首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The thymus is the primary site for generation of naive T-lymphocytes in the young animal. With age, the thymus progressively involutes and fewer mature T-cells are produced and migrate to the periphery. With thymic involution, increased density of sympathetic noradrenergic (NA) innervation and concentration of norepinephrine (NE) have been observed. To determine if the age-related changes in thymocyte differentiation are modified by NE signaling through beta-adrenergic receptors, 2-month (mo) and 18-mo old BALB/c mice were implanted subcutaneously with pellets containing the non-selective beta-adrenoceptor antagonist nadolol. Four and one-half weeks later, thymus and peripheral blood were collected to assess changes in thymocyte differentiation and naive T-cell output by flow cytometric analysis of T-cell subpopulations. In old mice, but not in young mice, thymocyte CD4/CD8 co-expression was altered by beta-adrenoceptor blockade. In nadolol-treated old mice, the frequency of the immature CD4-8- population was increased, and the intermediate CD4+8+ population was reduced. A corresponding increase in the frequency of mature CD4-8+, but not CD4+8- cells was observed. The increase in CD4-8+ cells is most likely not mediated by more CD4-8+ cells undergoing positive selection, because CD3hi expression in the CD4+8+ population was not altered by nadolol. The percentage of CD8+44low naive cells in peripheral blood increased in nadolol-treated mice, suggesting that more CD4-8+ cells were exported from the thymus to the periphery. These results indicate that the age-associated increase in sympathetic NA innervation of the thymus modulates thymocyte maturation. Pharmacological manipulation of NA innervation may provide a novel means of increasing naive T-cell output and improving T-cell reactivity to novel antigens with age.  相似文献   

2.
Due to homeostasis total naive T cell numbers remain fairly constant over life despite a gradual involution of the thymus. The contribution of the thymus to maintaining naive T cell pools is typically measured with TCR excision circles (TRECs) that are formed in thymocytes. The mechanisms underlying thymic involution are poorly understood. Some data suggest that thymocytes undergo fewer divisions in old (small) than young (large) thymi, and other data suggest that the number of TRECs per thymocyte is independent of age. If thymic involution were associated with a decreased number of divisions of the thymocytes, this would markedly complicate the interpretation of TREC data. To study this we develop a mathematical model in which the division rate of thymocytes decreases with increasing age. We describe the dilution of TRECs formed during the arrangement of both chains of the TCR by division of thymocytes, recent thymic emigrants, and mature naive T cells. The model behavior is complicated as TREC contents in naive T cells can increase with age due to decreased dilution in the thymus. Because our model is consistent with current data on the effects of age and thymectomy on TRECs in peripheral T cells, we conclude that aging may well affect thymocyte division, which markedly complicates the interpretation of TREC data. It is possible, but more difficult, to let the model be consistent with the rapid changes in alpha and beta TRECs observed shortly after HIV infection.  相似文献   

3.
The feline thymus is a target organ and site of viral replication during the acute stage of feline immunodeficiency virus (FIV) infection. This was demonstrated by histologic, immunohistologic, flow cytometric, and virologic tests. Thymic lesions developed after 28 days postinoculation (p.i.) and included thymitis, premature cortical involution, and medullary B-cell hyperplasia with germinal center formation and epithelial distortion. Alterations in thymocyte subsets also developed. Fewer CD4+ CD8- cells were detected at 28 days p.i., while an increase in CD4- CD8+ cells resulted in an inversion of the thymic CD4/CD8 ratio of single-positive cells, similar to events in peripheral blood. Provirus was present in all thymocyte subpopulations including cortical CD1(hi), CD1(lo), and B cells. The CD1(hi) thymocyte proviral burden increased markedly after 56 days p.i., coincident with the presence of infiltrating inflammatory cells. Increased levels of provirus in the CD1(lo) thymocyte subpopulation were detected prior to 56 days p.i. This was likely due to inclusion of infected infiltrating inflammatory cells which could not be differentiated from mature, medullary thymocytes. Proviral levels in B cells also increased from 70 days p.i. Morphologic alterations, productive viral infection, and altered thymocyte subpopulations suggest that thymic function is compromised, thus contributing to the inability of FIV-infected cats to replenish the peripheral T-cell pool.  相似文献   

4.
Intrathymic T cell development is an important process necessary for the normal formation of cell-mediated immune responses. Importantly, such a process depends on interactions of developing thymocytes with cellular and extracellular elements of the thymic microenvironment. Additionally, it includes a series of oriented and tunely regulated migration events, ultimately allowing mature cells to cross endothelial barriers and leave the organ. Herein we built a cellular automata-based mathematical model for thymocyte migration and development. The rules comprised in this model take into account the main stages of thymocyte development, two-dimensional sections of the normal thymic microenvironmental network, as well as the chemokines involved in intrathymic cell migration. Parameters of our computer simulations with further adjusted to results derived from previous experimental data using sub-lethally irradiated mice, in which thymus recovery can be evaluated. The model fitted with the increasing numbers of each CD4/CD8-defined thymocyte subset. It was further validated since it fitted with the times of permanence experimentally ascertained in each CD4/CD8-defined differentiation stage. Importantly, correlations using the whole mean volume of young normal adult mice revealed that the numbers of cells generated in silico with the mathematical model fall within the range of total thymocyte numbers seen in these animals. Furthermore, simulations made with a human thymic epithelial network using the same mathematical model generated similar profiles for temporal evolution of thymocyte developmental stages. Lastly, we provided in silico evidence that the thymus architecture is important in the thymocyte development, since changes in the epithelial network result in different theoretical profiles for T cell development/migration. This model likely can be used to predict thymocyte evolution following therapeutic strategies designed for recovery of the thymus in diseases coursing with thymus involution, such as some primary immunodeficiencies, acute infections, and malnutrition.  相似文献   

5.
After puberty, the thymus undergoes a dramatic loss in volume, in weight and in the number of thymocytes, a phenomenon termed age-associated thymic involution. Recently, it was reported that age-associated thymic involution did not occur in mice expressing a rearranged transgenic (Tg) TCRalphabeta receptor. This finding implied that an age-associated defect in TCR rearrangement was the major, if not the only, cause for thymic involution. Here, we examined thymic involution in three other widely used MHC class I-restricted TCRalphabeta Tg mouse strains and compared it with that in non-Tg mice. In all three TCRalphabeta Tg strains, as in control mice, thymocyte numbers were reduced by approximately 90% between 2 and 24 mo of age. The presence or absence of the selecting MHC molecules did not alter this age-associated cell loss. Our results indicate that the expression of a rearranged TCR alone cannot, by itself, prevent thymic involution. Consequently, other presently unknown factors must also contribute to this phenomenon.  相似文献   

6.
Diabetes is a debilitating disease with chronic evolution that affects many tissues and organs over its course. Thymus is an organ that is affected early after the onset of diabetes, gradually involuting until it loses most of its thymocyte populations. We show evidence of accumulating free fatty acids with generation of eicosanoids in the diabetic thymus and we present a possible mechanism for the involution of the organ during the disease. Young rats were injected with streptozotocin and their thymuses examined for cell death by flow cytometry and TUNEL reaction. Accumulation of lipids in the diabetic thymus was investigated by histology and electron microscopy. The identity and quantitation of accumulating lipids was done with gas chromatography-mass spectrometry and liquid chromatography. The expression and dynamics of the enzymes were monitored via immunohistochemistry. Diabetes causes thymus involution by elevating the thymocyte apoptosis. Exposure of thymocytes to elevated concentration of glucose causes apoptosis. After the onset of diabetes, there is a gradual accumulation of free fatty acids in the stromal macrophages including arachidonic acid, the substrate for eicosanoids. The eicosanoids do not cause thymocyte apoptosis but administration of a cyclooxygenase inhibitor reduces the staining for ED1, a macrophage marker whose intensity correlates with phagocytic activity. Diabetes causes thymus involution that is accompanied by accumulation of free fatty acids in the thymic macrophages. Excess glucose is able to induce thymocyte apoptosis but eicosanoids are involved in the chemoattraction of macrophage to remove the dead thymocytes.  相似文献   

7.
In vivo administration of bacterial superantigen staphylococcal enterotoxin B (SEB) to BALB/c mice led to thymus atrophy resulting from thymocyte apoptosis. In this study, we demonstrated that SEB induced a substantial reduction in thymocyte numbers in BALB/c, B10. D2 (H-2(d) haplotype), B10.BR, C3H/HeJ, C3H/HeN (H-2(k)), and (BALB/c x B6)F1 (H-2(dxb)), but caused little or no effect in I-E- strains such as B6, B10, A.BY (H-2(b)), and A.SW (H-2(s)) mice. Elimination of CD4(+)CD8(+) cells predominantly accounted for the thymocyte loss, although the numbers of other subpopulations may also be reduced. Thymocyte apoptosis was shown by an increase in the level of DNA fragmentation in BALB/c but not in B6 mice after SEB administration. Treatment with anti-I-Ed monoclonal antibody to BALB/c mice blocked SEB-induced thymocyte apoptosis when anti-I-Ad exerted less effect. In contrast to SEB, staphylococcal enterotoxin A led to comparable levels of thymus atrophy in BALB/c and B6 mice. Studies on the surface marker expression indicated that CD25 expression was upregulated on BALB/c mouse thymocytes but with only a moderate increase in B6 mice. The CD4(+)CD8(+) cells were the major (>90%) population that expressed elevated levels of CD25 in BALB/c mice. An increase in the expression of TCRalphabeta, CD3, and CD69 surface markers was also observed on thymocytes from BALB/c mice, but not from I-E- strains. The differential response of I-E+ and I-E- mice to SEB may be exploited as a model for the study of apoptosis in the thymus.  相似文献   

8.
Diabetes is chronic disease that is accompanied by a rapid thymus involution. To investigate the factors responsible for thymic involution in a model of STZ-induced diabetes, mice were injected with STZ alone or in combination with the cyclooxygenase 2 inhibitor indomethacin (INDO). Thymus weight, glycemia and serum corticosterone were measured, and apoptosis in thymus and thymocyte cultures was analyzed by flow cytometry. Although earlier studies report that streptozotocin (STZ) is toxic to lymphoid tissues, in our experiments even massive doses of STZ did not negatively affect thymocyte cultures. Cultured thymocytes also seemed unaffected by high glucose concentrations, even after 24 h of exposure. Administration of INDO concomitantly with STZ reduced thymic involution but did not prevent the onset of hyperglycemia or reduce established hyperglycemia. When INDO was given before STZ, the same degree of thymic involution occurred; however, hyperglycemia was reduced, although normoglycemia was not restored. INDO also reduced serum corticosterone. Because thymocytes are known to be sensitive to glucocorticoids, this finding suggests that cyclooxygenase 2 inhibition may retard thymic involution by reducing serum glucocorticoids. In conclusion, our results show that STZ and hyperglycemia are not toxic to thymocytes and that cyclooxygenase 2-mediated mechanisms are involved in thymic involution during diabetes.  相似文献   

9.
Glucocorticoids are extensively used in anti-inflammatory therapy and are thought to contribute to the steady-state regulation of hematopoiesis and lymphopoiesis. We have previously established MC2R(-/-) mice, a model of familial glucocorticoid deficiency, that show several similarities to patients with this disease, including undetectable levels of corticosterone, despite high levels of ACTH and unresponsiveness to ACTH. In this study, we analyzed the possible roles of endogenous glucocorticoids in hematopoiesis and lymphopoiesis in MC2R(-/-) and CRH(-/-) mice as models of chronic adrenal insufficiency. Our analysis of total peripheral blood cell counts revealed that the number of lymphocytes was increased and the number of erythrocytes was slightly, but significantly, decreased in MC2R(-/-) mice. Numbers of immature double negative (CD4(-) CD8(-)) thymocytes, transitional type 1 B cells in the spleen, and pre-B cells in the bone marrow, were significantly increased in MC2R(-/-) mice, suggesting that endogenous glucocorticoids contribute to steady-state regulation of lymphopoiesis. Oral glucocorticoid supplementation reversed peripheral blood cell counts and reduced numbers of T and B cells in the thymus and the spleen. T cells in the thymus and B cells in the spleen were also increased in CRH(-/-) mice, another animal model of chronic adrenal insufficiency. MC2R(-/-) mice were sensitive to age-related thymic involution, but they were resistant to fasting-associated thymic involution. Our data support the idea that endogenous glucocorticoids contribute to stress-induced as well as steady-state regulation of hematopoiesis and lymphopoiesis.  相似文献   

10.
The effect of T-activin on thymus involution in mice was studied. T-activin in a dose of 1.0 micrograms/mouse was injected into young male (CBA X C57BL)F1 mice weighing 24.0 +/- 2.0 g daily for 20 days. Morphometric analysis of the thymus was made 6 months after the treatment with T-activin was completed. It was found that T-activin induced the suppression of physiological involution of the thymus together with the enhancement of the processes of thymocyte transformation and proliferation.  相似文献   

11.
Mitochondrial uncoupling protein 3 (UCP3) is constitutively expressed in mitochondria from thymus and spleen of mice, and confocal microscopy has been used to visualize UCP3 in situ in mouse thymocytes. UCP3 is present in mitochondria of thymus and spleen up to at least 16 weeks after birth, but levels decrease by a half in thymus and a fifth in spleen after three weeks, probably reflecting the suckling to weaning transition. UCP3 protein levels increase approximately 3-fold in thymus on starvation, but expression levels in spleen were unaffected by starvation. Lack of UCP3 had little effect on thymus mass or thymocyte number. However, lack of UCP3 affected spleen mass and splenocyte number (in the fasted state) and results in reduced CD4+ single positive cell numbers and reduced double negative cells in the thymus, but as a 2-fold increase in the proportion of CD4(+), CD8(+) and DP cells in spleen. Starvation attenuates these proportionate differences in the spleen. A lack of UCP3 had no apparent effect on basal oxygen consumption of thymocytes or splenocytes or on oxygen consumption due to mitochondrial proton leak. Splenocytes from UCP3 knock-out mice are also more resistant to apoptosis than those from wild-type mice. Overall we can conclude that UCP3 affects thymocyte and spleen cell profiles in the fed and fasted states.  相似文献   

12.
The neonatal period is marked by the impairment of the major components of both innate and adaptive immunity. We report a severe depletion of cortical CD4+CD8+ double-positive thymocytes in the human neonatal thymus. This drastic reduction in immature double-positive cells, largely provoked by an increased rate of cell death, could be observed as early as 1 day after birth, delaying the recovery of the normal proportion of this thymocyte subset until the end of the first month of postnatal life. Serum cortisol levels were not increased in newborn donors, indicating that the neonatal thymic involution is a physiological rather than a stress-associated pathological event occurring in the perinatal period. Newborn thymuses also showed increased proportions of both primitive CD34+CD1- precursor cells and mature TCRalphabetahighCD69-CD1-CD45RO+/RAdull and CD45ROdull/RA+ cells, which presumably correspond to recirculating T lymphocytes into the thymus. A notable reinforcement of the subcapsular epithelial cell layer as well as an increase in the intralobular extracellular matrix network accompanied modifications in the thymocyte population. Additionally neonatal thymic dendritic cells were found to be more effective than dendritic cells isolated from children's thymuses at stimulating proliferative responses in allogeneic T cells. All these findings can account for several alterations affecting the peripheral pool of T lymphocytes in the perinatal period.  相似文献   

13.
14.
The PP2C phosphatase Wip1 dephosphorylates p38 and blocks UV-induced p53 activation in cultured human cells. Although the level of TCR-induced p38 MAPK activity is initially comparable between Wip1-/- and wild-type thymocytes, phosphatase-deficient cells failed to down-regulate p38 MAPK activity after 6 h. Analysis of young Wip1-deficient mice showed that they had fewer splenic T cells. Their thymi were smaller, contained significantly fewer cells, and failed to undergo age-dependent involution compared with wild-type animals. Analysis of thymocyte subset numbers by flow cytometry suggested that cell numbers starting at the double-negative (DN)4 stage are significantly reduced in Wip1-deficient mice, and p53 activity is elevated in cell-sorted DN4 and double-positive subpopulations. Although apoptosis and proliferation was normal in Wip1-/- DN4 cells, they appeared to be in cell cycle arrest. In contrast, a significantly higher percentage of apoptotic cells were found in the double-positive population, and down-regulation of thymocyte p38 MAPK activation by anti-CD3 was delayed. To examine the role of p38 MAPK in early thymic subpopulations, fetal thymic organ cultures cultured in the presence/absence of a p38 MAPK inhibitor did not correct the thymic phenotype. In contrast, the abnormal thymic phenotype of Wip1-deficient mice was reversed in the absence of p53. These data suggest that Wip1 down-regulates p53 activation in the thymus and is required for normal alphabeta T cell development.  相似文献   

15.
Disability and mortality as consequence of Chagas disease is enormous in South America. Recently, the success of the trypanocidal treatment with benznidazole, the only available drug, has been associated with the host immune response. In the current study, the impact of benznidazole administration immediately after the experimental infection with Trypanosoma cruzi was evaluated in the main lymphocyte populations in lymphoid organs. Untreated mice displayed enlargement of spleen and lymph node related to the increased frequency of T and B lymphocytes, respectively. An intense thymus involution with the depletion of CD4(+)CD8(+) double-positive thymocytes also occurred. Benznidazole treatment led to a partial reversion of the spleen and lymph node enlargement related to changes in the frequency of lymphocyte subsets due to infection. Prevention of thymus involution was achieved, with the profile of thymocyte subsets similar to that of non-infected mice. The parasitic load at the onset of T. cruzi infection seems critical to trigger immune system activation.  相似文献   

16.
The receptor activator of nuclear factor (NF)-B ligand (RANKL; also termed TRANCE/OPGL/ODF/TNFSF11), a new member of the tumor-necrosis factor (TNF) superfamily, was identified as a key cytokine involved in the differentiation of the immune system and the regulation of immunity as well as in bone metabolism. In particular, RANKL-deficient mice showed defects in the early differentiation of T lymphocytes, suggesting that RANKL is a novel regulator of early thymocyte development. Here, we describe the expression of RANKL during regeneration following acute involution induced by cyclophosphamide in the rat thymus. The present study demonstrates the presence and upregulated expression of the RANKL in thymic subcapsular, paraseptal, perivascular, and medullary epithelial cells during thymus regeneration. Our results suggest that the RANKL expressed in these thymic epithelial cells plays a role in the development of T cells during thymic regeneration.  相似文献   

17.
A role for CCR9 in T lymphocyte development and migration   总被引:14,自引:0,他引:14  
CCR9 mediates chemotaxis in response to CCL25/thymus-expressed chemokine and is selectively expressed on T cells in the thymus and small intestine. To investigate the role of CCR9 in T cell development, the CCR9 gene was disrupted by homologous recombination. B cell development, thymic alphabeta-T cell development, and thymocyte selection appeared unimpaired in adult CCR9-deficient (CCR9(-/-)) mice. However, competitive transplantation experiments revealed that bone marrow from CCR9(-/-) mice was less efficient at repopulating the thymus of lethally irradiated Rag-1(-/-) mice than bone marrow from littermate CCR9(+/+) mice. CCR9(-/-) mice had increased numbers of peripheral gammadelta-T cells but reduced numbers of gammadeltaTCR(+) and CD8alphabeta(+)alphabetaTCR(+) intraepithelial lymphocytes in the small intestine. Thus, CCR9 plays an important, although not indispensable, role in regulating the development and/or migration of both alphabeta(-) and gammadelta(-) T lymphocytes.  相似文献   

18.
With the help of antibodies-containing serum reacting with the thymus reticulum epithelial cells components by immunofluorescence method the thymus parenchimal tissue in mice with functional and pathological involution has been detected electively. In spite of large thymus changes in hairless mice with the mutation of gene hrrhy in 14-th chromosome of B10.R109/Y animals the basal cells antigen in epithelial reticulum has been preserved. It permits to estimate thymus involution level of this organ. Low lymphocyte content in the thymus of C57BL/6 mice is accompanied by total decamouflage of the epithelium. The functional thymus involution of pregnant mice is characterized by the luminescence of large number of epithelial cells, the restoration of organ after the delivery--by their few number. The elective detection of thymus epithelium many serve as additional test for the estimation of functional and pathological involution level.  相似文献   

19.
Zhu X  Gui J  Dohkan J  Cheng L  Barnes PF  Su DM 《Aging cell》2007,6(5):663-672
It has been speculated that aging lymphohematopoietic progenitor cells (LPC) including hematopoietic stem cells (HSC) and early T-cell progenitors (ETP) have intrinsic defects that trigger age-related thymic involution. However, using a different approach, we suggest that that is not the case. We provided a young thymic microenvironment to aged mice by transplanting a fetal thymus into the kidney capsule of aged animals, and demonstrated that old mouse-derived LPCs could re-establish normal thymic lymphopoiesis and all thymocyte subpopulations, including ETPs, double negative subsets, double positive, and CD4(+) and CD8(+) single positive T cells. LPCs derived from aged mice could turn over young RAG(-/-) thymic architecture by interactions, as well as elevate percentage of peripheral CD4(+)IL-2(+) T cells in response to costimulator in aged mice. Conversely, intrathymic injection of ETPs sorted from young animals into old mice did not restore normal thymic lymphopoiesis, implying that a shortage and/or defect of ETPs in aged thymus do not account for age-related thymic involution. Together, our findings suggest that the underlying cause of age-related thymic involution results primarily from changes in the thymic microenvironment, causing extrinsic, rather than intrinsic, defects in T-lymphocyte progenitors.  相似文献   

20.
Glucocorticoids (GCs) are primarily synthesized in the adrenal glands but an ectopic production has also been reported in the brain, the gastrointestinal tract and in thymic epithelial cells (TEC). Here we show that thymocytes express genes encoding for all enzymes required for de novo GC synthesis and produce the hormone as demonstrated by both a GC specific reporter assay and a corticosterone specific ELISA assay. Interestingly, GC synthesis is detectable in cells from young mice (4 weeks) and thereafter increases during aging (14-22 weeks) together with an increased gene expression of the rate-limiting enzymes StAR and CYP11A1. Hormone production occurred at a thymocyte differentiation stage characterized by being double positive for the CD4 and CD8 surface markers but was found to be unrelated to CD69 expression, a marker for thymocytes undergoing positive selection. No GC synthesis was found in resting or anti-CD3 activated CD4 and CD8 positive T cells isolated from the spleen. Thymocyte-derived GC had an anti-proliferative effect on a GR-transfected cell line and induced apoptosis in thymocytes. The age- and differentiation stage-related GC synthesis in thymocytes may play a role in the involution process that the thymus gland undergoes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号