首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RNA aptamers specific for bovine thrombin   总被引:4,自引:0,他引:4  
Bovine thrombin is widely used in clinical wound healing after surgery. There is 85% homology between bovine thrombin and human thrombin, so most antibodies against bovine thrombin cross-react with human thrombin. Rare antibodies against bovine thrombin but not cross-reacting with human thrombin have been reported. RNA ligands (aptamers) have been used to bind to target molecules with sometimes higher specificity than antibodies. Here we report the isolation of aptamers specific for bovine thrombin by systematic evolution of ligands by exponential enrichment (SELEX) from an RNA pool containing a 25-nucleotide randomized region. After seven rounds of selection, two aptamers specific for bovine thrombin were identified with a K(d) of 164 and 240 nM, respectively. Significantly, these aptamers do not bind to human thrombin. Secondary structure prediction revealed potential stem-loop structures for these RNAs. Both RNA aptamers inhibit only bovine thrombin-catalyzed fibrin clot formation in vitro. Competition assay results suggested that the RNA aptamers might bind to the electropositive domain of bovine thrombin, that is, heparin-binding site, instead of fibrinogen-recognition exosite. The resulting bovine-specific thrombin inhibitor might be used in some clinical applications when bovine thrombin activity needs to be contained or in research where human and bovine thrombin need to be distinguished.  相似文献   

2.
3.
Alzheimer's disease is correlated with the deposition of amyloid peptides in the brain of the patients. The amyloid is thus a major target in the search for novel diagnostic and therapeutic approaches. The present work employs in vitro selection to develop new tools for the study of the Alzheimer's disease. The selection strategy enables the design of specific nucleic acids (aptamers) against virtually any target molecule. High-affinity RNA aptamers against the betaA4(1-40) were isolated from a combinatorial library of approximately 10(15) different molecules. The apparent dissociation constants K(d) of these aptamers are 29-48 nM. The binding of the RNA to the amyloid fibrils was confirmed by electron microscopy. The chemical synthesis of these nucleic acids enables tailor-made modifications. By introduction of specific reporter groups these RNAs can become suitable tools for analytical and diagnostic purposes. Thus, this study may introduce a new approach for diagnosis of the Alzheimer's disease.  相似文献   

4.
In order to find small RNA molecules that are specific and high-affinity ligands of nonstructural 5B (NS5B) polymerase, we screened by SELEX (systematic evolution of ligands by exponential amplification) a structurally constrained RNA library with an NS5BDeltaC55 enzyme carrying a C-terminal biotinylation sequence. Among the selected clones, two aptamers appeared to be high-affinity ligands of NS5B, with apparent dissociation constants in the low nanomolar range. They share a sequence that can assume a stem-loop structure. By mutation analysis, this structure has been shown to correspond to the RNA motif responsible for the tight interaction with NS5B. The aptamers appeared to be highly specific for the hepatitis C virus (HCV) polymerase since interaction with the GB virus B (GBV-B) NS5B protein cannot be observed. This is consistent with the observation that the activity of the HCV NS5B polymerase is efficiently inhibited by the selected aptamers, while neither GBV-B nor poliovirus 3D polymerases are affected. The mechanism of inhibition of the NS5B activity turned out to be noncompetitive with respect to template RNA, suggesting that aptamers and template RNA do not bind to the same site. As a matter of fact, mutations introduced in a basic exposed surface of the thumb domain severely impaired both the binding of and activity inhibition by the RNA aptamers.  相似文献   

5.
6.
Foot-and-mouth disease virus causes a highly contagious disease of agricultural livestock and is of enormous economic importance. Replication of the RNA genome of the virus, via negative strand intermediates, involves an RNA-dependent RNA polymerase (3Dpol). RNA aptamers specific to this enzyme have been selected and characterized. Some of these molecules inhibit enzymatic activity in vitro, with IC50 values of <20 nM and Ki values of 18-75 nM. Two of these show similarity, both with each other and with regions of the viral genome. Furthermore, truncated versions of one of the aptamers have been used to define the parts of the molecule responsible for its inhibitory activity.  相似文献   

7.
Embryonic stem cells (ESCs) are capable of unlimited self-renewal and differentiation into multiple cell types. Recent large-scale analyses have identified various cell surface molecules on ESCs. Some of them are considered to be beneficial markers for characterization of cellular phenotypes and/or play an essential role for regulating the differentiation state. Thus, it is desired to efficiently produce affinity reagents specific to these molecules. In this study, to develop such reagents for mouse ESCs (mESCs), we selected RNA aptamers against intact, live mESCs using several selection strategies. The initial selection provided us with several anti-mESC aptamers of distinct sequences, which unexpectedly react with the same molecule on mESCs. Then, to isolate aptamers against different surface markers on mESCs, one of the selected aptamers was used as a competitor in the subsequent selections. In addition, one of the selections further employed negative selection against differentiated mouse cells. Consequently, we successfully isolated three classes of anti-mESC aptamers that do not compete with one another. The isolated aptamers were shown to distinguish mESCs from differentiated mouse cell lines and trace the differentiation process of mESCs. These aptamers could prove useful for developing molecular probes and manipulation tools for mESCs.  相似文献   

8.
One of the most fascinating features of amyloid fibrils is their generic cross-beta architecture that can be formed from many different and completely unrelated proteins. Nonetheless, amyloid fibrils with diverse structural and phenotypic properties can form, both in vivo and in vitro, from the same protein sequence. Here, we have exploited the power of RNA selection techniques to isolate small, structured, single-stranded RNA molecules known as aptamers that were targeted specifically to amyloid-like fibrils formed in vitro from beta(2)-microglobulin (beta(2)m), the amyloid fibril protein associated with dialysis-related amyloidosis. The aptamers bind with high affinity (apparent K(D) approximately nm) to beta(2)m fibrils with diverse morphologies generated under different conditions in vitro, as well as to amyloid fibrils isolated from tissues of dialysis-related amyloidosis patients, demonstrating that they can detect conserved epitopes between different fibrillar species of beta(2)m. Interestingly, the aptamers also recognize some other, but not all, amyloid fibrils generated in vitro or isolated from ex vivo sources. Based on these observations, we have shown that although amyloid fibrils share many common structural properties, they also have features that are unique to individual fibril types.  相似文献   

9.
Feng T  Feng D  Shi W  Li X  Ma H 《Molecular bioSystems》2012,8(5):1441-1445
This paper presents a novel sensor to detect proteolytically active prostate-specific antigen (PSA) by assembling a purpose-designed FITC-labeled peptide with graphene oxide (GO). The fluorescence of the dye-labeled peptide was quenched in the presence of GO. Reaction of the sensor with PSA cleaves the peptide, leading to the release of the dye moiety and a great increase in fluorescence intensity in a dose- and time-dependent manner, and PSA can be quantified accordingly. This approach is simple compared to existing methods since the GO-peptide-based sensor is easily assembled and detection can be achieved without the involvement of complicated procedures. Moreover, the applicability of the method has been demonstrated by detecting PSA in spiked urine samples.  相似文献   

10.
Although immunological tolerance to self Ags represents an important mechanism to prevent normal tissue injury, there is growing evidence that tolerance to tumor Ags, which often represent normal peripherally expressed proteins, is not absolute and can be effectively reverted. Prostate-specific Ag (PSA) is a self Ag expressed by both normal and malignant prostatic epithelium, and therefore offers a unique opportunity to examine the ability of self Ags to serve as specific CTL targets. In this study, we investigated the efficacy of autologous dendritic cells (DC) transfected with mRNA encoding PSA to stimulate CTL against PSA Ags in vitro. Ag in form of RNA carries the advantage to encode multiple epitopes for many HLA alleles, thus permitting induction of CTL responses among many cancer patients independent of their HLA repertoire. In this study, we show that PSA mRNA-transfected DC were capable of stimulating primary CTL responses against PSA Ags in vitro. The PSA-specific CTL did not cross-react with kallikrein Ags, a protein, which shares significant homology with PSA, suggesting that harmful autoimmune toxicity may not represent a significant problem with this approach. PSA RNA-transfected DC generated from male or female healthy volunteers or from cancer patients were equally effective in stimulating PSA-specific CTL in vitro, implying that neither natural tolerance to PSA Ags nor tumor-mediated T cell anergy may represent major barriers for CTL generation against the self Ag PSA. This study provides a preclinical rationale for using PSA RNA-transfected DC in active or adoptive immunization protocols.  相似文献   

11.
RNA aptamers represent an emerging class of pharmaceuticals with great potential for targeted cancer diagnostics and therapy. Several RNA aptamers that bind cancer cell-surface antigens with high affinity and specificity have been described. However, their clinical potential has yet to be realized. A significant obstacle to the clinical adoption of RNA aptamers is the high cost of manufacturing long RNA sequences through chemical synthesis. Therapeutic aptamers are often truncated postselection by using a trial-and-error process, which is time consuming and inefficient. Here, we used a "rational truncation" approach guided by RNA structural prediction and protein/RNA docking algorithms that enabled us to substantially truncateA9, an RNA aptamer to prostate-specific membrane antigen (PSMA),with great potential for targeted therapeutics. This truncated PSMA aptamer (A9L; 41mer) retains binding activity, functionality, and is amenable to large-scale chemical synthesis for future clinical applications. In addition, the modeled RNA tertiary structure and protein/RNA docking predictions revealed key nucleotides within the aptamer critical for binding to PSMA and inhibiting its enzymatic activity. Finally, this work highlights the utility of existing RNA structural prediction and protein docking techniques that may be generally applicable to developing RNA aptamers optimized for therapeutic use.  相似文献   

12.
Human prostate-specific antigen (PSA), a 33 kDa serine protease with comprehensive homology to glandular kallikrein, is secreted from prostatic tissue into the seminal fluid and enters into the circulation. The level of PSA increases in the serum of patients with prostatic cancer and hence is widely employed as a marker of the disease status. In particular, an enzymatically active PSA that is a form cleaved at the N-terminal seven-amino-acids prosequence, APLILSR, of proPSA may play an important roll in the progression of prostate cancer. Thus, the presence of the active form would selectively discriminate the cancer from benign prostatic hyperplasia. In this study, we developed a convenient purification method for the acquisition of active PSA and proPSA. Recombinant proPSA and active PSA were expressed directly in Escherichia coli, easily and efficiently isolated from inclusion bodies, refolded, and purified. Moreover, the enzymatic activity of the recombinant active PSA was confirmed as serine protease using chromogenic chymotrypsin substrate. This purified active PSA could be further applied to scrutinize the biological or conformational characteristics of the protein and to develop specific diagnostic and/or therapeutic agents against prostate cancer.  相似文献   

13.
Single-stranded (ss) DNA aptamers with binding affinity to Listeria spp. were selected using a whole-cell SELEX (Systematic Evolution of Ligands by EXponential enrichment) method. Listeria monocytogenes cells were grown at 37 °C and harvested at mid-log phase or early stationary phase to serve as the targets in SELEX. A total of 10 unique aptamer sequences were identified, six associated with log phase cells and four with stationary phase cells. Binding affinity of the aptamers was determined using flow cytometry and ranged from 10% to 44%. Four candidates having high binding affinity were further studied and found to show genus-specific binding affinity when screened against five different species within the Listeria genus. Using sequential binding assays combined with flow cytometry, it was determined that three of the aptamers (LM6-2, LM12-6, and LM12-13) bound to one apparent cell surface moiety, while a fourth aptamer (LM6-116) appeared to bind to a different cell surface region. This is the first study in which SELEX targeted bacterial cells at different growth phases. When used together, aptamers that bind to different cell surface moieties could increase the analytical sensitivity of future capture and detection assays.  相似文献   

14.
The development of reagents with high affinity and specificity to the antigens of hepatitis C virus (HCV) is important for the early stage diagnosis of its infection. Aptamers are short, single-stranded oligonucleotides with the ability to specifically recognize target molecules with high affinity. Herein, we report the selection of RNA aptamers that bind to the core antigen of HCV. High affinity aptamers were isolated from a 10(15) random library of 60 mer RNAs using the SELEX procedure. Importantly, the selected aptamers specifically bound to the core antigen, but not to another HCV antigen, NS5, in a protein chip-based assay. Using these aptamers, we developed an aptamer-based biosensor for HCV diagnosis and detected the core antigen from HCV infected patients' sera with good specificity. This novel aptamer-based antigen detection sensor could be applied to the early diagnosis of HCV infection.  相似文献   

15.
Aptamers represent an emerging strategy to deliver cargo molecules, including dyes, drugs, proteins or even genes, into specific target cells. Upon binding to specific cell surface receptors aptamers can be internalized, for example by macropinocytosis or receptor mediated endocytosis. Here we report the in vitro selection and characterization of RNA aptamers with high affinity (Kd = 20 nM) and specificity for the human IL-6 receptor (IL-6R). Importantly, these aptamers trigger uptake without compromising the interaction of IL-6R with its natural ligands the cytokine IL-6 and glycoprotein 130 (gp130). We further optimized the aptamers to obtain a shortened, only 19-nt RNA oligonucleotide retaining all necessary characteristics for high affinity and selective recognition of IL-6R on cell surfaces. Upon incubation with IL-6R presenting cells this aptamer was rapidly internalized. Importantly, we could use our aptamer, to deliver bulky cargos, exemplified by fluorescently labeled streptavidin, into IL-6R presenting cells, thereby setting the stage for an aptamer-mediated escort of drug molecules to diseased cell populations or tissues.  相似文献   

16.
In vitro selection of specific RNA aptamers for the NFAT DNA binding domain   总被引:2,自引:0,他引:2  
Nuclear factor of activated T cells (NFAT) plays a central role in the immune response, and the immuno-suppressive drugs, cyclosporin A and FK-506, have been developed to inhibit it. However, due to the toxic effects of these drugs, which derive from their ability to inhibit calcineurin in non-immune tissues, the identification of small compounds that target NFAT directly could be an approach to developing less toxic immunosuppressive therapy. Using an in vitro selection technology termed SELEX on a combinatorial RNA library with 40 nucleotide-long random sequences, we have isolated two RNA aptamers to the NFAT DNA binding domain (DBD). Gel retardation assays and surface plasmon resonance measurements showed that the aptamers have a specific and high affinity (apparent KD~10 to 100 nM) for the NFAT DBD. Enzymatic probing analysis showed that the two RNA aptamers have similar structures and share a sequence that forms an apical loop. Moreover, RNase footprinting analysis showed that the shared sequence (GATATGAAGGA/ TGTG/AGAGAG) is critical for binding to both NFATp DBD and NFATc DBD. These results suggest that short RNAs identified in this study is a specific aptamer to NFAT DBD, and hence could be applied not only for the delineation of NFAT functions but for the development of potent immune modulating lead compounds.  相似文献   

17.
Aptamers are functional nucleic acids possessing high affinity and specificity to their cognate ligands and are isolated from a library of nucleic acids by iterative rounds of selection and amplification. In the current study, we used surface plasmon resonance (Biacore) as an efficient methodology for selecting aptamers that bind to hemagglutinin (HA) of human influenza virus. This procedure allowed us to monitor and select the target-bound aptamers specifically and simultaneously. These studies not only yielded an aptamer that binds to the HA of influenza virus with high affinity but also revealed the consensus sequence, 5'-GUCGNCNU(N)(2-3)GUA-3, for HA recognition.  相似文献   

18.
The role of prostate-specific antigen (PSA) during the onset of prostate cancer and subsequent tumor growth and metastasis is not well understood. We have developed a simple two step procedure, based on principles of hydrophobic charge-induction chromatography and molecular size chromatography to provide pure free-PSA (f-PSA) preparation that is free from all other known PSA complexes as well as human kallikrein 2 (hK2). The overall recovery of f-PSA is 72%. The isolated f-PSA consists of three known isoforms that corresponds to pI of 6.2, 6.4 and 7.2. f-PSA is enzymatically active and its enzymatic activity can be effectively neutralized by a serine protease inhibitor.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号