首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The recent use of calcein (CA) as a fluorescent probe for cellular iron has been shown to reflect the nutritional status of iron in mammalian cells (Breuer, W., Epsztejn, S., and Cabantchik, Z. I. (1995) J. Biol. Chem. 270, 24209-24215). CA was claimed to be a chemosensor for iron(II), to measure the labile iron pool and the concentration of cellular free iron(II). We first study here the thermodynamic and kinetic properties of iron binding by CA. Chelation of a first iron(III) involves one aminodiacetic arm and a phenol. The overall stability constant log beta111 of FeIIICAH is 33. 9. The free metal ion concentration is pFeIII = 20.3. A (FeIII)2 CA complex can be formed. A reversible iron(III) exchange from FeIIICAH to citrate and nitrilotriacetic acid is evidenced when these ligands are present in large excess. The kinetics of iron(III) exchange by CA is compatible with metabolic studies. The low reduction potential of FeIIICAH shows that the ferric form is highly stabilized. CA fluorescence is quenched by 85% after FeIII chelation but by only 20% using FeII. Real time iron nutrition by Arabidopsis thaliana cells has been measured by fluorimetry, and the iron buffer FeIIICAH + CA was used as source of iron. As a siderophore, FeIIICAH promotes cell growth and regreening of iron-deficient cells more rapidly than FeIIIEDTA. We conclude that CA is a good chemosensor for iron(III) in cells and biological fluids, but not for Fe(II). We discuss the interest of quantifying iron buffers in biochemical studies of iron, in vitro as well as in cells.  相似文献   

2.

Background

Iron overload cardiomyopathy that prevails in some forms of hemosiderosis is caused by excessive deposition of iron into the heart tissue and ensuing damage caused by a raise in labile cell iron. The underlying mechanisms of iron uptake into cardiomyocytes in iron overload condition are still under investigation. Both L-type calcium channels (LTCC) and T-type calcium channels (TTCC) have been proposed to be the main portals of non-transferrinic iron into heart cells, but controversies remain. Here, we investigated the roles of LTCC and TTCC as mediators of cardiac iron overload and cellular damage by using specific Calcium channel blockers as potential suppressors of labile Fe(II) and Fe(III) ingress in cultured cardiomyocytes and ensuing apoptosis.

Methods

Fe(II) and Fe(III) uptake was assessed by exposing HL-1 cardiomyocytes to iron sources and quantitative real-time fluorescence imaging of cytosolic labile iron with the fluorescent iron sensor calcein while iron-induced apoptosis was quantitatively measured by flow cytometry analysis with Annexin V. The role of calcium channels as routes of iron uptake was assessed by cell pretreatment with specific blockers of LTCC and TTCC.

Results

Iron entered HL-1 cardiomyocytes in a time- and dose-dependent manner and induced cardiac apoptosis via mitochondria-mediated caspase-3 dependent pathways. Blockade of LTCC but not of TTCC demonstrably inhibited the uptake of ferric but not of ferrous iron. However, neither channel blocker conferred cardiomyocytes with protection from iron-induced apoptosis.

Conclusion

Our study implicates LTCC as major mediators of Fe(III) uptake into cardiomyocytes exposed to ferric salts but not necessarily as contributors to ensuing apoptosis. Thus, to the extent that apoptosis can be considered a biological indicator of damage, the etiopathology of cardiosiderotic damage that accompanies some forms of hemosiderosis would seem to be unrelated to LTCC or TTCC, but rather to other routes of iron ingress present in heart cells.  相似文献   

3.
Iron acquired by cells is delivered to mitochondria for metabolic processing via pathways comprising undefined chemical forms. In order to assess cytosolic factors that affect those iron delivery pathways, we relied on microscopy and flow-cytometry for monitoring iron traffic in: (a) K562 erythroleukemia cells labeled with fluorescent metal-sensors targeted to either cytosol or mitochondria and responsive to changes in labile iron and (b) permeabilized cells that retained metabolically active mitochondria accessible to test substrates. Iron supplied to intact cells as transferrin-Fe(III) or Fe(II)-salts evoked concurrent metal ingress to cytosol and mitochondria. With either supplementation modality, iron ingress into cytosol was mostly absorbed by preloaded chelators, but ingress into mitochondria was fully inhibited only by some chelators, indicating different cytosol-to-mitochondria delivery mechanisms. Iron ingress into cytosol or mitochondria were essentially unaffected by depletion of cytosolic iron ligands like glutathione or the hypothesized 2,5 dihydroxybenzoate (2,5-DHBA) siderophore/chaperone. These ligands also failed to affect mitochondrial iron ingress in permeabilized K562 cells suspended in cytosol-simulating medium. In such medium, mitochondrial iron uptake was >6-eightfold higher for Fe(II) versus Fe(III), showed saturable properties and submicromolar K(1/2) corresponding to cytosolic labile iron levels. When measured in iron(II)-containing media, ligands like AMP, ADP or ATP, did not affect mitochondrial iron uptake whereas in iron(III)-containing media ADP and ATP reduced it and AMP stimulated it. Thus, cytosolic iron forms demonstrably contribute to mitochondrial iron delivery, are apparently not associated with DHBA analogs or glutathione but rather with resident components of the cytosolic labile iron pool.  相似文献   

4.
Two oral chelators, CP20 (deferiprone) and ICL670 (deferasirox), have been synthesized for the purpose of treating iron overload diseases, especially thalassemias. Given their antiproliferative effects resulting from the essential role played by iron in cell processes, such compounds might also be useful as anticancer agents. In the present study, we tested the impact of these two iron chelators on iron metabolism, in the HepaRG cell line which allowed us to study proliferating and differentiated hepatocytes. ICL670 uptake was greater than the CP20 uptake. The iron depletion induced by ICL670 in differentiated cells increased soluble transferrin receptor expression, decreased intracellular ferritin expression, inhibited 55Fe (III) uptake, and reduced the hepatocyte concentration of the labile iron pool. In contrast, CP20 induced an unexpected slight increase in intracellular ferritin, which was amplified by iron-treated chelator exposure. CP20 also promoted Fe(III) uptake in differentiated HepaRG cells, thus leading to an increase of both the labile pool and storage forms of iron evaluated by calcein fluorescence and Perls staining, respectively. In acellular conditions, compared to CP20, iron removing ability from the calcein-Fe(III) complex was 40 times higher for ICL670. On the whole, biological responses of HepaRG cells to ICL670 treatment were characteristic of expected iron depletion. In contrast, the effects of CP20 suggest the potential involvement of this compound in the iron uptake from the external medium into the hepatocytes from the HepaRG cell line, therefore acting like a siderophore in this cell model.  相似文献   

5.
6.
We assessed the role of the cell labile iron pool in mediating oncogene-induced cell proliferation via repression of ferritin expression. When HEK-293 cells, engineered to inducibly express either active (+) or dominant-negative (-) forms of the H-ras oncogene, were treated with antisense nucleotides to ferritin subunits they displayed (a) decreased ferritin levels, (b) increased labile iron pool and either (c) faster growth in cells induced to express H-Ras (+) or (d) recovery from growth retardation in dominant-negative H-Ras-induced cells. Our studies support the view that the role of down-modulation of ferritin expression by some oncogene-evoked proliferation proceeds via expansion of the cellular labile iron pool.  相似文献   

7.
The use of alpha-fetoprotein (AFP) as a serum marker in cancer actually predates its employment in the detection of congenital defects; however, the latter use of AFP as a fetal defect marker has propelled its clinical utilization. Although the serum-marker capacity of AFP has long been exploited, less is known of the biological activities of this oncofetal protein during fetal and perinatal development. In the present review, the biological activities of AFP are discussed in light of this glycoprotein's presence in various biological fluid compartments: embryonic and fetal tissues, serum, urine, and reproductive fluids. After a review of the histochemical detection of AFP in various cells and tissues during development, AFP concentrations within various biological fluids were discussed in the context of gestational age and anatomic location. Discussion follows concerning the relationships and roles of AFP in developmental events such as erthyropoiesis, histogenesis/organogenesis, and ligand binding and in developmental disorders such as hypothyroidism, folate deficiencies, and acquired immunodeficiency disorder (AIDS). Based on its association with so many types of birth defects, malformations, and congenital anomalies, AFP can be viewed as a molecular "troubleshooter" until signal transduction pathways are established during pregnancy and prenatal development. The review concludes with a discussion of the place of AFP in the rapidly expanding field of proteomics.  相似文献   

8.
The calcein-AM (calcein-acetoxymethyl ester) method is a widely used technique that is supposed to assay the intracellular 'labile iron pool' (LIP). When cells in culture are exposed to this ester, it passes the plasma membrane and reacts with cytosolic unspecific esterases. One of the reaction products, calcein, is a fluorochrome and a hydrophilic alcohol to which membranes are non-permeable and which, consequently, is retained within the cytosol of cells. Calcein fluorescence is quenched following chelation of low-mass labile iron, and the degree of quenching gives an estimate of the amounts of chelatable iron. However, a requirement for the assay to be able to demonstrate cellular LIP in total is that such iron be localized in the cytosol and not in a membrane-limited compartment. For some time it has been known that a major part of cellular, redox-active, labile, low-mass iron is temporarily localized in the lysosomal compartment as a result of the autophagic degradation of ferruginous materials, such as mitochondrial complexes and ferritin. Even if some calcein-AM may escape cytosolic esterases and enter lysosomes to be cleaved by lysosomal acidic esterases, the resulting calcein does not significantly chelate iron at 相似文献   

9.
Cyanobacteria are one of the most successful and oldest forms of life that are present on Earth. They are prokaryotic photoautotrophic microorganisms that colonize so diverse environments as soil, seawater, and freshwater, but also stones, plants, or extreme habitats such as snow and ice as well as hot springs. This diversity in the type of environment they live in requires a successful adaptation to completely different conditions. For this reason, cyanobacteria form a wide range of different secondary metabolites. In particular, the cyanobacteria living in both freshwater and sea produce many metabolites that have biological activity. In this review, we focus on metabolites called siderophores, which are low molecular weight chemical compounds specifically binding iron ions. They have a relatively low molecular weight and are produced by bacteria and also by fungi. The main role of siderophores is to obtain iron from the environment and to create a soluble complex available to microbial cells. Siderophores play an important role in microbial ecology; for example, in agriculture they support the growth of many plants and increase their production by increasing the availability of Fe in plants. The aim of this review is to demonstrate the modern use of physico-chemical methods for the detection of siderophores in cyanobacteria and the use of these methods for the detection and characterization of the siderophore-producing microorganisms. Using high-performance liquid chromatography-mass spectrometry (LC-MS), it is possible not only to discover new chemical structures but also to identify potential interactions between microorganisms. Based on tandem mass spectrometry (MS/MS) analyses, previous siderophore knowledge can be used to interpret MS/MS data to examine both known and new siderophores.  相似文献   

10.
11.
Hepcidin, a liver peptide hormone, is the central regulator of iron homeostasis. Hepcidin synthesis is modulated by iron stores, so that iron repletion increases its levels to prevent pathological overload, while iron deficiency strongly inhibits hepcidin to allow an increase in iron absorption from duodenal cells. The emerging pivotal role of hepcidin in iron homeostasis, along with its important links with basic pathways like inflammation, makes the availability of an accurate hepcidin assay as a potentially powerful investigative tool to improve our understanding as well as our diagnostic/prognostic capabilities in many human diseases. There has been a great interest worldwide in developing a reliable and widely applicable assay of the hormone in biological fluids. Being optimal for low-molecular-weight biomarkers, SELDI-TOF-MS has emerged as a valid tool for hepcidin assay. Here we review recent results obtained with this technique, as well as with other Mass Spectrometry-based and immunological methods.  相似文献   

12.
Sulfur is a chemically and biologically active element. Sulfur compounds in animal tissues can be present in two forms, namely stable and labile forms. Compounds such as methionine, cysteine, taurine and sulfuric acid are stable sulfur compounds. On the other hand, acid-labile sulfur and sulfane sulfur compounds are labile sulfur compounds. The sulfur atoms of labile sulfur compounds are liberated as inorganic sulfide by acid treatment or reduction. Therefore, the determination of sulfide is the basis for the determination of labile sulfur. Determination of sulfide has been performed by various methods, including spectrophotometry after derivatization, ion chromatography, high-performance liquid chromatography after derivatization, gas chromatography, and potentiometry with a sulfide ion-specific electrode. These methods were originally developed for the determination of sulfide in air and water samples and were then applied to biological samples. The metabolic origin of labile sulfur in animal tissues is cysteine. The pathways of cysteine metabolism leading to the formation of sulfane sulfur are discussed. Finally, reports on the physiological roles and pathological considerations of labile sulfur are reviewed.  相似文献   

13.
The labile iron pool (LIP) plays a role in generation of free radicals and is thus the target of chelators used for the treatment of iron overload. We have previously shown that the LIP is bound mostly to high molecular weight carriers (MW>5000). However, the iron does not remain associated with these proteins during native gel electrophoresis. In this study we describe a new method to reconstruct the interaction of iron with iron-binding proteins. Proteins were separated by native gradient polyacrylamide gel electrophoresis and transfered to polyvinilidene difluoride membrane under native conditions. The immobilized iron-binding proteins are then labeled by 59Fe using a 'titrational blotting' technique and visualized by storage phosphorimaging. At least six proteins, in addition to ferritin and transferrin, are specifically labeled in cellular lysates of human erythroleukemic cells. This technique enables separation and detection of iron-binding proteins or other metal-protein complexes under near-physiological conditions and facilitates identification of weak iron-protein complexes. Using a new native metal blotting method, we have confirmed that specific high molecular weight proteins bind the labile iron pool.  相似文献   

14.
Recently, photodynamic therapy using 5-aminolevulinic acid (ALA-PDT) has been widely used in cancer therapy. ALA administration results in tumor-selective accumulation of the photosensitizer protoporphyrin IX (PpIX) via the heme biosynthetic pathway. Although ALA-PDT has selectivity for tumor cells, PpIX is accumulated into cultured normal cells to a small extent, causing side effects. The mechanism of tumor-selective PpIX accumulation is not well understood. The purpose of the present study was to identify the mechanism of tumor-selective PpIX accumulation after ALA administration. We focused on mitochondrial labile iron ion, which is the substrate for metabolism of PpIX to heme. We investigated differences in iron metabolism between tumor cells and normal cells and found that the amount of mitochondrial labile iron ion in cancer was lower than that in normal cells. This finding could be because of the lower expression of mitoferrins, which are the mitochondrial iron transporters. Accordingly, we added sodium ferrous citrate (SFC) with ALA as a source of iron. As a result, we observed the accumulation of PpIX only in tumor cells, and only these cells showed sensitivity to ALA-PDT. Taken together, these results suggest that the uptake abilities of iron ion into mitochondria play a key role in tumor-selective PpIX accumulation. Using SFC as a source of iron might thus increase the specificity of ALA-PDT effects.  相似文献   

15.
The antioxidant activity of flavonoids may involve their ability to complex body iron in non-redox-active forms. In this study, it was found that the catechol flavonoids rutin and quercetin are able to suppress redox-active labile plasma iron (LPI) in both buffered solution and in iron-overloaded sera. Both flavonoids are effective in loading the metal into the iron-transport protein transferrin. Iron derivatives of quercetin and rutin are able to permeate cell membranes, however, only free quercetin is able to gain access to the cytosol and decrease intracellular labile iron pools. These results suggest that the antioxidant activity of quercetin may be dependent on its ability to shuttle labile iron from cell compartments followed by its transfer to transferrin.  相似文献   

16.
Biological aminothiols, such as cysteine, homocysteine, and glutathione, widely occur in animal tissues and fluids. The altered levels of the thiols (reduced forms) and their disulfides (oxidized forms) in physiological liquids have been linked to specific pathological conditions and closely associated with several human diseases. Therefore, it is well recognized that the determination of thiols and disufides is important in order to understand their physiological roles. The derivatization utilizing a suitable labeling reagent followed by chromatographic separation and detection is the most reliable means for sensitive and selective assays. Many reagents have typically been synthesized and successfully used for the determination of thiols and disulfides in biological specimens. The development of new reagents for highly sensitive detection is still continuing. This review describes the approaches for the separation assay of various thiol compounds, obtained through the analytical papers published in 2000–2008. The derivatization reagents are categorized with each type of chromophore and fluorophore and evaluated in terms of their reactivity, stability, detection wavelength, handling, sensitivity and selectivity. Application examples of the reagents for bioanalysis are also described in the text.  相似文献   

17.
The cellular labile iron pool (LIP) is a pool of chelatable and redox-active iron, which is transitory and serves as a crossroad of cell iron metabolism. Various attempts have been made to analyze the levels of LIP following cell disruption. The chemical identity of this pool has remained poorly characterized due to the multiplicity of iron ligands present in cells. However, the levels of LIP recently have been assessed with novel nondisruptive techniques that rely on the application of fluorescent metalosensors. Methodologically, a fluorescent chelator loaded into living cells binds to components of the LIP and undergoes stoichiometric fluorescence quenching. The latter is revealed and quantified in situ by addition of strong permeating iron chelators. Depending on the intracellular distribution of the sensing and chelating probes, LIP can be differentially traced in subcellular structures, allowing the dynamic assessment of its levels and roles in specific cell compartments. The labile nature of LIP was also revealed by its capacity to promote formation of reactive oxygen species (ROS), whether from endogenous or exogenous redox-active sources. LIP and ROS levels were shown to follow similar "rise and fall" patterns as a result of changes in iron import vs. iron chelation or ferritin (FT) degradation vs. ferritin synthesis. Those patterns conform with the accepted role of LIP as a self-regulatory pool that is sensed by cytosolic iron regulatory proteins (IRPs) and feedback regulated by IRP-dependent expression of iron import and storage machineries. However, LIP can also be modulated by biochemical mechanisms that override the IRP regulatory loops and, thereby, contribute to basic cellular functions. This review deals with novel methodologies for assessing cellular LIP and with recent studies in which changes in LIP and ROS levels played a determining role in cellular processes.  相似文献   

18.
The peptide hormone gastrin has been identified as a major regulator of acid secretion and a potent mitogen for normal and malignant gastrointestinal cells. The importance of gastric acid in the absorption of dietary iron first became evident 50 years ago when iron deficiency anemia was recognized as a long-term consequence of partial gastrectomy. This review summarizes the connections between circulating gastrins, iron status and colorectal cancer. Gastrins bind two ferric ions with micromolar affinity and, in the case of non-amidated forms of the hormone, iron binding is essential for biological activity in vitro and in vivo. The demonstration of an interaction between gastrin and transferrin by biochemical techniques led to the proposal that gastrins catalyze the loading of transferrin with iron. Several lines of evidence, including the facts that the concentrations of circulating gastrins are increased in mice and humans with the iron overload disease hemochromatosis and that transferrin saturation positively correlates with circulating gastrin concentration, suggest the potential involvement of gastrins in iron homeostasis. Conversely, recognition that ferric ions play an unexpected role in the biological activity of gastrins may assist in the development of useful therapies for colorectal carcinoma and other disorders of mucosal proliferation in the gastrointestinal tract.  相似文献   

19.
Iron, infection, and neoplasia   总被引:6,自引:0,他引:6  
In nearly all forms of life, the number and diversity of enzymes that contain iron or that depend on the presence of this metal for activity are impressive. Not surprisingly, chemical mechanisms have been evolved by many organisms that permit them to solubilize and acquire iron while at the same time depriving their competitors or their pathogens of this element. Proteins such as transferrin and lactoferrin that are employed by vertebrate hosts for iron transport and acquisition can, to some extent, withhold the metal from the siderophores of invading bacteria and fungi. Attempts also are made by animal hosts to withhold iron from protozoa and neoplastic cells. Unfortunately, pathogenic microorganisms have developed a variety of counter measures that are especially dangerous in hosts stressed by iron overload in specific fluids, tissues, or cells. In recent years, however, a number of possible methods and agents for strengthening iron-withholding defense have become apparent. Nearly 3,000 papers on various aspects of iron withholding are contained in the 18-year Medline Database and numerous reviews have been published since 1966. The present paper will focus on developments that have been reported within the past 2 1/2 years.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号