首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
p70S6 kinase (S6K1) plays a pivotal role in hypertrophic cardiac growth via ribosomal biogenesis. In pressure-overloaded myocardium, we show S6K1 activation accompanied by activation of protein kinase C (PKC), c-Raf, and mitogen-activated protein kinases (MAPKs). To explore the importance of the c-Raf/MAPK kinase (MEK)/MAPK pathway, we stimulated adult feline cardiomyocytes with 12-O-tetradecanoylphorbol-13-acetate (TPA), insulin, or forskolin to activate PKC, phosphatidylinositol-3-OH kinase, or protein kinase A (PKA), respectively. These treatments resulted in S6K1 activation with Thr-389 phosphorylation as well as mammalian target of rapamycin (mTOR) and S6 protein phosphorylation. Thr-421/Ser-424 phosphorylation of S6K1 was observed predominantly in TPA-treated cells. Dominant negative c-Raf expression or a MEK1/2 inhibitor (U0126) treatment showed a profound blocking effect only on the TPA-stimulated phosphorylation of S6K1 and mTOR. Whereas p38 MAPK inhibitors exhibited only partial effect, MAPK-phosphatase-3 expression significantly blocked the TPA-stimulated S6K1 and mTOR phosphorylation. Inhibition of mTOR with rapamycin blocked the Thr-389 but not the Thr-421/Ser-424 phosphorylation of S6K1. Therefore, during PKC activation, the c-Raf/MEK/extracellular signal-regulated kinase-1/2 (ERK1/2) pathway mediates both the Thr-421/Ser-424 and the Thr-389 phosphorylation in an mTOR-independent and -dependent manner, respectively. Together, our in vivo and in vitro studies indicate that the PKC/c-Raf/MEK/ERK pathway plays a major role in the S6K1 activation in hypertrophic cardiac growth.  相似文献   

2.
Recently, we showed that autocrine transforming growth factor alpha (TGFalpha) controls the epidermal growth factor receptor (EGFR)-mediated basal expression of integrin alpha2, cell adhesion and motility in highly progressed HCT116 colon cancer cells. We also reported that the expression of basal integrin alpha2 and its biological effects are critically controlled by the constitutive activation of the ERK/MAPK pathway (Sawhney, R. S., Sharma, B., Humphrey, L. E., and Brattain, M. G. (2003) J. Biol. Chem. 278, 19861-19869). In the present report, we further examine the downstream signaling mechanisms underlying EGFR/ERK signaling and integrin alpha2 function in HCT116 cells. Selective MEK inhibitors attenuated TGFalpha-mediated basal activation of p70S6K (S6K) specifically at Thr-389, indicating that this S6K site is downstream of ERK/MAPK signaling. Cells were treated with the selective protein kinase C (PKC) inhibitor bisindolylmaleimide to determine the role of PKC in S6K activation. The Thr-421 and Ser-424 phosphorylation sites of S6K were specifically inhibited by bisindolylmaleimide, which also blocked integrin alpha2 expression, cell adhesion, and motility. These data establish a novel cell motility function of S6K via PKC activation in a cancer cell. In addition, we examined whether mammalian target of rapamycin signaling controls S6K activation. Rapamycin inhibited constitutive S6K phosphorylation specifically at Thr-389, Thr-421, and Ser-424 sites. The assignment of these phosphorylation sites on S6K to biological functions was unequivocally confirmed by transfection of cells with specific single phosphorylation site dominant negative mutants. These experiments show for the first time that autocrine TGFalpha regulates cell adhesion function by multiple signaling pathways via specific phosphorylation sites of S6K in cancer cells.  相似文献   

3.
We explored the crosstalk between cell survival (phosphatidylinositol 3-kinase (PI3K)/Akt) and mitogenic (Ras/Raf/MEK/extracellular signal-regulated kinase (ERK)) signaling pathways activated by an epidermal growth factor (EGF) and analyzed their sensitivity to small molecule inhibitors in the PI3K-mutant estrogen receptor (ER)-positive MCF7 and T47D breast cancer cells. In contrast to MCF7 cells, ERK phosphorylation in T47D cells displayed resistance to MEK inhibition by several structurally different compounds, such as U0126, PD 098059 and PD 198306, MEK suppression by small interfering RNA (siRNA) and was also less sensitive to PI3K inhibition by wortmannin. Similar effect was observed in PI3K-wild type ER-positive BT-474 cells, albeit to a much lesser extent.MEK-independent ERK activation was induced only by ErbB receptor ligands and was resistant to inhibition of several kinases and phosphatases that are known to participate in the regulation of Ras/mitogen-activated protein kinase (MAPK) cascade. Although single agents against PDK1 or Akt did not affect EGF-induced ERK phosphorylation, a combination of PI3K/Akt and MEK inhibitors synergistically suppressed ERK activation and cellular growth. siRNA-mediated silencing of class I PI3K or Akt1/2 genes also significantly decreased U0126-resistant ERK phosphorylation.Our data suggest that in T47D cells ErbB family ligands induce a dynamic, PI3K/Akt-sensitive and MEK-independent compensatory ERK activation circuit that is absent in MCF7 cells. We discuss candidate proteins that can be involved in this activation circuitry and suggest that PDZ-Binding Kinase/T-LAK Cell-Originated Protein Kinase (PBK/TOPK) may play a role in mediating MEK-independent ERK activation.  相似文献   

4.
Thrombin signalling through PAR (protease-activated receptor)-1 is involved in cellular processes, such as proliferation, differentiation and cell survival. Following traumatic injury to the eye, thrombin signalling may participate in disorders, such as PVR (proliferative vitreoretinopathy), a human eye disease characterized by the uncontrolled proliferation, transdifferentiation and migration of otherwise quiescent RPE (retinal pigment epithelium) cells. PARs activate the Ras/Raf/MEK/ERK MAPK pathway (where ERK is extracellular-signal-regulated kinase, MAPK is mitogen-activated protein kinase and MEK is MAPK/ERK kinase) through the activation of G(alpha) and G(betagamma) heterotrimeric G-proteins, and the downstream stimulation of the PLC (phospholipase C)-beta/PKC (protein kinase C) and PI3K (phosphoinositide 3-kinase) signalling axis. In the present study, we examined the molecular signalling involved in thrombin-induced RPE cell proliferation, using rat RPE cells in culture as a model system for PVR pathogenesis. Our results showed that thrombin activation of PAR-1 induces RPE cell proliferation through Ras-independent activation of the Raf/MEK/ERK1/2 MAPK signalling cascade. Pharmacological analysis revealed that the activation of 'conventional' PKC isoforms is essential for proliferation, although thrombin-induced phosphorylation of ERK1/2 requires the activation of atypical PKCzeta by PI3K. Consistently, thrombin-induced ERK1/2 activation and RPE cell proliferation were prevented completely by PI3K or PKCzeta inhibition. These results suggest that thrombin induces RPE cell proliferation by joint activation of PLC-dependent and atypical PKC isoforms and the Ras-independent downstream stimulation of the Raf/MEK/ERK1/2 MAPK cascade. The present study is the first report demonstrating directly thrombin-induced ERK phosphorylation in the RPE, and the involvement of atypical PKCzeta in this process.  相似文献   

5.
Peroxisome proliferator-activated receptor gamma (PPARgamma) causes epithelial to mesenchymal transformation (EMT) in intestinal epithelial cells, as evidenced by reorganization of the actin cytoskeleton, acquisition of a polarized, mesenchymal cellular morphology, increased cellular motility, and colony scattering. This response is due to activation of Cdc42, resulting in p21-activated kinase-dependent phosphorylation and activation of MEK1 Ser(298) and activation of ERK1/2. Dominant negative MEK1, MEK2, and ERK2 block PPARgamma-induced EMT, whereas constitutively active MEK1 and MEK2 induce a mesenchymal phenotype similar to that evoked by PPARgamma. PPARgamma also stimulates ERK1/2 phosphorylation in the intestinal epithelium in vivo. PPARgamma induces the p110alpha subunit of phosphoinositide 3-kinase (PI3K), and inhibition of PI3K blocks PPARgamma-dependent phosphorylation of MEK1 Ser(298), activation of ERK1/2, and EMT. We conclude that PPARgamma regulates the motility of intestinal epithelial cells through a mitogen-activated protein kinase cascade that involves PI3K, Cdc42, p21-activated kinase, MEK1, and ERK1/2. Regulation of cellular motility through Rho family GTPases has not been previously reported for nuclear receptors, and elucidation of the mechanism that accounts for the role of PPARgamma in regulating motility of intestinal epithelial cells provides fundamental new insight into the function of this receptor during renewal of the intestinal epithelium.  相似文献   

6.
The phosphatidylinositide-3-OH kinase/3-phospho-inositide-dependent protein kinase-1 (PDK1)/Akt and the Raf/mitogen-activated protein kinase (MAPK/ERK) kinase (MEK)/mitogen-activated protein kinase (MAPK) pathways have central roles in the regulation of cell survival and proliferation. Despite their importance, however, the cross-talk between these two pathways has not been fully understood. Here we report that PDK1 promotes MAPK activation in a MEK-dependent manner. In vitro kinase assay revealed that the direct targets of PDK1 in the MAPK pathway were the upstream MAPK kinases MEK1 and MEK2. The identified PDK1 phosphorylation sites in MEK1 and MEK2 are Ser222 and Ser226, respectively, and are known to be essential for full activation. To date, these sites are thought to be phosphorylated by Raf kinases. However, PDK1 gene silencing using small interference RNA demonstrates that PDK1 is associated with maintaining the steady-state phosphorylated MEK level and cell growth. The small interference RNA-mediated down-regulation of PDK1 attenuated maximum MEK and MAPK activities but could not prolong MAPK signaling duration. Stable and transient expression of constitutively active MEK1 overcame these effects. Our results suggest a novel cross-talk between the phosphatidylinositide-3-OH kinase/PDK1/Akt pathway and the Raf/MEK/MAPK pathway.  相似文献   

7.
Our laboratory showed that bikunin, a Kunitz-type protease inhibitor, suppresses 4beta-phorbol 12-myristate 13-acetate (PMA)- or tumor necrosis factor-alpha (TNFalpha)-induced urokinase-type plasminogen activator (uPA) expression in different cell types. In addition to its effects on protease inhibition, bikunin could be modulating other cellular events associated with the metastatic cascade. To test this hypothesis, we examined whether bikunin was able to suppress the expression of uPA receptor (uPAR) mRNA and protein in a human chondrosarcoma cell line, HCS-2/8, and two human ovarian cancer cell lines, HOC-I and HRA. The present study showed that (a) bikunin suppresses the expression of constitutive and PMA-induced uPAR mRNA and protein in a variety of cell types; (b) an extracellular signal-regulated kinase (ERK) activation system is necessary for the PMA-induced increase in uPAR expression, as PD098059 and U0126, which prevent the activation of MEK1, reduce the uPAR expression; (c) bikunin markedly suppresses PMA-induced phosphorylation of ERK1/2 at the concentration that prevents uPAR expression, but does not reduce total ERK1/2 antigen level; (d) bikunin has no ability to inhibit overexpression of uPAR in cells treated with sodium vanadate; and (e) we further studied the inhibition of uPAR expression by stable transfection of HRA cells with bikunin gene, demonstrating that bikunin secretion is necessary for inhibition of uPAR expression. We conclude that bikunin downregulates constitutive and PMA-stimulated uPAR mRNA and protein possibly through suppression of upstream targets of the ERK-dependent cascade, independent of whether cells were treated with exogenous bikunin or transfected with bikunin gene.  相似文献   

8.
Ribosomal S6 kinase 1 (S6K1), as a key regulator of mRNA translation, plays an important role in cell cycle progression through the G(1) phase of proliferating cells and in the synaptic plasticity of terminally differentiated neurons. Activation of S6K1 involves the phosphorylation of its multiple Ser/Thr residues, including the proline-directed sites (Ser-411, Ser-418, Thr-421, and Ser-424) in the autoinhibitory domain near the C terminus. Phosphorylation at Thr-389 is also a crucial event in S6K1 activation. Here, we report that S6K1 phosphorylation at Ser-411 is required for the rapamycin-sensitive phosphorylation of Thr-389 and the subsequent activation of S6K1. Mutation of Ser-411 to Ala ablated insulin-induced Thr-389 phosphorylation and S6K1 activation, whereas mutation mimicking Ser-411 phosphorylation did not show any effect. Furthermore, phosphomimetic mutation of Thr-389 overcame the inhibitory effect of the mutation S411A. Thus, Ser-411 phosphorylation regulates S6K1 activation via the control of Thr-389 phosphorylation. In nervous system neurons, Cdk5-p35 kinase associates with S6K1 via the direct interaction between p35 and S6K1 and catalyzes S6K1 phosphorylation specifically at Ser-411. Inhibition of the Cdk5 activity or suppression of Cdk5 expression blocked S6K1 phosphorylation at Ser-411 and Thr-389, resulting in S6K1 inactivation. Similar results were obtained by treating asynchronous populations of proliferating cells with the CDK inhibitor compound roscovitine. Altogether, our findings suggest a novel mechanism by which the CDK-mediated phosphorylation regulates the activation of S6K1.  相似文献   

9.
Metabotropic (slow) and ionotropic (fast) neurotransmission are integrated by intracellular signal transduction mechanisms involving protein phosphorylation/dephosphorylation to achieve experience-dependent alterations in brain circuitry. ERK is an important effector of both slow and fast forms of neurotransmission and has been implicated in normal brain function and CNS diseases. Here we characterize phosphorylation of the ERK-activating protein kinase MEK1 by Cdk5, ERK, and Cdk1 in vitro in intact mouse brain tissue and in the context of an animal behavioral paradigm of stress. Cdk5 only phosphorylates Thr-292, whereas ERK and Cdk1 phosphorylate both Thr-292 and Thr-286 MEK1. These sites interact in a kinase-specific manner and inhibit the ability of MEK1 to activate ERK. Thr-292 and Thr-286 MEK1 are phosphorylated in most mouse brain regions to stoichiometries of ∼5% or less. Phosphorylation of Thr-292 MEK1 is regulated by cAMP-dependent signaling in mouse striatum in a manner consistent with negative feedback inhibition in response to ERK activation. Protein phosphatase 1 and 2A contribute to the maintenance of the basal phosphorylation state of both Thr-292 and Thr-286 MEK1 and that of ERK. Activation of the NMDA class of ionotropic glutamate receptors reduces inhibitory MEK1 phosphorylation, whereas forced swim, a paradigm of acute stress, attenuates Thr-292 MEK1 phosphorylation. Together, the data indicate that these inhibitory MEK1 sites phosphorylated by Cdk5 and ERK1 serve as mechanistic points of convergence for the regulation of ERK signaling by both slow and fast neurotransmission.  相似文献   

10.
Constitutive activation of mitogen-activated protein kinase (MAPK) pathway is implicated in a variety of human malignancies especially those that carry Ras mutations and is currently exploited as a cancer therapeutic target. The variability of response by cancer cells to the inhibition of the Ras/MAPK pathway both in vivo and in vitro, however, suggests that the genetic background of the tumor cell may modulate the effectiveness of this directed therapeutic. In a panel of colorectal cancer cell lines that carry Ras mutations and have constitutively active MEK/MAPK, we found that inhibition of the MAPK upstream kinase MEK by the small molecular MEK inhibitor U0126 induced cell death only in p53 wild-type cells. By contrast, p53-deficient cells were not affected by blocking the MEK/MAPK pathway. Using isogenic colon cancer cell lines and RNA interference, we show that loss of p53 significantly reduces MAPK phosphorylation and renders cells resistant to U0126 treatment. These findings reveal a critical role for p53 in MAPK-driven cell survival and place p53 upstream in the control cascade of MAPK activity. The therapeutic implication of these observations is that MAPK inhibitors will be most beneficial as a therapeutic agent in p53 normal colon cancers where constitutively active MAPK resulting from a Ras mutation is required for cell survival.  相似文献   

11.
The RAS‐RAF‐MEK‐ERK (MAPK) pathway is prevalently perturbed in cancer. Recent large‐scale sequencing initiatives profiled thousands of tumors providing insight into alterations at the DNA and RNA levels. These efforts confirmed that key nodes of the MAPK pathway, in particular KRAS and BRAF, are among the most frequently altered proteins in cancer. The establishment of targeted therapies, however, has proven difficult. To decipher the underlying challenges, it is essential to decrypt the phosphorylation network spanned by the MAPK core axis. Using mass spectrometry we identified 2241 phosphorylation sites on 1020 proteins, and measured their responses to inhibition of MEK or ERK. Multiple phosphorylation patterns revealed previously undetected feedback, as upstream signaling nodes, including receptor kinases, showed changes at the phosphorylation level. We provide a dataset rich in potential therapeutic targets downstream of the MAPK cascade. By integrating TCGA (The Cancer Genome Atlas) data, we highlight some downstream phosphoproteins that are frequently altered in cancer. All MS data have been deposited in the ProteomeXchange with identifier PXD003908 ( http://proteomecentral.proteomexchange.org/dataset/PXD003908 ).  相似文献   

12.
为了探讨在人永生化支气管上皮细胞BEP2D细胞中,Smad4分子对 ERK/MAPK通路的作用,我们用RNA干扰的方法分别设计了两对Smad4 siRNA,并使BEP2D细胞中Smad4靶向沉默,用Western印迹分析了细胞内ERK激酶和MEK激酶磷酸化水平的变化.结果发现,当Smad4表达沉默后,ERK激酶磷酸化水平未变,MEK激酶磷酸化水平有所降低;再加TGF-β1诱导后ERK激酶和MEK激酶磷酸化水平均显著降低至基础水平以下.结果表明在BEP2D细胞中,Smad4的缺失抑制TGF-β1对ERK/MAPK通路的活化,故提出TGF β活化ERK/MAPK通路需要Smad4存在的假设.  相似文献   

13.
Activation of p70 S6 kinase (p70(S6K)) by growth factors requires multiple signal inputs involving phosphoinositide 3-kinase (PI3K), its effector Akt, and an unidentified kinase that phosphorylates Ser/Thr residues (Ser(411), Ser(418), Ser(424), and Thr(421)) clustered at its autoinhibitory domain. However, the mechanism by which G protein-coupled receptors activate p70(S6K) remains largely uncertain. By using vascular smooth muscle cells in which we have demonstrated Ras/extracellular signal-regulated kinase (ERK) activation through Ca(2+)-dependent, epidermal growth factor (EGF) receptor transactivation by G(q)-coupled angiotensin II (Ang II) receptor, we present a unique cross-talk required for Ser(411) phosphorylation of p70(S6K) by Ang II. Both p70(S6K) Ser(411) and Akt Ser(473) phosphorylation by Ang II appear to involve EGF receptor transactivation and were inhibited by dominant-negative Ras, whereas the phosphorylation of p70(S6K) and ERK but not Akt was sensitive to the MEK inhibitor. By contrast, the phosphorylation of p70(S6K) and Akt but not ERK was sensitive to PI3K inhibitors. Similar inhibitory pattern on these phosphorylation sites by EGF but not insulin was observed. Taken together with the inhibition of Ang II-induced p70(S6K) activation by dominant-negative Ras and the MEK inhibitor, we conclude that Ang II-initiated activation of p70(S6K) requires both ERK cascade and PI3K/Akt cascade that bifurcate at the point of EGF receptor-dependent Ras activation.  相似文献   

14.
Urokinase-type plasminogen activator receptor (uPAR) is attached to cell membranes by a glycosylphosphatidylinositol (GPI) anchor, and as such is devoid of an intracellular domain, but is nevertheless able to initiate signal transduction. Herein, we report a relationship between integrins and uPAR on the surface of the human NK cell line, YT. Our data reveals that crosslinking uPAR, which mimics uPAR clustering at focal adhesion sites, causes increases in expression of the alpha(M), alpha(V), and beta(2) integrins on the surface of YT cells. Activation of the MEK/ERK signaling cascade occurs following uPAR crosslinking, as phosphorylation of both MEK 1/2 and ERK 1/2 results from receptor clustering. The MEK-specific inhibitors PD98059 and U0126 blocked MAP kinase phosphorylation; furthermore, PD98059 inhibited the increase in integrin expression induced by uPAR clustering. This study suggests that uPAR is a signaling receptor and regulator of integrins in NK cells and may impact NK cell function, including the potential for their accumulation within tumor metastases following adoptive transfer.  相似文献   

15.
The enzyme p70S6 kinase (S6K1) is critical for cell growth, and we have reported its activation during cardiac hypertrophy. Because cardiac hypertrophy also involves integrin activation, we analyzed whether integrins could contribute to S6K1 activation. Using adult feline cardiomyocytes, here we report that integrin-interacting Arg-Gly-Asp (RGD) peptides activate S6K1 as observed by band shifting, kinase activity and phosphorylation at Thr-389 and Thr-421/Ser-424 of S6K1, and S6 protein phosphorylation. Perturbation of specific integrin function with blocking antibodies and by overexpressing the beta1A cytoplasmic tail revealed that beta3 but not beta1 integrin mediates the RGD-induced S6K1 activation. This activation is focal adhesion complex-independent and is accompanied by the activation of extracellular signal-regulated kinases 1/2 (ERK) and mammalian target of rapamycin (mTOR). Studies using specific inhibitors and dominant negative c-Raf expression in cardiomyocytes indicate that the S6K1 activation involves mTOR, MEK/ERK, and phosphatidylinositol 3-kinase pathways and is independent of protein kinase C and c-Raf. Finally, addition of fluorescent-labeled RGD peptide to cardiomyocytes exhibits its internalization and localization to the endocytic vesicles, and pretreatment of cardiomyocytes with endocytic inhibitors reduced the S6K1 activation. These data suggest that RGD interaction with beta3 integrin and its subsequent endocytosis trigger specific signaling pathway(s) for S6K1 activation in cardiomyocytes and that this process may contribute to hypertrophic growth and remodeling of myocardium.  相似文献   

16.
Cot/Tpl2/MAP3K8 is a serine/threonine kinase known to activate the ERK, p38, and JNK kinase pathways. Studies of Tpl2 knock-out mice reveal a clear defect in tumor necrosis factor-alpha production, although very little detail is known about its regulation and the signaling events involved. In the present study we demonstrated that phosphorylation of Cot was required for its maximal activity as phosphatase treatment of Cot decreased its kinase activity. The Cot sequence contains a conserved threonine at position 290 in the activation loop of the kinase domain. We found that mutation of this residue to alanine eliminated its ability to activate MEK/ERK and NF-kappaB pathways, whereas a phosphomimetic mutation to aspartic acid could rescue the ability to activate MEK. Thr-290 was also required for robust autophosphorylation of Cot. Antibody generated to phospho-Thr-290-Cot recognized both wild-type and kinase-dead Cot, suggesting that phosphorylation of Thr-290 did not occur through autophosphorylation but via another kinase. We showed that Cot was constitutively phosphorylated at Thr-290 in transfected human embryonic kidney 293T cells as well as human monocytes as this residue was phosphorylated in unstimulated and lipopolysaccharide-stimulated cells to the same degree. Treatment with herbimycin A inhibited Cot activity in the MEK/ERK pathway but did not inhibit phosphorylation at Thr-290. Together these results showed that phosphorylation of Cot at Thr-290 is necessary but not sufficient for full kinase activity in the MEK/ERK pathway.  相似文献   

17.
18.
Programmed cell death (pcd) may take the form of apoptosis or of nonapoptotic pcd. Whereas cysteine aspartyl-specific proteases (caspases) mediate apoptosis, the mediators of nonapoptotic cell death programs are much less well characterized. Here we report that alternative, nonapoptotic pcd induced by the neurokinin-1 receptor (NK(1)R) activated by its ligand Substance P, is mediated by a MAPK phosphorylation cascade recruited by the scaffold protein arrestin 2. The activation of the protein kinases Raf-1, MEK2, and ERK2 is essential for this form of nonapoptotic pcd, leading to the phosphorylation of the orphan nuclear receptor Nur77. NK(1)R-mediated cell death was inhibited by a dominant negative form of arrestin 2, Raf-1, or Nur77, by MEK1/2-specific inhibitors, and by RNA interference directed against ERK2 or MEK2 but not ERK1 or MEK1 and against Nur77. The MAPK pathway is also activated in neurons in primary culture undergoing NK(1)R-mediated death, since the MEK inhibitor PD98059 inhibited Substance P-induced death in primary striatal neurons. These results suggest that Nur77, which is regulated by a MAPK pathway activated via arrestin 2, modulates NK(1)R-mediated nonapoptotic pcd.  相似文献   

19.
20.
Urinary trypsin inhibitor (UTI), a Kunitz-type protease inhibitor, interacts with cells as a negative modulator of the invasive cells. Human ovarian cancer cell line, HRA, was treated with phorbol ester (PMA) to evaluate the effect on expression of urokinase-type plasminogen activator (uPA), since the action of uPA has been implicated in matrix degradation and cell motility. Preincubation of the cells with UTI reduced the ability of PMA to trigger the uPA expression at the gene level and at the protein level. UTI-induced down-regulation of PMA-stimulated uPA expression is irreversible and is independent of a cytotoxic effect. Down-regulation of uPA by UTI is mediated by its binding to the cells. We next asked whether the mechanism of inhibition of uPA expression by UTI was due to interference with the protein kinase C second messenger system. An assay for PKC activity demonstrated that UTI does not directly inhibit the catalytic activity of PKC and that PMA translocation of PKC from cytosol to membrane was inhibited by UTI, indicating that UTI inhibits the activation cascade of PKC. PMA could also activate a signaling pathway involving MEK1/ERK2/c-Jun-dependent uPA expression. When cells were preincubated with UTI, we could detect suppression of phosphorylation of these proteins. Like several types of PKC inhibitor, UTI inhibited PMA-stimulated invasiveness. We conclude that UTI markedly suppresses the cell motility possibly through negative regulation of PKC- and MEK/ERK/c-Jun-dependent mechanisms, and that these changes in behavior are correlated with a coordinated down-regulation of uPA which is likely to contribute to the cell invasion processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号