in the former type of seedlings. This study assessed the influence of seedling size and N concentration on root growth dynamics and its relation to shoot elongation in Aleppo pine (Pinus halepensis Mill.) seedlings. We cultivated seedlings that differed in size and tissue N concentration that were subsequently transplanted into transparent methacrylate tubes in the field. The number of roots, root depth, and the root and shoot elongation rate (length increase per unit time) were periodically measured for 10 weeks. At the end of the study, we also measured the twig water potential (ψ) and the mass of plant organs. New root mass at the end of the study increased with seedling size, which was linked to the production of a greater number of new roots of lower specific length rather than to higher elongation rate of individual roots. Neither plant size nor N concentration affected root depth. New root mass per leaf mass unit, shoot elongation rate, and pre-dawn ψ were reduced with reduction in seedling size, while mid-day ψ and the root relative growth rate were not affected by seedling size. N concentration had an additive effect on plant size on root growth but its overall effect was less important than seedling size. Shoot and roots had an antagonistic elongation pattern through time in small seedlings, indicating that the growth of both organs depressed each other and that they competed for the same resources. Antagonism between shoot and root elongation decreased with plant size, disappearing in large and medium seedlings, and it was independent of seedling N concentration. We conclude that root and shoot growth but not rooting depth increased with plant size and tissue N concentration in Aleppo pine seedlings. Since production of new roots is critical for the establishment of planted seedlings, higher absolute root growth in large seedlings may increase their transplanting performance relative to small seedlings. The lack of antagonism between root and shoot growth in large seedlings suggests that these plants can provide resources to sustain simultaneous growth of both organs.  相似文献   

4.
Cr6+胁迫对小麦幼苗根系生长的影响及DNA损伤效应研究   总被引:10,自引:3,他引:7  
研究了Cr6+胁迫对3 d和10 d龄小麦幼苗根系生长的影响及DNA损伤效应.结果表明(1)>5 mg/L的Cr6+均显著或极显著降低幼苗根长、根数及根系鲜重、干重,3 d龄幼苗根系生长比10 d龄幼苗对Cr6+胁迫更敏感;(2)所试浓度Cr6+均降低两苗龄幼苗根系DNA含量;5~20 mg/L Cr6+浓度范围内,3 d龄幼苗根系DNA含量下降幅度大于10 d龄幼苗,Cr6+浓度>20 mg/L时,3 d龄幼苗根系DNA含量低于10 d龄幼苗;(3)Cr6+对两苗龄幼苗根系DNA增色效应的影响均呈现随浓度增大先升高后下降的趋势;3 d龄幼苗根系DNA增色效应在5~60 mg/L Cr6+浓度范围内大于对照,Cr6+浓度>60 mg/L时则小于对照;在所试Cr6+浓度范围内,10 d龄幼苗根系DNA增色效应均大于对照.  相似文献   

5.
Previous studies suggest that the positive response of transplanted rice (Oryza sativa L.) to nursery fertiliser application was due to increased seedling vigour or possibly to increased nutrient content. This paper presents results of two glasshouse experiments designed to test the hypothesis that seedling vigour was responsible for the response of transplanted seedlings to nursery treatments. The aim of the present study was to explore the concept of seedling vigour of transplanted rice and to determine what plant attributes conferred vigour on the seedlings. Seedling vigour treatments were established by subjecting seedlings to short-term submergence (0, 1 and 2 days/week) in one experiment and to leaf clipping or root pruning and water stress in another to determine their effect on plant growth after transplanting. Submerging seedlings increased plant height but depressed shoot and root dry matter and root:shoot ratio of the seedling at 28 days after sowing. After transplanting these seedlings, prior submergence depressed shoot dry matter at 40 days. Nursery nutrient application increased plant height, increased root and shoot dry matter, but generally decreased root:shoot ratio. Pruning up to 60% of the roots at transplanting decreased shoot and root dry matter, P concentration in leaves at panicle initiation (PI) and straw dry matter and grain yield at maturity. By contrast, pruning 30% of leaves depressed shoot and root dry matter by 30% at PI, and root dry matter and straw and grain yield by 20% at maturity. The combined effects of leaf clipping and root pruning on shoot, root and straw dry matter were largely additive. It is concluded that the response of rice yield to nursery treatments is largely due to increased seedling vigour and can be effected by a range of nutritional as well as non-nutritional treatments of seedlings that increase seedling dry matter, nutrient content, and nutrient concentration. Impairment of leaf growth and to a lesser extent root growth in the nursery depressed seedling vigour after transplanting. However, rather than increasing stress tolerance, seedling vigour was more beneficial when post transplant growth was not limited by nutrient or water stresses.  相似文献   

6.
Wind disturbance as a green method can effectively prevent the overgrowth of tomato seedlings, and its mechanism may be related to root system mechanics. This study characterized the biophysical mechanical properties of taproot and lateral roots of tomato seedlings at five seedling ages and seedling substrates with three different moisture content. The corresponding root system-substrate finite element (FE) model was then developed and validated. The study showed that seedling age significantly affected the biomechanical properties of the taproot and lateral roots of the seedlings and that moisture content significantly affected the biomechanical properties of the seedling substrate (p < 0.05). The established FE model was sensitive to wind speed, substrate moisture content, strong seedling index, and seedling age and was robust. The multiple linear regression equations obtained could predict the maximum stress and strain of the root system of tomato seedlings in the wind field. The strong seedling index had the greatest impact on the biomechanical response of the seedling root system during wind disturbance, followed by wind speed. In contrast, seedling age had no significant effect on the biomechanical response of the root system during wind disturbance. In the simulation, no mechanical damage was observed on the tissue of the seedling root system, but there were some strain behaviors. Based on the plant stress resistance, wind disturbance may affect the growth and development of the root system in the later growth stage. In this study, finite element and statistical analysis methods were combined to provide an effective approach for in-depth analysis of the biomechanical mechanisms of wind disturbances that inhibit tomato seedlings’ growth from the root system’s perspective.  相似文献   

7.
Debez  Ahmed  Ben Hamed  Karim  Grignon  Claude  Abdelly  Chedly 《Plant and Soil》2004,267(1-2):179-189
The growth ofEucalyptus regnans seedlings in forest soil is enhanced when it has been air-dried. In undried forest soil seedlings grow poorly and develop purple coloration in the foliage, indicating P deficiency. This paper reports the results of pot experiments designed to investigate the relationship between growth and P acquisition, ectomycorrhizal infection and age of seedlings grown in air-dried and undried soil. The effect on seedling growth of their inoculation with air-dried or undried soil or with ectomycorrhizal roots from plants growing in air-dried or undried soil was also investigated. Ectomycorrhizal root tips were detected in 3-week-oldE. regnans seedlings in both air-dried and undried soil, and from then on the frequency of ectomycorrhizal root tips increased rapidly. In air-dried soil, seedlings were fully ectomycorrhizal at 9 weeks, and the occurrence of maximum ectomycorrhizal infection coincided with enhanced P acquisition and the initiation of rapid seedling growth. In undried forest soil, seedling growth remained poor, even though the seedlings had well-developed ectomycorrhizae and the incidence of ectomycorrhizal root tips was the same as in air-dried soil. The dominant ectomycorrhizae in airdried soil were associated with an ascomycete fungus, whereas in undried, undisturbed soil they were commonly associated with basidiomycete fungi. Inoculation of sterile soil/sand mix with washed ectomycorrhizal roots from air-dried soil increased the P acquisition and growth of the seedlings significantly compared with controls, whereas ectomycorrhizal inocula from undried soil had no effect on seedling growth, although both inocula resulted in a similar incidence of ectomycorrhizal root tips. Similarly, addition of a small amount of air-dried soil into sterile soil/sand mix resulted in a significantly greater increase in the P content and dry weight of the seedlings, compared with the control, than addition of undried soil. In both treatments, the incidence of ectomycorrhial root tips was similar. As (i) the differentiation in seedling growth between air-dried and undried soil occurred after seedlings became ectomycorrhizal, (ii) the dominant ectomycorrhizae in air-dried soil were different from those in undried soil, and (iii) inocula from air-dried soil, but not from undried soil, stimulated seedling growth in sterile soil/sand mix, it is concluded that development of particular ectomycorrhizae may be involved in seedling growth stimulation and enhanced P acquisition associated with air drying of forest soil.  相似文献   

8.
研究不同浓度的蜜环菌Armillariamellea发酵液对油菜籽萌发、幼苗生长的影响。结果表明,发酵液在油菜籽萌发过程中对种子的发芽势影响显著,对最终种子发芽率影响不大;发酵液具有促进幼苗伸长,抑制根生长的作用;随着发酵液浓度的升高,幼苗的成活率呈下降趋势;发酵液对幼苗生产量的影响表现为低促高抑,低浓度促进生产量的增加,高浓度下幼苗的生产量随着浓度的升高而降低。通过对蜜环菌化感作用的检测,蜜环菌发酵液在油菜籽的发芽势、苗伸长、根生长及幼苗生产量等方面均具有化感作用。  相似文献   

9.
以3月直接在培养池中播种培育的侧柏种基盘苗作对照,将同期播种的侧柏种基盘苗进行悬空培养,于6月、8月和10月分别移栽到培育池(分别称为种基盘苗、6月移栽苗、8月移栽苗、10月移栽苗),并于翌年3月挖根,研究不同培育时间对移栽后侧柏幼苗根系生长和分布的影响。结果表明:苗木株高、根分布最大深度、根和地上部干重由大到小依次为:6月移栽苗>8月移栽苗>种基盘苗>10月移栽苗。根冠比由大到小依次为6月移栽苗>8月移栽苗>10月移栽苗>种基盘苗,但除了种基盘苗与6月移栽苗之间差异性显著外,其它处理之间差异性不显著。随着悬空培育时间的延长,空气断根限制了侧柏主根的生长,促进了侧根生长,降低了主侧根长度比。但经悬空培育后,任何处理的移栽苗都没有发生根系盘绕现象,移栽后主根的再生没有受到影响。  相似文献   

10.
The action of sodium nitroprusside, a nitric oxide donor, and other nitrogen compounds (KNO3, KNO2, and (NH4)2SO4) on adhesion and penetration of nodule bacteria into root tissues of etiolated pea seedlings was studied. Only nitroprusside displayed a clearly negative effect on rhizobium adhesion and penetration and seedling growth. This effect was not observed with other nitrogen compounds even at high (20 mM) concentrations. Hemoglobin attenuated the negative effect of nitroprusside on bacteria and seedlings. The results are discussed in the context of the role of nitric oxide in the life of plants and nodule bacteria.  相似文献   

11.
The action of sodium nitroprusside, a nitric oxide donor, and other nitrogen compounds (KNO3, KNO2, and (NH4)2SO4) on adhesion and penetration of nodule bacteria into root tissues of etiolated pea seedlings was studied. Only nitroprusside displayed a clearly negative effect on rhizobium adhesion and penetration and seedling growth. This effect was not observed with other nitrogen compounds even at high (20 mM) concentrations. Hemoglobin attenuated the negative effect of nitroprusside on bacteria and seedlings. The results are discussed in the context of the role of nitric oxide in the life of plants and nodule bacteria.  相似文献   

12.
采用不同规格控根育苗容器对橡胶树籽苗芽接苗进行悬空和近地培养,观测其生长情况。结果表明,悬空培养对橡胶树籽苗芽接苗的纵向伸长(株高、主根长度)影响较为显著。育苗容器的高度一致时,体积越大的育苗容器,根系伸展空间越多,苗木地上部分长势越好;体积一致时,高度越高的育苗容器,苗木主根长度越长,但对籽苗地上部分及主根粗度影响较小。  相似文献   

13.
2‐Benzoxazolinone (BOA), a type of hydroxamic acid present in cereals and implicated in allelopathy, is now being viewed as a potential candidate for the development of natural herbicides. A study was conducted to determine the effect of BOA on mung bean (Phaseolus aureus) through a multitude of bioassays to understand its physiological and biochemical action. It was observed that BOA significantly decreased the germination of mung bean and its early growth (measured in terms of seedling length and dry weight). A typical dose–response relationship was observed with BOA treatment, and I50 values (concentrations at which 50% inhibition occurs) for germination, seedling length and seedling dry weight were calculated to be 4.3, 0.71 and 0.77 mM , respectively. There was therefore a greater inhibitory effect on seedling growth than on germination. Treated seedlings were characterised by a loss of chlorophyll and decreased respiratory activity, indicating a possible adverse effect of BOA on photosynthetic and respiratory metabolism. Mitotic activity in root‐tip cells of onion (Allium cepa) was completely arrested in response to BOA treatment, and the cells exhibited abnormality in shape and size. BOA also adversely affected rhizogenesis in hypocotyl cuttings of mung bean, indicating an impact on morphogenetic potential. It was associated with significant changes in the protein content and activities of proteases and polyphenol oxidases during the root development phase. This study concludes that BOA interfered with essential biochemical processes in mung bean. Such studies provide useful information on the biochemical and physiological modes of actions of BOA, with a view to its use as a herbicidal compound.  相似文献   

14.
安慧  上官周平 《生态学报》2009,29(11):6017-6024
采用植物生长箱溶液培养方式,对白三叶幼苗进行了不同光强(2个水平)和氮浓度(5个水平)处理,探讨其生长、生物量和光合生理特征对生境变化的响应.结果表明:两种光强下白三叶幼苗茎和叶生物量随氮素浓度呈先升高后降低,而根系生物量和根冠比则随氮素浓度增高而降低.光照强度降低使白三叶幼苗根、茎、叶和整株生物量分别降低67.8%、29.9%、42.5%和45.2%;低光处理使幼苗的根冠比显著下降,而比叶面积(SLA)明显提高.幼苗根系体积随氮素浓度增高而降低,高生长光强根系体积显著高于低生长光强下的白三叶.幼苗根系表面积、根系长度和根系直径随氮素浓度增加呈先增加后降低趋势,两种不同生长光强下幼苗根系长度和根系直径差异显著,而根系表面积差异不明显.白三叶叶片光合速率(Pn)随氮素浓度增加呈先增加后降低趋势,高生长光强白三叶Pn显著高于低生长光强下的白三叶.两种生长光强间叶片气孔导度(Gs),胞间CO2浓度(Ci)和蒸腾速率(Tr)无显著差异,但氮素浓度对叶片Gs、Ci和Tr均有显著影响.光、氮及其交互作用对白三叶幼苗生长发育产生了显著影响,光照不足和氮缺乏都将导致白三叶幼苗生长减弱,但幼苗对这些不利环境具有较强的调节和适应能力.  相似文献   

15.
为了解云南松苗木生长对生物量的影响程度和相对重要性,以采自云南省昆明市宜良县禄丰村林场种子培育的2年生云南松苗木为材料,对苗高、地径、主根长、侧根长、针叶长和侧根数6个生长性状及各组分生物量进行测定,运用相关性分析和逐步回归分析剔除了对生物量影响不大的性状,在此基础上采用通径分析方法研究了云南松苗木生长性状指标与生物量指标间的关系。结果表明:云南松苗木生长性状和生物量之间均呈现极显著的正相关关系。各生长性状对生物量均有直接或间接的正向效应,直接影响云南松苗木生物量的优势因素为地径和苗高,针叶长、侧根长和主根长对生物量的影响也起正向效应。各生长性状对生物量的直接效应均较大,而通过其他性状的间接效应均较小,其中侧根长通过其他性状对生物量产生的间接影响最大。依据相关性分析和通径分析,建立了云南松各组分生物量与生长性状之间的数学模型,可用于云南松苗期生物量的估测。  相似文献   

16.
Antonovka seedlings were obtained from the embryos soaked in abscisic acid (ABA) alone, gibberellin A4+7, benzyladenine or the mixtures of these regulators. The inhibitory effect of ABA on the growth of the seedlings was of temporary duration. The height of the 12 week-old seedlings was dependent only on the degree of seed after-ripening and not on the ABA treatment. The growth stimulators studied were unable to overcome the inhibitory effect of ABA observed in the early stages of seedling growth. The growth stimulators did not substitute, for cold treatment of apple seeds which is the only treatment so far known to overcome the dwarf conditions of the seedlings obtained from non-after-ripened embryos. ABA greatly suppressed the early stages of apple seedling growth (up to 6 weeks) during which they resembled physiological dwarfs. The highest concentrations of ABA (2·0 μg ml?1) greatly modified the root system of the seedlings, and produced a larger percentage of seedlings with unbranched roots.  相似文献   

17.
凋落物可通过物理和化学作用显著影响幼苗出土和早期生长,进而影响天然更新.杉木是中国南方重要的造林树种,但存在着天然更新障碍,其原因可能是林下较厚的凋落物层阻碍了杉木幼苗出土和早期生长.本试验利用覆盖自然和塑料凋落物来研究凋落物对杉木幼苗出土和早期生长的影响,并检验其影响是物理作用还是化学作用.本试验设置2种凋落物类型(自然和塑料凋落物)和4个覆盖厚度(对照,0 g·m-2;浅层,200 g·m-2;中层,400 g·m-2;深层,800 g·m-2).结果表明: 与对照(0 g·m-2)相比,浅层(200 g·m-2)凋落物覆盖对出苗率有促进作用但不显著,深层(800 g·m-2)凋落物覆盖对出苗率和存活率有显著抑制作用.随着凋落物覆盖厚度的增加,幼苗根长不断减小,而茎长逐渐增加.凋落物浅层覆盖下杉木幼苗的根生物量、叶生物量和总生物量均最大,深层覆盖下最小.幼苗的根冠比随着凋落物覆盖厚度的增加而不断减小.与对照相比,凋落物覆盖下幼苗光合与非光合组织生物量比均有所增加.相同覆盖厚度下,自然和塑料凋落物对杉木幼苗出土和早期生长的影响均无显著差异,表明短期内凋落物覆盖对幼苗出土和早期生长的影响主要是物理作用.随着凋落物覆盖厚度的增加,杉木幼苗出土和早期生长表现为先促进后抑制,且杉木幼苗为了穿过厚厚的凋落物层倾向于把资源分配给地上部分.本研究结果为凋落物是影响杉木幼苗建植和天然更新的一个重要生态因子提供了试验证据.  相似文献   

18.
高吸水性种衣剂对水稻旱育秧苗生长的影响   总被引:1,自引:0,他引:1  
高吸水性树脂具有较强吸水保湿功能,使用高吸水性水稻种衣剂培育旱育秧苗,可以有效控制苗床水分和湿度,同时能缓释农药和肥料,增强秧苗抗逆性。试验表明,高吸水性种衣剂处理对水稻发芽率和发芽势无不良影响,且壮根、壮苗效果显著;能减少病害发生,保持旱育秧苗发根优势和分蘖优势,达到省工省时的目的。  相似文献   

19.
We investigated neighboring plant effects (competition and facilitation)on wiregrass establishment in two frequently encountered restoration situationsof former longleaf pine-wiregrass habitats in the Southeastern United States:longleaf pine plantations and previously cultivated fields. In the plantationexperiment, we specifically examined canopy removal, neighboring wiregrassdensity, and aboveground and belowground effects on establishment and growth ofwiregrass seedlings at two different ages (3 weeks and 6 months) with 3competitive exclusion treatments (aboveground exclusion, belowground exclusion,or no exclusion). Competition treatment effects were age-dependent forsurvivorship and growth. Survival of 6 month old seedlings was unaffected bycompetition treatment; whereas, three week old seedling survival was greatestwhere roots were excluded. Seedling size increased with root exclusion for 6month seedlings, but not for 3 week old seedlings in plots lacking neighboringwiregrass. Where wiregrass was present, both 3 week and 6 month old seedlingsincreased growth with root exclusion. Furthermore, where neighboring wiregrassplants were absent, increasing canopy density resulted in decreased seedlingsize, but did not affect survivorship. In old fields, fertilizer treatments andweeding effects were also assessed using 3 week and 6 month old seedlings.Fertilizer application did not benefit seedling survival or growth and reducedsurvivorship of 3 week old seedlings. Seedlings were smaller where neighboringold field, weedy vegetation was present regardless of wiregrass seedling age;whereas, survival was dependent on seedling age at time of planting. Six monthold seedling survivorship remained high regardless of weeding treatment. It isstill unclear whether fertilizer application is beneficial to the successfulestablishment of wiregrass.  相似文献   

20.
How plant seeds secure root penetration into soil to obtain good seedling establishment is one of the basic ecological problems. In this study, seminal root growth was investigated to clarify the cause of varietal difference of seedling establishment in direct seeding of rice in flooded paddy fields, with special reference to root tip rotation. In a field experiment, seedling establishment percentage had a weak correlation with seminal root elongation rate but was not correlated with apparent seedling weight in water, which has been reported to be the cause of floating seedlings resulting in poor seedling establishment. Root tip rotation was analyzed for indoor-grown seedlings using spectrum analysis: the maximum entropy method (MEM) was used. Maximum entropy method power spectrum analysis clarified that maximum MEM power density (practically corresponds to spiral angle) detected in the frequency range above 0.1 cycles mm-1 was highly and positively correlated to seedling establishment percentage in the field experiment. Maximum MEM power density in high correlation with seedling establishment was mostly found around frequencies of 0.2 cycles mm–1, which corresponded to 2.0–3.4 cycles of root tip rotation per day. From these results, root tip rotation (circumnutation) with a larger spiral angle was suggested to play an important role in the establishment of rice seedlings on flooded and very soft soil. A possible explanation for why a larger spiral angle was advantageous for seedling establishment is that if buoyancy and seedling weight are constant, a larger pushing force of the seminal root is available without causing floating of a seedling, due to the upward force being a reaction of the seminal root pushing force.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号