首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Clonality is a widespread life history trait in flowering plants that may be essential for population persistence, especially in environments where sexual reproduction is unpredictable. Frequent clonal reproduction, however, could hinder sexual reproduction by spatially aggregating ramets that compete with seedlings and reduce inter‐genet pollination. Nevertheless, the role of clonality in relation to variable sexual reproduction in population dynamics is often overlooked. We combined population matrix models and pollination experiments to compare the demographic contributions of clonal and sexual reproduction in three Dicentra canadensis populations, one in a well‐forested landscape and two in isolated forest remnants. We constructed stage‐based transition matrices from 3 years of census data to evaluate annual population growth rates, λ. We used loop analysis to evaluate the relative contribution of different reproductive pathways to λ. Despite strong temporal and spatial variation in seed set, populations generally showed stable growth rates. Although we detected some pollen limitation of seed set, manipulative pollination treatments did not affect population growth rates. Clonal reproduction contributed significantly more than sexual reproduction to population growth in the forest remnants. Only at the well‐forested site did sexual reproduction contribute as much as clonal reproduction to population growth. Flowering plants were more likely to transition to a smaller size class with reduced reproductive potential in the following year than similarly sized nonflowering plants, suggesting energy trade‐offs between sexual and clonal reproduction at the individual level. Seed production had negligible effects on growth and tuber production of individual plants. Our results demonstrate that clonal reproduction is vital for population persistence in a system where sexual reproduction is unpredictable. The bias toward clonality may be driven by low fitness returns for resource investment in sexual reproduction at the individual level. However, chronic failure in sexual reproduction may exacerbate the imbalance between sexual and clonal reproduction and eventually lead to irreversible loss of sex in the population.  相似文献   

2.
Do trade-offs between growth and reproduction differ between an invasive and noninvasive plant species and how do such trade-offs relate to population demographics? To help address these questions, we compared demographics for an invasive plant species, Rubus discolor, with a noninvasive congener, R. ursinus, in several populations of varying density. Removal of floral buds from reproductive canes increased the size of juvenile canes that arose from clonal sprouting in R. ursinus, suggesting a trade-off between current reproduction and growth. Removal of floral buds had no effect on growth of R. discolor. R. ursinus displayed trade-offs between reproduction (sexual and vegetative) and future growth based on negative correlations between leaf area production and both clonal sprouting and seedling production during the previous year. R. discolor did not exhibit these trade-offs. Both species had high population growth rates in low-density populations, but exhibited little or no growth in high-density populations. A life table response experiment was used to determine the underlying cause for the effect of density on population growth. For R. ursinus, lack of population growth in high-density populations was due primarily to increased mortality of clonally sprouting canes, while for R. discolor, it was due to decreased clonal cane production. Elasticity analysis revealed that clonal growth was more important than sexual reproduction for population growth of both species. However, elasticity values for sexual reproduction in R. discolor were greater in high- than low-density populations. This suggests an increased reliance on sexual reproduction in populations that had reached stable sizes, which could increase the capacity of R. discolor to disperse to new sites. Elasticity analyses were also used to simulate the efficacy of various control strategies for R. discolor. Control of this species could be attained by reducing clonal production within existing populations while reducing seed production to limit establishment of new populations.  相似文献   

3.
Clonal spread is favoured in many plants at the expense of seed production in order to expand rapidly into open habitats or to occupy space by forming dense patches. However, for the dynamics of a population in a patchy landscape seed dispersal remains important even for clonal plants. We used a spatially explicit individual-based metapopulation model to examine the consequences of two trade-offs in Hieracium pilosella L: first, between vegetative and sexual reproduction, and second, between short and far-distance dispersal of seeds. Our main question was, what are the environmental conditions that cause a mixed strategy of vegetative and sexual reproduction to be optimal. The model was parameterised with field data on local population dynamics of H. pilosella. Patch dynamics were given firstly by disturbance events that opened patches in a matrix of a clonal grass that were colonisable for H. pilosella, and secondly by the gradual disappearance of H. pilosella patches due to the expanding grass. Simulations revealed opposing selection pressures on traits determined by the two trade-offs. Vegetative reproduction is favoured by local dynamics, i.e. the need for maintenance and expansion of established populations, whereas seed production is favoured by the necessity to colonise empty habitats. Similar pressures act on the proportion of seeds dispersed over short and far distances. Optimum reproductive and dispersal strategies depended on habitat quality (determined by seedling establishment probability), the fraction of dispersed seeds, and the fraction of seeds lost on unsuitable ground. Under habitat conditions supporting moderate to low seedling establishment, between 20% and 40% of reproductive effort in H. pilosella should be devoted to sexual reproduction with at least 10% of the seeds dispersed over distances suitable to attain empty patches. We conclude that in a spatially heterogeneous landscape sexual seed production in a clonal plant is advantageous even at the expense of local vegetative growth.  相似文献   

4.
Available resources could influence the trade-offs among different reproductive components in plants. Here, we created three nutrient levels to test the nutrient effects on trade-offs among sexual reproduction, clonal propagation and vegetative growth in a monoecious clonal herb Sagittaria pygmaea. The results of this study showed that the plant exhibited different trade-off patterns among different nutrient levels. When the nutrient level was low, there were weak trade-offs between sexual reproduction and vegetative growth and between clonal propagation and vegetative growth; when the nutrient level was moderate, we found a strong trade-off between sexual reproduction and clonal propagation; but when the nutrient level was high, we found no trade-offs among these three different reproductive components. These results indicated that the plant could adjust its trade-off patterns to fit the nutrient variation and suggested that trade-offs are unlikely to constrain the evolution of reproductive strategy in this species.  相似文献   

5.
The balance between sexual and vegetative reproduction inSyneilesis palmata was examined in relation to environmental conditions and the amount of reproductive resources, which is defined here as the total quantity of dry matter invested in both modes of reproduction. The allocation balance was measured for individual plants of two populations, with different densities in an open habitat, for 2 years, and those of two other populations, under different light intensities in a plantation forest (forest floor and edge), for 3 years. Relative allocation to sexual reproduction decreased with increasing reproductive resources in all populations except for the forest edge, which showed a constant allocation balance. The high density population showed lower relative allocation to sexual reproduction than the low density population, irrespective of the amount of reproductive resources. However the between-year comparison of the high density population suggested that under extremely high density, plants with a small amount of reproductive resources enhanced sexual reproduction, while plants with a large amount of reproductive resources reproduced vegetatively. On the forest floor, plants with small amounts of reproductive resources had higher relative allocation to sexual reproduction than the forest edge population, while plants with large amounts of reproductive resources had a somewhat lower one. The adaptive significance of such allocation patterns are discussed, based on qualitative data on the characteristics of both types of offspring.  相似文献   

6.
In plants, it is hypothesized that allocation trade-offs may appear only when expenditures like seed production are high or external resources are scarce. In this study, we tested whether reproductive costs are more pronounced under enhanced interspecific competition.In a common garden, we investigated phenotypic correlations between sexual reproduction, clonal growth and storage structures in the grassland perennial, Succisa pratensis. During the past 50 years, habitats of this species have faced an expansion of clonal grasses that increase competition intensity. We simulated this process by growing five populations of Succisa from high- and low-production habitats with its clipped and non-clipped competitor, Agrostis capillaris. In addition, we experimentally removed flower heads of Succisa plants from one population grown with and without A. capillaris.We demonstrated costs of sexual reproduction by flower-head removal (resulting in increased plant size and relative allocation to belowground structures) but not by phenotypic correlations. We found no evidence that reproductive costs increase in a competitive environment and the opposite pattern was shown in both approaches used. However, high competition intensity reduced relative investment to flower-head production. In plants from low-production habitats, competition also reduced the absolute number of flower heads and belowground biomass as a result of smaller plant size. We assume that populations from low-production habitats are more prone to extinction as they have a reduced likelihood of local persistence and of escape to more suitable habitats during advancing succession.  相似文献   

7.
Fungi combine sexual reproduction and clonal propagation. The balance between these two reproductive modes affects establishment dynamics, and ultimately the evolutionary potential of populations. The pattern of colonization was studied in two species of ectomycorrhizal fungi: Tricholoma populinum and Tricholoma scalpturatum. The former is considered to be a host specialist whereas T. scalpturatum is a generalist taxon. Fruit bodies of both basidiomycete species were mapped and collected over several years from a black poplar (Populus nigra) stand, at two different sites. Multilocus genotypes (= genets) were identified based on the analysis of random amplified polymorphic DNA (RAPD) patterns, inter-simple sequence repeat (ISSR) patterns and restriction fragment length polymorphisms (RFLPs) in the ribosomal DNA intergenic spacer (rDNA IGS). The genetic analyses revealed differences in local population dynamics between the two species. Tricholoma scalpturatum tended to capture new space through sexual spores whereas T. populinum did this by clonal growth, suggesting trade-offs in allocation of resources at the genet level. Genet numbers and sizes strongly differ between the two study sites, perhaps as a result of abiotic disturbance on mycelial establishment and genet behaviour.  相似文献   

8.
The dynamics of plant populations in arid environments are largely affected by the unpredictable environmental conditions and are fine-tuned by biotic factors, such as modes of recruitment. A single species must cope with both spatial and temporal heterogeneity that trigger pulses of sexual and clonal establishment throughout its distributional range. We studied two populations of the clonal, purple prickly pear cactus, Opuntia macrocentra, in order to contrast the factors responsible for the population dynamics of a common, widely distributed species. The study sites were located in protected areas that correspond to extreme latitudinal locations for this species within the Chihuahuan Desert. We studied both populations for four consecutive years and determined the demographic consequences of environmental variability and the mode of reproduction using matrix population models, life table response experiments (LTREs), and loop and perturbation analyses. Although both populations seemed fairly stable (population growth rate, λ∼1), different demographic parameters and different life cycle routes were responsible for this stability in each population. In the southernmost population (MBR) LTRE and loop and elasticity analyses showed that stasis is the demographic process with the highest contributions to λ, followed by sexual reproduction, and clonal propagation contributed the least. The northern population (CR) had both higher elasticities and larger contributions of stasis, followed by clonal propagation and sexual recruitment. Loop analysis also showed that individuals in CR have more paths to complete a life cycle than those in MBR. As a consequence, each population differed in life history traits (e.g., size class structure, size at sexual maturity, and reproductive value). Numerical perturbation analyses showed a small effect of the seed bank on the λ of both populations, while the transition from seeds to seedlings had an important effect mainly in the northern population. Clonal propagation (higher survival and higher contributions to vital rates) seems to be more important for maintaining populations over long time periods than sexual reproduction.  相似文献   

9.
Asexual and sexual reproductive strategies in clonal plants   总被引:1,自引:0,他引:1  
Most plants can reproduce both sexually and asexually (or vegetatively), and the balance between the two reproductive modes may vary widely between and within species. Extensive clonal growth may affect the evolution of life history traits in many ways. First, in some clonal species, sexual reproduction and sex ratio vary largely among populations. Variation in sexual reproduction may strongly affect plant’s adaptation to local environments and the evolution of the geographic range. Second, clonal growth can increase floral display, and thus pollinator attraction, while it may impose serious constraints and evolutionary challenges on plants through geitonogamy that may strongly influence pollen dispersal. Geitonogamous pollination can bring a cost to plant fitness through both female and male functions. Some co-evolutionary interactions, therefore, may exist between the spatial structure and the mating behavior of clonal plants. Finally, a trade-off may exist between sexual reproduction and clonal growth. Resource allocation to the two reproductive modes may depend on environmental conditions, competitive dominance, life span, and genetic factors. If different reproductive modes represent adaptive strategies for plants in different environments, we expect that most of the resources should be allocated to sexual reproduction in habitats with fluctuating environmental conditions and strong competition, while clonal growth should be dominant in stable habitats. Yet we know little about the consequence of natural selection on the two reproductive modes and factors which control the balance of the two reproductive modes. Future studies should investigate the reproductive strategies of clonal plants simultaneously from both sexual and asexual perspectives. Translated from Acta Phytoecologica Sinica, 2006, 20(1): 174–183 [译自: 植物生态学报]  相似文献   

10.
Levine  Mia T.  Feller  Ilka C. 《Plant Ecology》2004,172(1):73-82
Long-lived understory herbs experience a highly dynamic forest over space and time, yet can persist for more than a century. To understand how these populations persist, we examined effects of forest age and disturbance on potential sexual reproduction and clonal growth in the sexually labile perennial, Arisaema triphyllum. Potential sexual reproduction (female:male ratio) was significantly greater in the Young and Old-Gap forest states compared with Old, closed-canopy sites, where it was virtually absent. In contrast, clonal growth (estimated by cormlet production) did not differ significantly among the three forest states. Of seven environmental variables measured, only light (positively) and plant density (negatively) contributed significantly to the variation in potential sexual reproduction, while no measured variables contributed significantly to the variation in number of cormlets. The larger sexual reproductive effort (flower+stalk biomass/total biomass) for males in the undisturbed, 100 yr old forest may explain the absence of females in these sites, while the invariant vegetative reproductive effort (cormlet biomass/total biomass) may explain the similarity in average number of cormlets per individual per season across forest states. These results suggest that potential sexual reproduction is resource-limited, while clonal growth may be resource-independent. By maintaining ramet production during unfavorable periods, A. triphyllum populations disperse temporally, waiting for conditions under which sexual reproduction may resume.  相似文献   

11.
Fritillaria camtschatcensis can reproduce by means of both sexual reproduction and clonal multiplication. Despite prolific seed production, no seedlings have been found for several years in natural populations on Mt Hakusan. The purposes of this paper are to clarify: (i) whether population size is maintained mainly by clonal multiplication; and (ii) if this is the case, to what extent occasional seedling establishment affects population growth rate and population structure. Two permanent quadrats were placed in subalpine meadows in 1992 on Mt Hakusan. Plant size, location and reproductive states for all ramets in the quadrats were recorded every year. Projection matrices were created based on field census, and computer simulation experiments were performed. Fritillaria camtschatcensis had two types of flower, male flower and cosexual flower, and they were changeable. This is the first report on sex lability in Fritillaria. Clonal growth was more closely correlated with life-history stages, especially with sexual states than with plant size. The population growth rate, , was 1.006 for the Mizuyajiri population and 1.047 for the Nanryu population, respectively. Seedlings were found in 1996 for the first time. These facts indicate that populations of F. camtschatcensis on Mt Hakusan can usually be maintained by clonal multiplication. However, it is not yet certain whether seeds germinate every year or whether a flush of seedling emergence occurs once in every few years in natural populations. Computer simulation revealed that: (i) there was a critical germination rate above which population growth rate suddenly increased; and (ii) occasional seedling establishment could provide almost the same contribution to population growth rate as that of annual seedling establishment. These results suggest that population size can be maintained mainly by clonal multiplication, and the role of sexual reproduction lies beyond maintaining the population size in F. camtschatcensis.  相似文献   

12.
? Many plants combine sexual reproduction with vegetative propagation, but how trade-offs between these reproductive modes affect fitness is poorly understood. Although such trade-offs have been demonstrated at the level of individual shoots (ramets), there is little evidence that they scale up to affect genet fitness. For hermaphrodites, reproductive investment is further divided between female and male sexual functions. Female function should generally incur greater carbon costs than male function, which might involve greater nitrogen (N) costs. ? Using a common garden experiment with diclinous, clonal Sagittaria latifolia we manipulated investment in reproduction through female and male sex functions of 412 plants from monoecious and dioecious populations. ? We detected a 1?:?1 trade-off between biomass investment in female function and clonal reproduction. For male function, there was no apparent trade-off between clonal and sexual reproduction in terms of biomass investment. Instead, male function incurred a substantially higher N cost. ? Our results indicate that: trade-offs between investment in clonal propagation and sexual reproduction occur at the genet level in S.?latifolia; and sexual reproduction interferes with clonal expansion, with investment in female function limiting the quantity of clonal propagules produced, and investment in male function limiting the nutrient content of clonal propagules.  相似文献   

13.
The purpose of this article was to study the trade-offs among vegetative growth, clonal, and sexual reproduction in an aquatic invasive weed Spartina alterniflora that experienced different inundation depths and clonal integration. Here, the rhizome connections between mother and daughter ramets were either severed or left intact. Subsequently, these clones were flooded with water levels of 0, 9, and 18 cm above the soil surface. Severing rhizomes decreased growth and clonal reproduction of daughter ramets, and increased those of mother ramets grown in shallow and deep water. The daughter ramets disconnected from mother ramets did not flower, while sexual reproduction of mother ramets was not affected by severing. Clonal integration only benefited the total rhizome length, rhizome biomass, and number of rhizomes of the whole clones in non-inundation conditions. Furthermore, growth and clonal reproduction of mother, daughter ramets, and the whole clone decreased with inundation depth, whereas sexual reproduction of mother ramets and the whole clones increased. We concluded that the trade-offs among growth, clonal, and sexual reproduction of S. alterniflora would be affected by inundation depth, but not by clonal integration.  相似文献   

14.
不同高程短尖苔草对水位变化的生长及繁殖响应   总被引:1,自引:0,他引:1  
在淡水湿地生态系统中,水位通常是制约植被生长和繁殖动态的关键因素,进而对物种组成、群落演替和植被分布格局产生决定性影响。无性繁殖是洞庭湖湿地克隆植物适应环境胁迫的重要策略之一,以洞庭湖湿地典型克隆植物-短尖苔草(Carex brevicuspis C.B.Clarke)为对象,研究了不同分布高程(23.7 m和25.8 m)的植物对水位变化(0 cm,-15 cm,-30 cm)的生长和繁殖特征响应。结果表明:水位变化对不同分布高程分布短尖苔草的生长和克隆繁殖特征均产生显著影响(P0.05)。对高程区的短尖苔草而言,克隆繁殖特征如分株数、分株总生物量、芽数和芽生物量随水位的降低而增加,而对生长特征(株高及总生物量)无显著影响(P0.05),表明适当干旱有利于高程区苔草的克隆繁殖。对于低程区分布短尖苔草而言,水位变化对其生长特征有显著影响(P0.05),如株高和总生物量随着水位的降低而增加;分株数和总芽生物量等克隆繁殖特征则随水位的降低而减少,而水位对低程区短尖苔草的分株总生物量和总芽数影响不显著(P0.05)。因此,短尖苔草的克隆繁殖特征除受到水位的影响外,还受其分布高程的影响。可见,同一种短尖苔草因长期适应于不同生境而对相同的环境胁迫表现出了不同的生长繁殖策略,  相似文献   

15.
The genus Fragaria (Rosaceae) contains 24 species, including hybrid species such as the garden strawberry (Fragaria × ananassa Duch.). Natural hybridization between Fragaria species has repeatedly been reported, and studies on the hybridization potential between F. × ananassa and its wild relatives have become increasingly important with the outlook for genetically modified garden strawberries. In Europe, a candidate species for hybridization with garden strawberries is the common woodland strawberry (Fragaria vesca L.). Although a previous field survey indicated that the potential for hybridization between F. vesca and F. × ananassa is low, it is not clear whether the lack of natural hybrids is caused by known pre- and postzygotic barriers, or whether hybrid plants lack the fitness to establish in natural F. vesca populations. We grew different F. vesca and F. vesca × F. × ananassa hybrid clones with and without competition in a greenhouse and assessed biomass production, clonal reproduction, and sexual reproduction of plants. While some hybrid clones exceeded F. vesca in biomass production, general clonal reproduction was much lower and delayed in hybrids. Furthermore, hybrids were sterile. These results demonstrate a mechanism by which the general lack of F. vesca × F. × ananassa hybrids in natural habitats can be explained, in addition to the known low hybridization potential between garden and woodland strawberries. We conclude that hybrids have a competitive disadvantage against co-occurring F. vesca plants due to inferior and delayed clonal reproduction, and that the potential for hybrid establishment under natural conditions is low.  相似文献   

16.
Most plants can reproduce both sexually and asexually (or vegetatively),and the balance between the two reproductive modes may vary widely between and within species.Extensive clonal growth may affect the evolution of life history traits in many ways.First,in some clonal species,sexual reproduction and sex ratio vary largely among populations.Variation in sexual reproduction may strongly affect plant's adaptation to local environments and the evolution of the geographic range.Second,clonal growth can increase floral display,and thus pollinator attraction,while it may impose serious constraints and evolutionary challenges on plants through geitonogamy that may strongly influence pollen dispersal.Geitonogamous pollination can bring a cost to plant fitness through both female and male functions.Some co-evolutionary interactions,therefore,may exist between the spatial structure and the mating behavior of clonal plants.Finally,a trade-off may exist between sexual reproduction and clonal growth.Resource allocation to the two reproductive modes may depend on environmental conditions,competitive dominance,life span,and genetic factors.If different reproductive modes represent adaptive strategies for plants in different environments,we expect that most of the resources should be allocated to sexual reproduction in habitats with fluctuating environmental conditions and strong competition,while clonal growth should be dominant in stable habitats.Yet we know little about the consequence of natural selection on the two reproductive modes and factors which control the balance of the two reproductive modes.Future studies should investigate the reproductive strategies of clonal plants simultaneously from both sexual and asexual perspectives.  相似文献   

17.
克隆植物的无性与有性繁殖对策   总被引:38,自引:1,他引:38       下载免费PDF全文
许多植物同时具有克隆生长与有性繁殖,两种繁殖方式间的平衡在不同物种间以及同一物种内不同种群间变化很大。旺盛的克隆生长可能会从多方面影响生活史进化。首先,许多克隆植物的有性繁殖与更新程度都很低,甚至有一些植物由于克隆生长而几乎完全放弃了有性过程,从而影响到克隆植物对局域环境的适应和地理范围进化。其次,克隆生长增大花展示进而增加了对传粉者的吸引,同时也增加了同株异花授粉的风险,而同株异花授粉往往会导致植物雄性和雌性适合度的下降。因此,克隆植物的空间结构与交配方式间可能存在着协同进化关系。最后,克隆生长与有性繁殖间可能存在着权衡关系:对克隆生长的资源投入将会减少对有性繁殖的资源投入。这种权衡关系可能是由环境条件、竞争力度、植物寿命和遗传等因素决定的。如果不同的繁殖方式是植物在不同环境下采取的适应性对策,那么我们可以预期:在波动和竞争力度大的生境中,植物应将大部分的繁殖资源分配给有性繁殖;而在相对稳定的环境中,克隆繁殖应该占据优势地位。但是自然选择对两种繁殖方式的选择结果是什么,以及控制这两种方式间平衡的生态和遗传因子究竟有哪些,到底是克隆生长单向地影响了植物的有性繁殖,还是与有性过程相伴随的选择压力同时塑造了植物的克隆习性?目前尚不清楚。同时从无性与有性繁殖两个方面综合考察克隆植物的繁殖对策是今后亟待加强的工作。  相似文献   

18.
Climate change is driving abiotic shifts that can threaten the conservation of foundation species and the habitats they support. Directional range shifting is one mechanism of escape, but requires the successful colonization of habitats where interspecific interactions may differ from those to which a species has adapted. For plants with multiple reproductive strategies, these range-edge interactions may alter the investment or allocation toward a given reproductive strategy. In this study, we quantified sexual reproduction of the clonal marsh grass Spartina patens across an inland colonization front into maritime forest being driven by sea-level rise. We find that flowering is variable across S. patens meadows, but consistently reduced in low light conditions like those of the forest understory. Observational surveys of S. patens flowering at four sites in the Delmarva Peninsula agreed with the results of two experimental manipulations of light availability (shading experiment in S. patens-dominated marsh and a forest dieback manipulation). These three approaches pinpointed light limitation as a principal control on S. patens flowering capacity, suggesting that light competition with taller upland species can suppress S. patens flowering along its upland migration front. Consequently, all propagation in shaded conditions must occur clonally or via seeds from the marsh, a reproductive restriction that could limit the potential for local adaptation and reduce genetic diversity. Future research is needed to determine whether the lack of flowering is the result of a trade-off between sexual and clonal reproduction or results from insufficient photosynthetic products needed to achieve either reproductive method.  相似文献   

19.
That trade-offs result from the allocation of limited resources is a central concept of life history evolution. We quantified trade-offs between sexual and clonal reproduction in the aquatic plant, Butomus umbellatus, by experimentally manipulating sexual investment in two distinct nutrient environments. Increasing seed production caused a significant but nonlinear trade-off. Pollinating half of all flowers strongly reduced clonal bulbil production, but pollinating the remaining flowers did not cause any further trade-off. Trade-offs were not stronger under low nutrient conditions that clearly limited plant growth. Experimentally induced trade-offs were not reflected in negative phenotypic correlations between sexual and clonal allocation among plants within eight populations grown in a uniform greenhouse environment. Diminishing effects of increased sexual allocation plus a lack of accord between experimental manipulations and phenotypic correlations suggest that trade-offs between sexual and clonal reproduction are unlikely to constrain the evolution of reproductive strategy in this species.  相似文献   

20.
The phenology of germination, vegetative growth and sexual reproduction in the annual Chamaesyce maculata (L.) Small (Euphorbiaceae) were investigated in a natural population in western Japan. Seedlings emerged from mid-June to early October, with three peaks: mid-June, late July and late August. Plants that emerged in June commenced sexual reproduction from late July, and thereafter both vegetative growth and sexual reproduction occurred together until early November, the plants showing no switching from vegetative growth to sexual reproduction. Seedlings that emerged in June and July suffered high mortality, but most seedlings that emerged from August onward survived until the reproductive stage. The minimum size for reproduction was largest for plants that emerged early in the season, and it decreased with a delay in seedling emergence. The late emergence of seedlings that resulted in low reproductive output may be to some extent compensated for by the increased probability of survival in the seedling stage. A transplant experiment clarified that C. maculata can repeat a maximum of three overlapping generations within a year. Multiple generations per year were attained by non-dormant seeds produced in the first and second generations and clearly resulted in an increased reproductive output per year. The life cycle with multiple overlapping generations may have been acquired in habitats where unpredictable disturbance results in temporally unsuitable conditions for germination, vegetative growth and sexual reproduction of annual plants, but where suitable conditions frequently continue over a period longer than the single generation time of annual plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号