首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unveiling the mechanisms participating in the damage and repair of traumatic brain injury (TBI) is fundamental to develop new therapies. The P2Y-like GPR17 receptor has recently emerged as a sensor of damage and a key actor in lesion remodeling/repair in the rodent brain, but its role in humans is totally unknown. Here, we characterized GPR17 expression in brain specimens from seven intensive care unit TBI patients undergoing neurosurgery for contusion removal and from 28 autoptic TBI cases (and 10 control subjects of matched age and gender) of two university hospitals. In both neurosurgery and autoptic samples, GPR17 expression was strong inside the contused core and progressively declined distally according to a spatio-temporal gradient. Inside and around the core, GPR17 labeled dying neurons, reactive astrocytes, and activated microglia/macrophages. In peri-contused parenchyma, GPR17 decorated oligodendrocyte precursor cells (OPCs) some of which had proliferated, indicating re-myelination attempts. In autoptic cases, GPR17 expression positively correlated with death for intracranial complications and negatively correlated with patients’ post-traumatic survival. Data indicate lesion-specific sequential involvement of GPR17 in the (a) death of irreversibly damaged neurons, (b) activation of microglia/macrophages remodeling the lesion, and (c) activation/proliferation of multipotent parenchymal progenitors (both reactive astrocytes and OPCs) starting repair processes. Data validate GPR17 as a target for neurorepair and are particularly relevant to setting up new therapies for TBI patients.  相似文献   

2.
The developing and mature central nervous system contains neural precursor cells expressing the proteoglycan NG2. Some of these cells continuously differentiate to myelin-forming oligodendrocytes; knowledge of the destiny of NG2(+) precursors would benefit from the characterization of new key functional players. In this respect, the G protein-coupled membrane receptor GPR17 has recently emerged as a new timer of oligodendrogliogenesis. Here, we used purified oligodendrocyte precursor cells (OPCs) to fully define the immunophenotype of the GPR17-expressing cells during OPC differentiation, unveil its native signaling pathway, and assess the functional consequences of GPR17 activation by its putative endogenous ligands, uracil nucleotides and cysteinyl leukotrienes (cysLTs). GPR17 presence was restricted to very early differentiation stages and completely segregated from that of mature myelin. Specifically, GPR17 decorated two subsets of slowly proliferating NG2(+) OPCs: (i) morphologically immature cells expressing other early proteins like Olig2 and PDGF receptor-α, and (ii) ramified preoligodendrocytes already expressing more mature factors, like O4 and O1. Thus, GPR17 is a new marker of these transition stages. In OPCs, GPR17 activation by either uracil nucleotides or cysLTs resulted in potent inhibition of intracellular cAMP formation. This effect was counteracted by GPR17 antagonists and receptor silencing with siRNAs. Finally, uracil nucleotides promoted and GPR17 inhibition, by either antagonists or siRNAs, impaired the normal program of OPC differentiation. These data have implications for the in vivo behavior of NG2(+) OPCs and point to uracil nucleotides and cysLTs as main extrinsic local regulators of these cells under physiological conditions and during myelin repair.  相似文献   

3.
Characterization of cells with proliferative activity after a brain injury   总被引:5,自引:0,他引:5  
The cellular responses to a brain injury are important steps in restoring the integrity and function of the brain. Proliferating cells, such as reactive astrocytes, oligodendrocyte precursor cells and microglia remodel the injured tissue. To spatially and temporally characterize the initial cellular responses in vivo, proliferating cells were pulse-labeled with BrdU soon after (the 2nd day) a cortical cryo-injury, and their fate was investigated by double labeling with an anti-BrdU antibody and antibodies to various cellular markers. Three days after the cryo-injury, a significant proportion of BrdU-positive cells were positive for NG2-proteoglycan, suggesting that oligodendrocyte progenitors (OPCs) were induced in response to injury. One-two weeks after the cryo-injury, the number of OPC was reduced and GFAP/BrdU double-positive cells, in turn, became dominant, while cells with mature oligodendrocyte markers did not increase significantly. Neuronal markers were rarely co-localized with BrdU immunoreactivity throughout the period studied. These findings imply that OPCs are prone to differentiate to astrocytes in the lesioned site. In this cryo-injury model, treatment with thyroid hormone (T4) altered cell fate; the increase in the number of GFAP/BrdU-positive cells was significantly diminished, and there was an increased number of mature oligodendrocytes (CNPase, PLP-positive) exhibiting BrdU immunoreactivity. These findings suggest that modification of proliferating progenitors in injured brain by hormonal or chemical treatment might benefit functional regeneration.  相似文献   

4.
The P2Y-like receptor GPR17 has been reported to respond to both uracil nucleotides and cysteinyl-leukotrienes (cysLTs), such as UDP-glucose and LTD4. Our previous data suggest a potential role for GPR17 in regulation of both cell viability and differentiation state of central nervous system cells. On this basis, in the present paper we investigated the effect of GPR17 receptor ligands on PC12 cell viability, following induction of morphological differentiation by nerve growth factor (NGF). In addition, the role of GPR17 ligands, either alone or in combination with growth factors, on the degree of PC12 cell differentiation was investigated. GPR17, which was not basally expressed in undifferentiated PC12 cells, was specifically induced by a 10 day-treatment with NGF, suggesting a role in the control of neuronal specification. Both UDP-glucose and LTD4, agonists at the nucleotide and cysLT GPR17 binding sites, respectively, induced a significant pro-survival effect on PC12 cells after priming with NGF. By in vitro silencing experiments with specific small interfering RNAs and by using receptor antagonists, we confirmed that the agonist effects are indeed mediated by the selective activation of GPR17. We also demonstrated that GPR17 agonists act, both alone and synergistically with NGF, to promote neurite outgrowth in PC12 cells. In addition, GPR17 ligands were able to confer an NGF-like activity to the epidermal growth factor (EGF), that, under these experimental conditions, also promoted cell differentiation and neurite elongation.Finally, we show that GPR17 ligands activate the intracellular phosphorylation of both ERK 1/2 and p38 kinases, that have been identified as important signalling pathways for neurotrophins in PC12 cells.Our results establish GPR17 as a neurotrophic regulator for neuronal-like cells and suggest a possible interplay between endogenous uracil derivatives, cysLTs and NGF in the signalling pathways involved in neuronal survival and differentiation. They also represent the first direct demonstration, in a native system, that GPR17 can indeed be activated by uracil nucleotides and cysLTs, in line with what previously demonstrated in recombinant expression systems.  相似文献   

5.
6.
Immunoproteasome responds to injury in the retina and brain   总被引:1,自引:0,他引:1  
It is well known that immunoproteasome generates peptides for MHC Class I occupancy and recognition by cytotoxic T lymphocytes (CTL). The present study focused on evidence for alternative roles for immunoproteasome. Retina and brain were analyzed for expression of immunoproteasome subunits using immunohistochemistry and western blotting under normal conditions and after injury/stress induced by CTL attack on glia (brain) or neurons (retina). Normal retina expressed substantial levels of immunoproteasome in glia, neurons, and retinal pigment epithelium. The basal level of immunoproteasome in retina was two-fold higher than in brain; CTL-induced retinal injury further up-regulated immunoproteasome expression. Immunoproteasome up-regulation was also observed in injured brain and corresponded with expression in Purkinje cells, microglia, astrocytes, and oligodendrocytes. These results suggest that the normal environment of the retina is sufficiently challenging to require on-going expression of immunoproteasome. Further, immunoproteasome up-regulation with retinal and brain injury implies a role in neuronal protection and/or repair of damage.  相似文献   

7.
A Nishiyama 《Human cell》2001,14(1):77-82
There exists a significantly large population of glial cells in the mammalian central nervous system (CNS) that can be identified by the expression of the NG2 proteoglycan. Cells that express NG2 (NG2 cells) are found in the developing and mature CNS and are distinct from neurons, astrocytes, microglia, and mature oligodendrocytes. They are often referred to as oligodendrocyte progenitor cells because of their ability to differentiate into oligodendrocytes in culture. However, the observation that a large number of NG2 cells persist uniformly and ubiquitously in the adult CNS and display a differentiated morphology is not entirely consistent with the notion that NG2 cells are all oligodendrocyte progenitor cells. The role of NG2 cells in oligodendrocyte regeneration and their non-progenitor role in the mature CNS are discussed in this review.  相似文献   

8.
Recent studies have recognized G protein-coupled receptors as important regulators of oligodendrocyte development. GPR17, in particular, is an orphan G protein-coupled receptor that has been identified as oligodendroglial maturation inhibitor because its stimulation arrests primary mouse oligodendrocytes at a less differentiated stage. However, the intracellular signaling effectors transducing its activation remain poorly understood. Here, we use Oli-neu cells, an immortalized cell line derived from primary murine oligodendrocytes, and primary rat oligodendrocyte cultures as model systems to identify molecular targets that link cell surface GPR17 to oligodendrocyte maturation blockade. We demonstrate that stimulation of GPR17 by the small molecule agonist MDL29,951 (2-carboxy-4,6-dichloro-1H-indole-3-propionic acid) decreases myelin basic protein expression levels mainly by triggering the Gαi/o signaling pathway, which in turn leads to reduced activity of the downstream cascade adenylyl cyclase-cAMP-PKA-cAMP response element-binding protein (CREB). In addition, we show that GPR17 activation also diminishes myelin basic protein abundance by lessening stimulation of the exchange protein directly activated by cAMP (EPAC), thus uncovering a previously unrecognized role for EPAC to regulate oligodendrocyte differentiation. Together, our data establish PKA and EPAC as key downstream effectors of GPR17 that inhibit oligodendrocyte maturation. We envisage that treatments augmenting PKA and/or EPAC activity represent a beneficial approach for therapeutic enhancement of remyelination in those demyelinating diseases where GPR17 is highly expressed, such as multiple sclerosis.  相似文献   

9.
The mannose receptor, a glycoprotein expressed in a soluble and membrane form by macrophages, plays an important role in homeostasis and immunity. Using biochemical and immunohistochemical analyses, we demonstrate that this receptor, both in its soluble and membrane forms, is expressed in vivo in the post-natal murine brain and that its expression is developmentally regulated. Its expression is at its highest in the first week of life and dramatically decreases thereafter, being maintained at a low level throughout adulthood. The receptor is present in most brain regions at an early post-natal age, the site of the most intense expression being the meninges followed by the cerebral cortex, brain stem and the cerebellum. With age, expression of the mannose receptor is maintained in regions such as the cerebral cortex and the brain stem, whereas it disappears from others such as the hippocampus or the striatum. In healthy brain, no expression can be detected in oligodendrocytes, ependymal cells, endothelial cells or parenchymal microglia. The mannose receptor is expressed by perivascular macrophages/microglia and meningeal macrophages, where it might be important for the brain immune defence, and by two populations of endogenous brain cells, astrocytes and neurons. The developmentally dependent, regionally regulated expression of the mannose receptor in glial and neuronal cells strongly suggests that this receptor plays an important role in homeostasis during brain development and/or neuronal function.  相似文献   

10.
Tumor necrosis factor (TNF)-family cytokines induce reactive oxygen species (ROS) that injure vulnerable populations of brain cells. Among glia, oligodendrocytes are particularly susceptible to TNF-induced ROS whereas microglia are protected. We previously found that oligodendrocytes in vitro predominantly express the p55 type-1 TNF receptor, while microglial cells express both type-1 and p75 type-2 receptors. We hypothesized that differential TNF receptor expression and attendant signaling underlies the relative vulnerability of oligodendrocytes, versus microglia, to TNF-induced injury. To test this hypothesis, purified cultures of glial cells were incubated 0–48 hr with TNFa or lymphotoxin-alpha, following which levels of ROS, glutathione (GSH), nuclear factor kappa-B (NFB) translocation, and anti-oxidant proteins and activity were measured. 48 hr exposure to TNF increased ROS levels 28% and decreased GSH levels 17% in oligodendrocytes, but decreased levels ROS levels 24% and increased GSH levels 112% increase in microglia. Thirty to 180 min exposure to TNF increased NFkB nuclear translocation to a greater extent and for a longer time in microglia versus oligodendrocytes, and this was followed 24–48 hr later with 3- to 13-fold increases in microglia manganese superoxide dismutase protein levels and 6-fold increases in enzyme activity. Collectively, these data suggest that signals transduced through the p75 receptor activate anti-oxidant mechanisms that protect microglia from TNF-induced injury. Lacking such signals, oligodendrocytes are considerably more vulnerable to the injurious effects of TNF.  相似文献   

11.
Human embryonic stem (hES) cells provide a potentially unlimited cell source for regenerative medicine. Recently, differentiation strategies were developed to direct hES cells towards neural fates in vitro. However, the interaction of hES cell progeny with the adult brain environment remains unexplored. Here we report that hES cell-derived neural precursors differentiate into neurons, astrocytes and oligodendrocytes in the normal and lesioned brain of young adult rats and migrate extensively along white matter tracts. The differentiation and migration behavior of hES cell progeny was region specific. The hES cell-derived neural precursors integrated into the endogenous precursor pool in the subventricular zone, a site of persistent neurogenesis. Like adult neural stem cells, hES cell-derived precursors traveled along the rostral migratory stream to the olfactory bulb, where they contributed to neurogenesis. We found no evidence of cell fusion, suggesting that hES cell progeny are capable of responding appropriately to host cues in the subventricular zone.  相似文献   

12.
Oligodendrocyte precursor cells (OPCs, also called NG2 cells) are scattered throughout brain parenchyma, where they function as a reservoir to replace lost or damaged oligodendrocytes, the myelin-forming cells. The hypothesis that, under some circumstances, OPCs can actually behave as multipotent cells, thus generating astrocytes and neurons as well, has arisen from some in vitro and in vivo evidence, but the molecular pathways controlling this alternative fate of OPCs are not fully understood. Their identification would open new opportunities for neuronal replace strategies, by fostering the intrinsic ability of the brain to regenerate. Here, we show that the anti-epileptic epigenetic modulator valproic acid (VPA) can promote the generation of new neurons from NG2+ OPCs under neurogenic protocols in vitro, through their initial de-differentiation to a stem cell-like phenotype that then evolves to “hybrid” cell population, showing OPC morphology but expressing the neuronal marker βIII-tubulin and the GPR17 receptor, a key determinant in driving OPC transition towards myelinating oligodendrocytes. Under these conditions, the pharmacological blockade of the P2Y-like receptor GPR17 by cangrelor, a drug recently approved for human use, partially mimics the effects mediated by VPA thus accelerating cells’ neurogenic conversion. These data show a co-localization between neuronal markers and GPR17 in vitro, and suggest that, besides its involvement in oligodendrogenesis, GPR17 can drive the fate of neural precursor cells by instructing precursors towards the neuronal lineage. Being a membrane receptor, GPR17 represents an ideal “druggable” target to be exploited for innovative regenerative approaches to acute and chronic brain diseases.  相似文献   

13.
Following neuronal injury, microglia initiate repair by phagocytosing dead neurons without eliciting inflammation. Prior evidence indicates triggering receptor expressed by myeloid cells-2 (TREM2) promotes phagocytosis and retards inflammation. However, evidence that microglia and neurons directly interact through TREM2 to orchestrate microglial function is lacking. We here demonstrate that TREM2 interacts with endogenous ligands on neurons. Staining with TREM2-Fc identified TREM2 ligands (TREM2-L) on Neuro2A cells and on cultured cortical and dopamine neurons. Apoptosis greatly increased the expression of TREM2-L. Furthermore, apoptotic neurons stimulated TREM2 signaling, and an anti-TREM2 mAb blocked stimulation. To examine the interaction between TREM2 and TREM2-L in phagocytosis, we studied BV2 microglial cells and their engulfment of apoptotic Neuro2A. One of our anti-TREM2 mAb, but not others, reduced engulfment, suggesting the presence of a functional site on TREM2 interacting with neurons. Further, Chinese hamster ovary cells transfected with TREM2 conferred phagocytic activity of neuronal cells demonstrating that TREM2 is both required and sufficient for competent uptake of apoptotic neuronal cells. Finally, while TREM2-L are expressed on neurons, TREM2 is not; in the brain, it is found on microglia. TREM2 and TREM2-L form a receptor–ligand pair connecting microglia with apoptotic neurons, directing removal of damaged cells to allow repair.  相似文献   

14.
Functional improvement after spinal cord injury remains an unsolved difficulty. Glial scars, a major component of SCI lesions, are very effective in improving the rate of this recovery. Such scars are a result of complex interaction mechanisms involving three major cells, namely, astrocytes, oligodendrocytes, and microglia. In recent years, scientists have identified two subtypes of reactive astrocytes, namely, A1 astrocytes that induce the rapid death of neurons and oligodendrocytes, and A2 astrocytes that promote neuronal survival. Moreover, recent studies have suggested that the macrophage polarization state is more of a continuum between M1 and M2 macrophages. M1 macrophages that encourage the inflammation process kill their surrounding cells and inhibit cellular proliferation. In contrast, M2 macrophages promote cell proliferation, tissue growth, and regeneration. Furthermore, the ability of oligodendrocyte precursor cells to differentiate into adult oligodendrocytes or even neurons has been reviewed. Here, we first scrutinize recent findings on glial cell subtypes and their beneficial or detrimental effects after spinal cord injury. Second, we discuss how we may be able to help the functional recovery process after injury.  相似文献   

15.
16.
Proliferative cells expressing proteoglycan neuron-glia 2 (NG2) are considered to represent parenchymal precursor cells in the adult brain and are thought to differentiate primarily into oligodendrocytes. We have studied cell genesis in the adult amygdala and found that, up to 1 year after the labeling of proliferating cells with bromodeoxyuridine, most proliferating NG2 cells remain NG2 cells, and only a few slowly differentiate into mature oligodendrocytes, as assessed by the expression of 2',3'-cyclic nucleotide 3'-phosphodiesterase. We have detected no signs of neurogenesis but have confirmed the expression of “neuronal” markers such as Doublecortin in NG2 cells. Nestin-expressing NG2 cells in the amygdala show electrophysiological properties known for oligodendrocyte precursor cells in the corpus callosum. Application of the glutamate agonist kainate elicits a “complex” response consisting of a rapid and long-lasting blockade of the resting K+ conductance, a transient cationic current, and a transient increase of an outwardly directed K+ conductance, suggesting the responsiveness of NG2 cells to excitation. Proliferation of NG2 cells increases in response to behavioral stimuli of activity, voluntary wheel running, and environmental enrichment. In addition to reducing the number of newborn microglia, behavioral activity results in a decrease in S100β-expressing newborn NG2 cells in the amygdala. Because S100β expression in NG2 cells ceases with oligodendrocyte maturation, this finding suggests that NG2 cells in the amygdala undergo activity-dependent functional alterations, without resulting in a measurable increase in new mature oligodendrocytes over the time period covered by the present study. The adult amygdala thus shows signs of mixed activity-dependent plasticity: reduced numbers of microglia and, presumably, an altered fate of NG2 cells.  相似文献   

17.
Brain diseases, including brain tumors, neurodegenerative disorders, cerebrovascular diseases, and traumatic brain injuries, are among the major disorders influencing human health, currently with no effective therapy. Due to the low regeneration capacity of neurons, insufficient secretion of neurotrophic factors, and the aggravation of ischemia and hypoxia after nerve injury, irreversible loss of functional neurons and nerve tissue damage occurs. This damage is difficult to repair and regenerate the central nervous system after injury. Neural stem cells (NSCs) are pluripotent stem cells that only exist in the central nervous system. They have good self-renewal potential and ability to differentiate into neurons, astrocytes, and oligodendrocytes and improve the cellular microenvironment. NSC transplantation approaches have been made for various neurodegenerative disorders based on their regenerative potential. This review summarizes and discusses the characteristics of NSCs, and the advantages and effects of NSCs in the treatment of brain diseases and limitations of NSC transplantation that need to be addressed for the treatment of brain diseases in the future.  相似文献   

18.
Jeong HK  Ji KM  Kim B  Kim J  Jou I  Joe EH 《PloS one》2010,5(10):e13756

Background

Brain inflammation is accompanied by brain injury. However, it is controversial whether inflammatory responses are harmful or beneficial to neurons. Because many studies have been performed using cultured microglia and neurons, it has not been possible to assess the influence of multiple cell types and diverse factors that dynamically and continuously change in vivo. Furthermore, behavior of microglia and other inflammatory cells could have been overlooked since most studies have focused on neuronal death. Therefore, it is essential to analyze the precise roles of microglia and brain inflammation in the injured brain, and determine their contribution to neuronal damage in vivo from the onset of injury.

Methods and Findings

Acute neuronal damage was induced by stereotaxic injection of ATP into the substantia nigra pars compacta (SNpc) and the cortex of the rat brain. Inflammatory responses and their effects on neuronal damage were investigated by immunohistochemistry, electron microscopy, quantitative RT-PCR, and stereological counting, etc. ATP acutely caused death of microglia as well as neurons in a similar area within 3 h. We defined as the core region the area where both TH+ and Iba-1+ cells acutely died, and as the penumbra the area surrounding the core where Iba-1+ cells showed activated morphology. In the penumbra region, morphologically activated microglia arranged around the injury sites. Monocytes filled the damaged core after neurons and microglia died. Interestingly, neither activated microglia nor monocytes expressed iNOS, a major neurotoxic inflammatory mediator. Monocytes rather expressed CD68, a marker of phagocytic activity. Importantly, the total number of dopaminergic neurons in the SNpc at 3 h (∼80% of that in the contralateral side) did not decrease further at 7 d. Similarly, in the cortex, ATP-induced neuron-damage area detected at 3 h did not increase for up to 7 d.

Conclusions

Different cellular components (microglia, astrocytes, monocytes, and neutrophils) and different factors (proinflammatory and neurotrophic) could be produced in inflammatory processes depending on the nature of the injury. The results in this study suggest that the inflammatory responses of microglia and monocytes in response to ATP-induced acute injury could not be neurotoxic.  相似文献   

19.
20.
Cycling glial precursors-"NG2-glia"-are abundant in the developing and mature central nervous system (CNS). During development, they generate oligodendrocytes. In culture, they can revert to a multipotent state, suggesting that they might have latent stem cell potential that could be harnessed to treat neurodegenerative disease. This hope has been subdued recently by a series of fate-mapping studies that cast NG2-glia as dedicated oligodendrocyte precursors in the healthy adult CNS-though rare, neuron production in the piriform cortex remains a possibility. Following CNS damage, the repertoire of NG2-glia expands to include Schwann cells and possibly astrocytes-but so far not neurons. This reaffirms the central role of NG2-glia in myelin repair. The realization that oligodendrocyte generation continues throughout normal adulthood has seeded the idea that myelin genesis might also be involved in neural plasticity. We review these developments, highlighting areas of current interest, contention, and speculation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号