首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the identification and characterization of two novel dominant inhibitors of aleurone color in Zea mays that interact with specific haplotypes of the r1 locus. One inhibitor locus, inr1 (inhibitor of r1 aleurone color 1), maps to the long arm of chromosome 10, distal to the TB-10L19 breakpoint and tightly linked to dull1, and the second inhibitor locus, inr2 (inhibitor of r1 aleurone color 2), maps to the long arm of chromosome 9. Dominant inhibitory alleles of inr1 and inr2 act by suppressing aleurone color conditioned by certain r1 haplotypes. Two haplotypes, R1-ch:Stadler and R1-Randolph, exhibit nearly complete suppression of aleurone color in the presence of inhibitory alleles of inr1 or inr2. Two members of the R1-d class of haplotypes, R1-d:Catspaw and R1-d:Arapaho, show partial suppression. Other haplotypes tested were not visibly affected. The response of r1 haplotypes to inhibitory inr1 and inr2 alleles provides another means of analyzing the complex behavior of the seed color components of r1 haplotypes. Possible mechanisms of action of inr1 and inr2 are discussed.  相似文献   

2.
Familial predisposition to IgA deficiency (IgAD) suggests that genetic factors influence susceptibility. Most studies support a polygenic inheritance with a susceptibility locus (designated IGAD1) in the MHC, but its exact location is still controversial. This study aimed to map the predisposing IGAD1 locus (or loci) within the MHC by investigating the pattern of association of the disease with several markers in the region. DNA-based techniques were used to type individual alleles of four polymorphic HLA genes (HLA-DR, -DQA1, -DQB1, and HLA-B), six microsatellites (all located between HLA-DR and HLA-B), and three single nucleotide polymorphisms on the TNF gene. The frequencies of these alleles were compared among ethnically matched populations comprising 182 patients and 343 controls. Additionally, we investigated parents and siblings of 100 of these patients. All four parental haplotypes were established in each family (n = 400), and transmission disequilibrium tests were performed. Surprisingly, our results did not support the hypothesis of a unique susceptibility gene being shared by all MHC susceptibility haplotypes. On HLA-DR1 and -DR7-positive haplotypes IGAD1 mapped to the class II region, whereas on haplotypes carrying HLA-DR3 the susceptibility locus mapped to the telomeric end of the class III region, as reported previously. Our results show how, in complex diseases, individuals may be affected for different genetic reasons and a single linkage signal to a region of a chromosome may actually be the result of disease-predisposing alleles in different linked genes in different pedigrees.  相似文献   

3.
Determining haplotype-specific DNA sequence information is very important in a wide range of research fields. However, no simple and robust approaches are currently available for determining haplotype-specific sequence information. We have addressed this problem by developing a very simple and robust haplotype-specific sequencing approach. We utilise the fact that DNA sequencing polymerases are sensitive to 3'end mismatches in the sequencing primer. By using two sequencing primers with 3'end corresponding to the two alleles in a given SNP locus, we are able to obtain allele-specific DNA sequences from both alleles. We evaluated this direct haplotype-specific approach by determining haplotypes within the intron 2 sequence of the fructan-6-fructosyltransferase (6-ft) gene in Lolium perenne L. We obtained reliable haplotype-specific sequences for all primers and genotypes evaluated. We conclude that the haplotype-specific sequencing is robust, and that the approach has a potentially very wide application range for any diploid organism.  相似文献   

4.
Developmental and genetic aspects of Mutator excision in maize   总被引:4,自引:0,他引:4  
The regulation of excision of Mu elements of the Mutator transposable element family of maize is not well understood. We have used somatic instability of Mu receptor elements from the Bronze 1 and Bronze 2 loci to monitor the frequency and the timing of excision of Mu elements in several tissues. We show that spot size in the aleurone of a bz2::mu1 stock varies between one to approximately 256 cells. This indicates that excision events begin eight divisions prior to full aleurone differentiation and end after the last division of the aleurone. We show that excision is equally biased for late events in all other tissues studied. A locus on chromosome 5 has been identified that affects spot size, possibly by altering the timing of Mu excision. Using somatic excision as an assay of Mutator activity, we found that activity can change in small sectors of the tassel; however, there are no overall activity changes in the tassel during the period of pollen shedding. We also report the recovery of germinal revertants for the bz1::mu1 and bz2::mu1 alleles. One of these revertant alleles was characterized by Southern blot analysis and found to be similar to the progenitor of the mutable allele.  相似文献   

5.
Allelic polymorphism in TCR loci may play an important role in shaping the T cell repertoire and in disease susceptibility. We have used a combination of antibody and sequence analysis to investigate polymorphism in the murine V alpha 11 family. Two different antibodies have been analyzed that recognize particular V alpha 11 family members of the V alpha b and V alpha d haplotypes. One antibody shows J alpha dependency, suggesting a conformational element to the epitope. Investigation of the anti-V alpha 11 staining pattern on different mouse strains indicates that there is a marked influence of MHC haplotype on V alpha 11 selection and that V alpha 11 is preferentially expressed on CD4+ cells. Sequence analysis of V alpha 11 genes from the V alpha a, V alpha b, and V alpha d haplotypes shows two potential regions for the haplotype-specific epitopes. The relatedness of the different V alpha 11 family members from different haplotypes suggests that the V alpha 11.1/11.2 gene duplication is relatively recent, but that V alpha 11.3 separated much earlier. Differences between V alpha 11.3 and V alpha 11.1/11.2 are concentrated in the putative complementarity determining regions (CDR), whereas differences between alleles are not clearly clustered. However, the V alpha 11.1a and V alpha 11.1d alleles differ from V alpha 11.1b and V alpha 11.2b in CDR1. A V alpha 11.2-expressing anti-cytochrome c T cell has the same V-J junction as a V alpha 11.1-bearing cell with a similar fine specificity, indicating that V alpha 11.1b and V alpha 11.2b do not contribute different Ag specificities.  相似文献   

6.
The human alpha-globin complex contains several polymorphic restriction-enzyme sites (i.e., RFLPs) linked to form haplotypes and is flanked by two hypervariable VNTR loci, the 5' hypervariable region (HVR) and the more highly polymorphic 3'HVR. Using a combination of RFLP analysis and PCR, we have characterized the 5'HVR and 3'HVR alleles associated with the alpha-globin haplotypes of 133 chromosomes, and we here show that specific alpha-globin haplotypes are each associated with discrete subsets of the alleles observed at these two VNTR loci. This statistically highly significant association is observed over a region spanning approximately 100 kb. With the exception of closely related haplotypes, different haplotypes do not share identically sized 3'HVR alleles. Earlier studies have shown that alpha-globin haplotype distributions differ between populations; our current findings also reveal extensive population substructure in the repertoire of alpha-globin VNTRs. If similar features are characteristic of other VNTR loci, this will have important implications for forensic and anthropological studies.  相似文献   

7.
Assigning Linkage Haplotypes from Parent and Progeny Genotypes   总被引:2,自引:1,他引:1       下载免费PDF全文
A. Nejati-Javaremi  C. Smith 《Genetics》1996,142(4):1363-1367
Given the genotypes of parents and progeny, their haplotypes over several or many linked loci can be easily assigned by listing the allele type at each locus along the haplotype known to be from each parent. Only a small number (5-10) of progeny per family is usually needed to assign the parental and progeny haplotypes. Any gaps left in the haplotypes may be filled in from the assigned haplotypes of relatives. The process is facilitated by having multiple alleles at the loci and by using more linked loci in the haplotype and with more progeny from the mating. Crossover haplotypes in the progeny can be identified by their being unique or uncommon, and the crossover point can often be detected if the locus linkage map order is known. The haplotyping method applies to outbreeding populations in plants, animals and man, as well as to traditional experimental crosses of inbred lines. The method also applies to half-sib families, whether the genotypes of the mates are known or unknown. The haplotyping procedure is already used in linkage analysis but does not seem to have been published. It should be useful in teaching and in genetic applications of haplotypes.  相似文献   

8.
We tested the hypothesis that susceptibility to relapsing-progressive (RP) (but not to relapsing-remitting [RR]) multiple sclerosis (MS) is associated with a gene linked to the TcR beta-chain variable region delimited by the Vbeta8-BamHI and Vbeta11-BamHI RFLP alleles in DRw15+ MS patients, using a contingency-table test of patient data and affected family-based controls. Control alleles and haplotypes were composed of parental marker alleles and haplotypes not transmitted to the affected child, in 90 simplex and 31 multiplex families from British Columbia. A total of 6,164 alleles at 11 loci were segregated through families of probands with RP MS or RR MS. The Vbeta8-Vbeta11 subhaplotype frequencies in the DRw15+ RP MS (but not RR MS) patients differed from control frequencies, because of an increase of the 2-1 subhaplotype (P=.02). Vbeta8-BamHI and Vbeta11-BamHI allele frequencies (P=.05 and .009, respectively) in the DRw15+ RP MS (but not RR MS) patients differed from control frequencies. The Vbeta1-Vbeta8 subhaplotype frequencies in the DRw15- RP MS (but not RR MS) patients differed from control frequencies (P=.03), with a significantly increased frequency of the 1-1 subhaplotype (P=.01; RR=7.1) in RP MS versus RR MS patients. Susceptibility to RP MS is associated both with a recessive inheritance of a gene linked to the 3' (Vbeta11) end of the 2-1 subhaplotype defined by the Vbeta8-BamHI and Vbeta11-BamHI alleles in DRw15+ patients and with a gene, located on the 1-1 subhaplotype, defined by the Vbeta1-TaqI and Vbeta8-MspI alleles of the TcR beta-chain complex in DRw15- patients.  相似文献   

9.
Slatkin M 《Genetics》2000,154(3):1367-1378
  相似文献   

10.
Certain haplotypes of the major histocompatibility (B) complex are strongly associated with resistance or susceptibility to several infectious diseases in Leghorn chickens. Identification of chicken haplotypes based on the nucleotide sequence of B complex loci could provide more precise identification of haplotypes than traditional serological methods. We report the development and application of polymerase chain reaction with sequence specific primers (PCR-SSP) to type broiler chicken B haplotypes based on the DNA sequence of B-L beta II family genes. Five well-defined standard B haplotypes from White Leghorns and 12 recently characterized B haplotypes from a broiler breeder line were used to develop the test system. The B-L beta II family loci were amplified from genomic DNA by B-L beta II family specific primers and then characterized by PCR-SSP. In total, ten pairs of primers, derived from the sequences of expressed B-L beta II family alleles, were used in the PCR typing test to discriminate the chicken B haplotypes identified previously by serological means. The PCR-SSP showed that each haplotype had a different amplification pattern, except those haplotypes known or suspected to have the same B-L beta alleles. Cloning and sequencing of the family specific PCR products indicated that two loci in the B-L beta II family, presumably B-L beta I and B-L beta II, were amplified. Finally, B-L beta PCR-SSP typing was used in combination with B-G RFLP analyses to characterize unusual (variant) B serotypes; the results indicate that some of these are natural recombinants within the B complex.  相似文献   

11.
Diversity and locus specificity of chicken MHC B class I sequences   总被引:6,自引:0,他引:6  
The major histocompatibility complex B (MHC B) region in a standard haplotype of Leghorn chickens contains two closely linked class I loci, B-FI and B-FIV. Few sequences of B-FI alleles are available, and therefore alleles of the two loci have not been compared with regard to sequence diversity or locus specificity. Here, we report eight new B-F alpha 1/alpha 2-coding sequences from broiler chicken MHC B haplotypes, and a unique recombinant between the two B-F loci. The new sequences were combined with existing B-F sequences from Leghorn and broiler haplotypes for analysis. On the basis of phylogenetic analysis and conserved sequence motifs, B-F sequences separated into two groups (Groups A and B), corresponding to B-FIV and B-FI locus, respectively. Every broiler haplotype had one B-F sequence in Group A and the second B-F sequence, if it existed, clustered in Group B. Group B (presumptive B-FI locus) sequences identified in broiler haplotypes resembled the human MHC class I HLA-C locus in their distinctive pattern of allelic polymorphism. Compared with B-FIV, B-FI alleles were less polymorphic and possessed a conserved locus-specific motif in the alpha1 helix, but nevertheless demonstrated evidence of diversifying selection. One B-FI alpha 1/alpha 2-coding nucleotide sequence was completely conserved in four different broiler haplotypes, but each allele differed in the exon encoding the alpha 3 domain.  相似文献   

12.
Sharma D  Gupta M  Thelma BK 《Human genetics》2003,112(3):262-271
This study on allelic/haplotypic fragile X associations evaluated using STR (DXS548, FRAXAC1, FRAXAC2) and SNP (ATL1) markers flanking the (CGG)(n) locus of FMR1is the first report from the large ethnically complex Indian population. Results have been compared with allele/haplotype distributions reported for other major ethnic groups, including White Caucasians, Africans, and Pacific Asians. Though overall allele frequency distributions at the individual loci are more similar to Western Caucasians compared with others, significant differences are observed in haplotypic associations with the mutated X. The striking findings are: (1) high diversity and heterozygosity of haplotypes among fragile X chromosomes ( n=40) and controls ( n=262), including four haplotypes found exclusively in this study sample; (2) weak association of DXS548-FRAXAC1-FRAXAC2 haplotypes, 2-1-3, 6-3-3+ and 7-4-6+ with the disorder, and absence of White Caucasian fragile X haplotypes 6-4-4 and 6-4-5; (3) weak founder effect for the fragile X expansion mutation in the Indians; (4) lack of a continuum of haplotype-based FMR1 alleles between intermediate (CGG)(n) size ranges and expanded alleles; (5) exclusion of ATL1 as a candidate genetic indicator of FMR1 instability. The high STR-based haplotype diversity observed among fragile X lineages, irrespective of ethnic alliances, strongly suggests the inappropriateness of using STR haplotypes to infer predisposition to instability among ethnically separated fragile X pedigrees and may reiterate the need for identifying newer SNPs from this region to not only determine true founder effects for the fragile X mutation, but also decipher possible mechanisms leading to CGG instability.  相似文献   

13.
KIR2DL5 alleles were physically linked to alleles at adjacent KIR loci to define this region of KIR haplotypes in 55 gene-positive random African Americans. The majority carried KIR2DL5B. Three KIR2DL5A and six KIR2DL5B alleles that have been previously described and 11 novel KIR2DL5 alleles were identified by DNA sequencing. Novel alleles included variation that may impact promoter activity; two alleles carried nonsynonymous coding region variation. Based on linkage with KIR2DS1, KIR2DS3, KIR2DS5, KIR2DL2, KIR2DL3, and KIR3DS1 alleles, seven haplotypes of KIR2DL5A and 23 haplotypes of KIR2DL5B were observed. The phylogenetic relationships among the KIR2DL5 alleles predicted their association with either KIR2DS3 (six alleles) or KIR2DS5 (seven alleles). All of the KIR2DL5A alleles were linked either to KIR3DS1*01301 or KIR3DS1*049N. The majority of the KIR2DL5B alleles were linked to seven KIR2DL2 alleles; two were linked to a novel allele of KIR2DL3. These findings underscore the diversity of KIR haplotypes present in this population.  相似文献   

14.
Tightly linked to the gene that encodes murine beta-glucuronidase (GUS) are three GUS-specific regulatory elements. Together, these elements define the GUS gene complex. Specific alleles of each regulatory element are associated with a specific GUS structural allele. These associations define the three common forms (haplotypes) of the GUS gene complex, designated A, B, and H. As an initial step in defining the DNA determinants of each regulatory element and to develop DNA markers for the common haplotypes, we have identified several DNA variants by blot hybridization analysis of restricted genomic DNA using GUS-specific cDNA probes. Of 30 tested restriction endonucleases, 24 reveal DNA polymorphisms that distinguish B- and H-haplotype DNA from that of the A haplotype. Of these 24, 18 uncover a restriction fragment length polymorphism in which the polymorphic fragment of A-haplotype DNA is 200-300 bp larger than the corresponding fragment of B- or H-haplotype DNA. DNA sequence analysis of this polymorphic region reveals the presence of a short, interspersed repetitive element of the B2 family within A-haplotype DNA which is absent in DNAs of B- or H-haplotype mice. None of the DNA variations revealed by these analyses can be associated at this time with variation in the regulatory or structural properties of GUS among the common haplotypes. Nevertheless, they do provide useful haplotype-specific markers within the GUS gene complex which are of critical importance for DNA transfer experiments in transgenic mice and in cultured cells.  相似文献   

15.
Gametophytic self-incompatibility in Rosaceae, Solanaceae, and Scrophulariaceae is controlled by the S locus, which consists of an S-RNase gene and an unidentified "pollen S" gene. An approximately 70-kb segment of the S locus of the rosaceous species almond, the S haplotype-specific region containing the S-RNase gene, was sequenced completely. This region was found to contain two pollen-expressed F-box genes that are likely candidates for pollen S genes. One of them, named SFB (S haplotype-specific F-box protein), was expressed specifically in pollen and showed a high level of S haplotype-specific sequence polymorphism, comparable to that of the S-RNases. The other is unlikely to determine the S specificity of pollen because it showed little allelic sequence polymorphism and was expressed also in pistil. Three other S haplotypes were cloned, and the pollen-expressed genes were physically mapped. In all four cases, SFBs were linked physically to the S-RNase genes and were located at the S haplotype-specific region, where recombination is believed to be suppressed, suggesting that the two genes are inherited as a unit. These features are consistent with the hypothesis that SFB is the pollen S gene. This hypothesis predicts the involvement of the ubiquitin/26S proteasome proteolytic pathway in the RNase-based gametophytic self-incompatibility system.  相似文献   

16.
It has been demonstrated that the domestic pig has a blood group systems whose haplotypes (complex alleles) are formed by at least three closely linked loci that are located, like the MIC2 locus of human blood group systems, in the homologous region of sex chromosomes.  相似文献   

17.
18.
Hemochromatosis (HC) is an inherited disorder of iron metabolism and is frequently seen in Caucasians. The biochemical defect and the responsible gene are unknown, but the HC locus is closely linked to HLA-A on human chromosome 6 in the region 6p21.3. Although extensive studies have been performed in several populations, the precise location of the gene is still undefined. Linkage disequilibrium with HC has been detected for loci that are 3 cM apart: HLA class I and D6S105, which is located on the telomeric side of HLA-A. We have analyzed the inheritance of several multi-allele polymorphisms that map to 6p (D6S265, Y52, HLA-F, D6S306, D6S105, D6S464, D6S299) in 34 Italian HC families and in 17 unrelated patients. Significant association with HC was shown for alleles of multiple markers in the HLA-A region, for the distant marker D6S105, but not for the D6S299 marker at 4 cM from HLA-A on the telomeric side. HC status was unambiguously assigned to 70 affected and 63 unaffected chromosomes from family studies. Thirty five different haplotypes were found in 70 HC chromosomes when considering four markers most tighly associated with the disease. A predominant haplotype comprising alleles 1-3-1-8 (marker order D6S265, HLA-A, Y52, D6S105) accounted for 30% of the HC chromosomes and was absent in normals. A minority of other HC haplotypes could be related to the major haplotype by assuming single crossover events. Results of haplotype studies suggest a founder effect in the Italian population, as previously shown in Australian patients, and a possible common mutation shared with affected individuals of Celtic origin. Received: 16 May 1995 / Revised 21 August 1995  相似文献   

19.
Genetic analysis of HLA in the U.S. Schmiedenleut Hutterites.   总被引:3,自引:3,他引:0       下载免费PDF全文
The Hutterites are an Anabaptist population, highly inbred, with large family sizes and extensively documented pedigrees. As part of genetic-epidemiologic studies of the impact of HLA on fertility, HLA-A, -B, -C, -DR, and -DQ typing was performed on a total of 650 Schmiedenleut Hutterities in South Dakota. An extraordinary degree of homogeneity was found. HLA-A1, -A2, -A3, -A24, and -A26 accounted for 83%, HLA-B8, -B27, -B35, -B51, -Bw60, and -Bw62 for 75%, and HLA-DR1, -DR2, -DR3, and -DR4 for 66% of the antigens at the respective HLA-A, -B, and -DR loci. All Hutterites characterized for HLA were descendants of no more than 78 ancestors. However, family analysis identified only 45 unique HLA haplotypes thought to reflect the original gene pool. Eight haplotypes were particularly frequent, accounting for nearly 50% of all observed haplotypes; four of these were consistent with a European ancestry. Coefficients measuring linkage disequilibrium were computed from haplotypes identified by family analysis. Overall, HLA analysis portrayed the Schmiedenleut Hutterities as a homogeneous and unique population, with disequilibrium among particular alleles and a spectrum of common and uncommon European haplotypes.  相似文献   

20.
A plausible explanation for many MHC-linked diseases is lacking. Sequencing of the MHC class I region (coding units or full contigs) in several human and nonhuman primate haplotypes allowed an analysis of single nucleotide variations (SNV) across this entire segment. This diversity was not evenly distributed. It was rather concentrated within two gene-rich clusters. These were each centered, but importantly not limited to, the antigen-presenting HLA-A and HLA-B/-C loci. Rapid evolution of MHC-I alleles, as evidenced by an unusually high number of haplotype-specific (hs) and hypervariable (hv) (which could not be traced to a single species or haplotype) SNVs within the classical MHC-I, seems to have not only hitchhiked alleles within nearby genes, but also hitchhiked deleterious mutations in these same unrelated loci. The overrepresentation of a fraction of these hvSNV (hv1SNV) along with hsSNV, as compared to those that appear to have been maintained throughout primate evolution (trans-species diversity; tsSNV; included within hv2SNV) tends to establish that the majority of the MHC polymorphism is de novo (species specific). This is most likely reminiscent of the fact that these hsSNV and hv1SNV have been selected in adaptation to the constantly evolving microbial antigenic repertoire.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号