首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The precedence effect refers to a group of auditory phenomena related to the ability to locate sound sources in reverberant environments. In the present study, this phenomenon was investigated using two moving signals. The first signal was direct (lead) and the other was delayed (lag). The motion of the sound source was created by successive switching of ten loudspeakers. The continuity of the motion was created by simultaneously attenuating the stimulus in the previous loudspeaker and enhancing it in the next one. The length of the path of the lead and lag was 34°. The lead moved from 34° to 0° (to the right) and the lag moved –52° to –86° (to the left). The duration of the lead and the lag was 1 s. Lead–lag delays ranged from 1 to 40 ms. Subjects had to indicate the location of the lag. The results indicate that the lead signal dominated in the sound localization at short delay durations (up to 18 ms). In spite of the instructions, all the subjects pointed at the lead, which suggests that they perceived the lag in this location. Two distinct sounds were perceived at the longest delays. The mean echo threshold and its standard deviation in eight subjects was 9.6 ± 4.5 ms.  相似文献   

2.
The spatial resolution of the human auditory system was studied under conditions, where the location of the sound source was changed according to different temporal patterns of interaural time delay. Two experimental procedures were run in the same group of subjects: a psychophysical procedure (the transformed staircase method) and an electrophysiological one (which requires recording of mismatch negativity, the auditory evoked response component). It was established that (1) the value of the mismatch negativity reflected the degree of spatial deviation of the sound source; (2) the mismatch negativity was elicited even at minimum (20μs) interaural time delays under both temporal patterns (abrupt azimuth change and gradual sound movement at different velocities); (3) an abrupt change of the sound source azimuth resulted in a greater mismatch negativity than gradual sound movement did if the interaural time delay exceeded 40 μs; (4) the discrimination threshold values of the interaural delay obtained in the psychophysical procedure were greater than the minimum interaural delays that elicited mismatch negativity, with the exception of the expert listeners, who exhibited no significant difference.  相似文献   

3.
The precedence effect refers to the fact that humans are able to localize sound sources in reverberant environments. In this study, sound localization was studied with dual sound source: stationary (lead) and moving (lag) for two planes: horizontal and vertical. Duration of lead and lag signals was 1s. Lead-lag delays ranged from 1-40 ms. Testing was conducted in free field, with broadband noise busts (5-18 kHz). The listeners indicated the perceived location of the lag signal. Results suggest that at delays above to 25 ms in horizontal plane and 40 ms in vertical plane subjects localized correctly the moving signal. At short delays (up to 8-10 ms), regardless of the instructions, all subjects pointed to the trajectory near the lead. The echo threshold varied dramatically across listeners. Mean echo thresholds were 7.3 ms in horizontal plane and 10.1 ms in vertical plane. Statistically significant differences were not observed for two planes [F(1, 5) = 5.52; p = 0.07].  相似文献   

4.
Latency of visually evoked saccadic eye movements   总被引:1,自引:0,他引:1  
The validness of a model describing the relation between mean saccadic latency and stimulus asynchrony based on facilitation instead of suppression was tested experimentally. As a result, suppression of signals generated by the onset of a peripheral stimulus due to fixation of another target, giving rise to an increase of mean saccadic latency, does not seem very likely. The influence of the intensity of the fixation target on the latency of visually evoked saccades was studied. According to the facilitation model, the offset of the fixation target induces after an afferent delay, a transition of the state of the facilitation mechanism from the unfacilitated condition into a mode of maximal facilitation. The time-period during which this change is accomplished is called Facilitation-Rise-Time (FRT). An interpretation within the context of the facilitation model of gap-overlap latency data for different values of the intensity of the fixation stimulus suggests, in combination with computer-computations of the model, that lowering of this intensity causes an increase in FRT. The results in normal subjects of step stimulus experiments with a dim fixation point substantiate the hypothesis of a facilitation mechanism, which is triggerable not only by an external signal such as the offset of the fixation point, but also by some internal stimulus independent signal. Moreover, data for tracking by an amblyopic eye seem to support this conclusion. The findings of increased saccadic latencies in amblyopic and Optic Neuritis (ON) eyes suggest a slowing of processing of visual information in the sensory pathways from the central retina, subsequently utilized by the oculomotor system in the generation of saccades.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Four Eptesicus fuscus were trained in a range discrimination experiment to choose the closer of two phantom targets. Echo attenuation was roving between trials returning echoes ranging from −10 dB to −50 dB SPL (sound pressure level) relative to emission SPL. Discrimination thresholds were determined. After sufficient training, ranging performance was stable and about the same in the range between −20 dB and −50 dB with range difference thresholds around 300 μs. At −10 dB, performance was poor even after long training. After additional training at a constant relative echo SPL of −30 dB and a delay difference of 300 μs the performance measured with roving echo SPL improved at all relative echo SPL between −20 dB and −50 dB but not at −10 dB. The new experimental procedure improved the performance by additional learning, and the bats generalized over a wide range of relative echo SPL. Threshold improved to 100 μs when measured at a constant relative echo SPL of −30 dB, again indicating the influence of the experimental procedure. In correspondence to neurophysiological data the ranging performance deteriorates if the echo SPL is close to the emission SPL. Signal duration and emission SPL were variable during range discrimination. Accepted: 7 March 1998  相似文献   

6.
Toothed whales and dolphins (Odontocetes) are known to echolocate, producing short, broadband clicks and receiving the corresponding echoes, at extremely rapid rates. Auditory evoked potentials (AEP) and broadband click stimuli were used to determine the modulation rate transfer function (MRTF) of a neonate Risso’s dolphin, Grampus griseus, thus estimating the dolphin’s temporal resolution, and quantifying its physiological delay to sound stimuli. The Risso’s dolphin followed sound stimuli up to 1,000 Hz with a second peak response at 500 Hz. A weighted MRTF reflected that the animal followed a broad range of rates from 100 to 1,000 Hz, but beyond 1,250 Hz the animal’s hearing response was simply an onset/offset response. Similar to other mammals, the dolphin’s AEP response to a single stimulus was a series of waves. The delay of the first wave, PI, was 2.76 ms and the duration of the multi-peaked response was 4.13 ms. The MRTF was similar in shape to other marine mammals except that the response delay was among the fastest measured. Results predicted that the Risso’s dolphin should have the ability to follow clicks and echoes while foraging at close range.  相似文献   

7.
Localization of a sound source is important for animals in mating contexts: females generally orient towards signalling males, and males can estimate the position and quality of potential rivals. In anurans, the effect of sound direction on evoked vocal responses has been studied in males of Rana catesbeiana, which alter their vocal responses depending on the location of the stimulus. The current study explored the effects of sound direction in Eupsophus calcaratus, a frog that calls from inside burrows having resonance that would hinder the localization of incoming sounds. The vocal responses of 11 males to synthetic imitations of the conspecific advertisement call broadcast from loudspeakers positioned in front, to the right and left from the burrow openings were similar in terms of call rate, duration and latency. The invariance of the vocal responses indicates that for burrowing male frogs engaged in chorusing behaviour, the specific location of an opponent does not alter the persistence of vocal activity.  相似文献   

8.
 We propose a neural network model of the inferior colliculus (IC) for human echolocation. Neuronal mechanisms for human echolocation were investigated by simulating the model. The model consists of the neural networks of the central nucleus (ICc) and external nucleus (ICx) of the inferior colliculus. The neurons of the ICc receive interaural sound stimuli via multiple contralateral delay lines and a single ipsilateral delay line. The neurons of the ICc send output signals to the neurons of the ICx in a convergent manner. We stimulated the ICc with pairs of a direct sound (a sonar sound) and an echo sound (the reflection from an object). Information about the distance between the model and the object is expressed by the delay time of the echo sound with respect to the direct sound. The results presented here show that neurons of the ICc responsive to interaural onset time differences contribute to the creation of an auditory distance map in the ICx. We trained the model with various pairs of direct-echo sounds and modified synaptic connection strengths of the networks according to the Hebbian rule. It is shown that self-organized long-term depression of lateral inhibitory synaptic connections plays an important role in enhancing echolocation skills. Received: 26 November 2000 / Accepted in revised form: 16 October 2001  相似文献   

9.
Human long-latency auditory evoked potentials were studied during simulation with variable-amplitude pulse sequences from a sound source moving to and from the subject. The N1 peak parameters were shown to depend on an accurate estimate of the direction of the change in the distance to the sound source. Differences in the processing of signals that simulated the approaching and/or distancing of the sound source were found in the N1 and P2 component parameters of on- and off-responses as was a more pronounced long negative potential shift in the evoked response to the approaching source as compared to the distancing source.  相似文献   

10.
Echo thresholds were measured for two configurations of loudspeakers in the vertical plane. The first configuration was characterized by the lead sound presentation from a loudspeaker placed in front of a subject, whereas the lag sound was presented from the loudspeaker above the subject's head. In the second configuration, the lead and lag sounds were presented from the same loudspeakers but in reverse order. All the stimuli were broadband noise bursts in the frequency range of 5-20 kHz. Burst durations were 5, 10, 20, and 100 ms. Average echo thresholds differences were significant only for the signals of 100 ms in duration (F (1, 16) = 6.28; p < 0.05). For the other signals (5, 10, 20 ms), there was no significant effect of location of lead and lag signals (p > 0.05).  相似文献   

11.
The responses of single units and evoked potentials to a pair of artificial sounds, mimicking theorientation sound and echo, and to tape recorded actual orientation sounds were studied in terms of recovery cycle. the recovery cycle of single units could be classified into four groups: (1) short suppression (4%), (2) delayed inhibition (11%), (3) temporal recovery with or without a supernormal phase (7%), and (4) undelayed inhibition (78%) lasting 4 to 26 msec. therefore the majority of neurons were not excited by the second sound (echo) of a pair when it was delivered within several milliseconds after the first (out-going orientation sound). the duration of the recovery cycle was a function of the intensity of a pair of sounds. the weaker the first tone pulse relative to the second, the more rapid the recovery to the second. therefore, the reception of echoes is probably improved by contraction of middle ear muscles resulting in attenuation of self-stimulation by the out-going pulse. The collicular evoked potential consisted of two components, a fast one mainly due to the incoming fibers from lower levels and a slow one due to the main body of the inferior colliculus. The slow component showed slow recovery cycles as did the majority of single units while the fast one recovered very quickly. No noticeable difference in recovery cycles was found between awake and anesthetized animals. The functional meaning of inhibitory periods in the recovery cycle and role of the inferior colliculus in echo-location are discussed.  相似文献   

12.
Disappearance of the fixation spot before the appearance of a peripheral target typically reduces average saccadic reaction times (the gap effect) and may also produce a separate population of early or express saccades. The superior colliculus (SC) is generally believed to be critically involved in generating both effects. As the direct sensory input to the SC does not encode colour information, to determine whether this input was critical in generating the gap effect or express saccades we used coloured targets which this pathway cannot distinguish. Our observers still made early saccades to colour-defined targets, but these were anticipations in response to the offset of the non-coloured fixation target. We also show that a gap effect still occurs when either the fixation target or the peripheral target is colour defined, suggesting that direct sensory input to the SC is not required and that information about the location of colour-defined targets is abstracted prior to processing within the SC.  相似文献   

13.
1. FM echolocating bats (Eptesicus fuscus) were trained to discriminate between a two-component complex target and a one-component simple target simulated by electronically-returned echoes in a series of experiments that explore the composition of the image of the two-component target. In Experiment I, echoes for each target were presented sequentially, and the bats had to compare a stored image of one target with that of the other. The bats made errors when the range of the simple target corresponded to the range of either glint in the complex target, indicating that some trace of the parts of one image interfered with perception of the other image. In Experiment II, echoes were presented simultaneously as well as sequentially, permitting direct masking of echoes from one target to the other. Changes in echo amplitude produced shifts in apparent range whose pattern depended upon the mode of echo presentation. 2. Eptesicus perceives images of complex sonar targets that explicitly represent the location and spacing of discrete glints located at different ranges. The bat perceives the target's structure in terms of its range profile along a psychological range axis using a combination of echo delay and echo spectral representations that together resemble a spectrogram of the FM echoes. The image itself is expressed entirely along a range scale that is defined with reference to echo delay. Spectral information contributes to the image by providing estimates of the range separation of glints, but it is transformed into these estimates. 3. Perceived absolute range is encoded by the timing of neural discharges and is vulnerable to shifts caused by neural amplitude-latency trading, which was estimated at 13 to 18 microseconds per dB from N1 and N4 auditory evoked potentials in Eptesicus. Spectral cues representing the separation of glints within the target are transformed into estimates of delay separations before being incorporated into the image. However, because they are encoded by neural frequency tuning rather than the time-of-occurrence of neural discharges, the perceived range separation of glints in images is not vulnerable to amplitude-latency shifts. 4. The bat perceives an image that is displayed in the domain of time or range. The image receives no evident spectral contribution beyond what is transformed into delay estimates. Although the initial auditory representation of FM echoes is spectrogram-like, the time, frequency, and amplitude dimensions of the spectrogram appear to be compressed into an image that has only time and amplitude dimensions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
The auditory system of horseshoe bats is narrowly tuned to the sound of their own echoes. During flight these bats continuously adjust the frequency of their echolocation calls to compensate for Doppler-effects in the returning echo. Horseshoe bats can accurately compensate for changes in echo frequency up to 5 kHz, but they do so through a sequence of small, temporally-independent, step changes in call frequency. The relationship between an echo's frequency and its subsequent impact on the frequency of the very next call is fundamental to how Doppler-shift compensation behavior works. We analyzed how horseshoe bats control call frequency by measuring the changes occurring between many successive pairs of calls during Doppler-shift compensation and relating the magnitude of these changes to the frequency of each intervening echo. The results indicate that Doppler-shift compensation is mediated by a pair of (echo)frequency-specific sigmoidal functions characterized by a threshold, a slope, and an upper limit to the maximum change in frequency that may occur between successive calls. The exact values of these parameters necessarily reflect properties of the underlying neural circuitry of Doppler-shift compensation and the motor control of vocalization, and provide insight into how neural feedback can accommodate the need for speed without sacrificing stability.  相似文献   

15.
The auditory sensory organ, the cochlea, not only detects but also generates sounds. Such sounds, otoacoustic emissions, are widely used for diagnosis of hearing disorders and to estimate cochlear nonlinearity. However, the fundamental question of how the otoacoustic emission exits the cochlea remains unanswered. In this study, emissions were provoked by two tones with a constant frequency ratio, and measured as vibrations at the basilar membrane and at the stapes, and as sound pressure in the ear canal. The propagation direction and delay of the emission were determined by measuring the phase difference between basilar membrane and stapes vibrations. These measurements show that cochlea-generated sound arrives at the stapes earlier than at the measured basilar membrane location. Data also show that basilar membrane vibration at the emission frequency is similar to that evoked by external tones. These results conflict with the backward-traveling-wave theory and suggest that at low and intermediate sound levels, the emission exits the cochlea predominantly through the cochlear fluids.  相似文献   

16.
Long latency auditory evoked potentials (AEPs), chiefly consisting of a negative peak at about 150 msec and a positivity at 250 msec, were recorded at the beginning and end of periods during which the interaural time difference of binaural noise was switched between 0.0 and 0.8 msec at a fast rate (ISI = 50 or 25 msec) or the frequency of continuous binaural clicks was switched between 167 and 200 Hz every 80, 50 or 25 msec. In the latter case the offset responses occurred later than onset by a mean of 89, 47 and 27 msec respectively, suggesting they were probably generated at the moment the next switch was expected but failed to occur.The offset responses must be non-specific with respect to the interaural delay or the frequency of clicks, since neurones which respond to particular delays or frequencies and are made refractory by a rapid rate of stimulation should not suddenly become less so at the last in a series of identical stimuli, or be activated by the absence of a further event. It is proposed that the potentials are due to a higher order of neurone which automatically responds to the occurrence of a “mismatch” between the immediate sound and an image of that which was previously present, encoded in a short-term sensory store. In addition to frequency content and interaural delay, the image must contain information about the temporal modulation pattern of the sound over the previous few seconds.  相似文献   

17.
The localization of a sum of acoustic signals by two northern fur seals in air depending on sound parameters was investigated using the method of instrumental conditioned reflexes with food reinforcement. It was found that sound perception of northern fur seal proceeds by the binaural mechanism. The time/intensity interchange coefficient was 570 microseconds/dB for series of clicks (with amplitude maximum at 1 kHz) and 250 microseconds/dB for tonal impulses with a frequency of 1 kHz. With click amplitudes being equal, the number of approaches of the animal to the source of the first signal reached a 75% level at a delay of the second signal 0.07 ms (the minimum delay); with a delay of 6 ms (the maximum delay) and more, the fur seal, probably hears two separate signals. The minimum delay depended little on the duration of tonal impulses (with a frequency of 1 kHz) and was 0.3-0.7 ms; the maximum delay was 9-11 ms for tonal impulses with a duration of 3 ms and 37-40 ms with impulse duration 20 ms. The precedence effect became apparent at a greater delay for smooth fronts of impulses than for rectangular fronts.  相似文献   

18.
Our objective was to characterize the saccadic eye movements in patients with type 3 Gaucher disease (chronic neuronopathic) in relationship to neurological and neurophysiological abnormalities. For approximately 4 years, we prospectively followed a cohort of 15 patients with Gaucher type 3, ages 8-28 years, by measuring saccadic eye movements using the scleral search coil method. We found that patients with type 3 Gaucher disease had a significantly higher regression slope of duration vs amplitude and peak duration vs amplitude compared to healthy controls for both horizontal and vertical saccades. Saccadic latency was significantly increased for horizontal saccades only. Downward saccades were more affected than upward saccades. Saccade abnormalities increased over time in some patients reflecting the slowly progressive nature of the disease. Phase plane plots showed individually characteristic patterns of abnormal saccade trajectories. Oculo-manual dexterity scores on the Purdue Pegboard test were low in virtually all patients, even in those with normal cognitive function. Vertical saccade peak duration vs amplitude slope significantly correlated with IQ and with the performance on the Purdue Pegboard but not with the brainstem and somatosensory evoked potentials. We conclude that, in patients with Gaucher disease type 3, saccadic eye movements and oculo-manual dexterity are representative neurological functions for longitudinal studies and can probably be used as endpoints for therapeutic clinical trials. TRIAL REGISTRATION: ClinicalTrials.gov NCT00001289.  相似文献   

19.
The ability to localize endpoints of sound image trajectories was studied in comparison with stationary sound image positions. Sound images moved either gradually or abruptly to the left or right from the head midline. Different types of sound image movement were simulated by manipulating the interaural time delay. Subjects were asked to estimate the position of the virtual sound source, using the graphic tablet. It was revealed that the perceived endpoints of the moving sound image trajectories, like stationary stimulus positions, depended on the interaural time delay. The perceived endpoints of the moving sound images simulated by stimuli with the final interaural time delay lower than 200 micros were displaced further from the head midline as compared to stationary stimuli of the same interaural time delays. This forward displacement of the perceived position of the moving target can be considered as "representational momentum" and can be explained by mental extrapolation of the dynamic information, which is necessary for successive sensorimotor coordination. For interaural time delays above 400 micros, final positions of gradually and abruptly moving sound sources were closer to the head midline than corresponding stationary sound image position. When comparing the results of both duration conditions, it was shown that in case of longer stimuli the endpoints of gradually moving sound images were lateralized further from the head midline for interaural time delays above 400 micros.  相似文献   

20.
The natural acoustical environment contains many reflective surfaces that give rise to echoes, complicating the task of sound localization and identification. The barn owl (Tyto alba), as a nocturnal predator, relies heavily on its auditory system for tracking and capturing prey in this highly echoic environment. The external nucleus of the owl's inferior colliculus (ICx) contains a retina-like map of space composed of space-specific auditory neurons that have spatially limited receptive fields. We recorded extracellularly from individual space-specific neurons in an attempt to understand the pattern of activity across the ICx in response to a brief direct sound and a simulated echo. Space-specific neurons responded strongly to the direct sound, but their response to a simulated echo was suppressed, typically, if the echo arrived within 5 ms or less of the direct sound. Thus we expect there to be little or no representation within the ICx of echoes arriving within such short delays.Behavioral tests using the owl's natural tendency to turn their head toward a sound source suggested that owls, like their space-specific neurons, similarly localize only the first of two brief sounds. Naive, untrained owls were presented with a pair of sounds in rapid succession from two horizontally-separated speakers. With interstimulus delays of less than 10 ms, the owl consistently turned its head toward the leading speaker. Longer delays elicited head turns to either speaker with approximately equal frequency and in some cases to both speakers sequentially.Abbreviations IC inferior colliculus - ICx external nucleus of the inferior colliculus - ITD interaural time difference - ISI interstimulus interval - LS left speaker - RS right speaker - CS centering speaker - RF receptive field  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号