首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Selective pressure induces pathogens to change their method of infection and, sometimes, causes species to become infectious. Pathogenic fungi must differentiate different morphological and physiological properties during the process of host specialization in their life cycle. In the present study, we conducted a genetic investigation and compared similarities within a generation of Fusarium oxysporum forma speciales (f. sp.) infecting tomato and forma (f.) infecting eggplants using selected ISSR and RAPD markers, two horticultural commodities belonging to the same taxon of the Solanaceae. Interestingly, genetic data showed that fungi belonging to F. oxysporum f. sp. infecting tomato have a close genetic relationship with the fungi f. infecting eggplant. Furthermore, F. oxysporum f. sp. infecting tomato showed less genetic variation than F. oxysporum f. melongenae, suggesting that it could be developed more recently during host adaptation. On the other hand, the gene sequence of inter-simple sequence repeat (ISSR) markers resulting in high polymorphism showed matches with gene sequences encoding specific proteins related to pathogenicity of F. oxysporum species. These findings support the notion that selected ISSR markers can be used to follow host-associated divergence of F. oxysporum species infecting tomato and eggplant and that differentiation of their specific genes can also be related to pathogenicity and development as predictive studies before initiating detailed sequencing analysis.  相似文献   

2.
Genetic variation among the isolates of Fusarium oxysporum f. sp. ciceris, the causal agent of chickpea wilt worldwide, was analysed using pathogenicity tests and molecular markers – random amplified polymorphic DNA (RAPD) and inter‐simple sequence repeat (ISSR) polymorphism. Hundred and eight isolates were obtained from diseased chickpea plants in 13 different provinces of Turkey, out of which 74 isolates were assessed using 30 arbitrary decamer primers and 20 ISSR primers. Unweighted pair‐grouped method by arithmetic average cluster analysis of RAPD, ISSR and RAPD + ISSR datasets provided a substantially similar discrimination among Turkish isolates and divided into three major groups. Group 1, 2 and 3 consisted of 41, 18 and 15 isolates, respectively. These methods revealed a considerable genetic variation among Turkish isolates, but no correlation with regard to the clustering of isolates from different geographic regions. Analysis of molecular variance confirmed that most genetic variability resulted from the differences among isolates within regions. Our results also indicated that the low‐genetic differentiation (FST) and high gene flow (Nm) among populations had a significant effect on the emergence and evolutionary development of F. oxysporum f. sp. ciceris. This is the first report on genetic diversity and population structure of F. oxysporum isolates on chickpea in Turkey.  相似文献   

3.
Root and basal rot of common onion (Allium cepae L.) caused by Fusarium oxysporum f. sp. cepae is one of the most important diseases causing tremendous losses in onion‐growing areas worldwide. In this study, random amplified polymorphic DNA (RAPD), intersimple sequence repeats (ISSR) and virulence studies were conducted to analyse 26 F. oxysporum f. sp. cepae isolates obtained from the main onion‐growing regions of Iran, including Fars, Azerbaijan and Isfahan states. Cluster analysis using UPGMA method for both RAPD and ISSR markers revealed no clear grouping of the isolates obtained from different geographical regions, and the isolates were observed to derive probably from the same clonal lineage. Pathogenicity test indicated that all F. oxysporum f. sp. cepae isolates were pathogenic on onion; however, virulence variability was observed among the isolates. The grouping based on virulence variability was not correlated with the results of RAPD and ISSR analyses.  相似文献   

4.
Fusarium wilt is an economically important fungal disease of common bean and sugar beet in the Central High Plains (CHP) region of the USA, with yield losses approaching 30% under appropriate environmental conditions. The objective of this study was to characterize genetic diversity and pathogenicity of isolates of Fusarium oxysporum obtained from common bean and sugar beet plants in the CHP that exhibited Fusarium wilt symptoms. A total of 166 isolates of F. oxysporum isolated from diseased common bean plants were screened for pathogenicity on the universal susceptible common bean cultivar ‘UI 114’. Only four of 166 isolates were pathogenic and were designated F. oxysporum f.sp. phaseoli (Fop). A set of 34 isolates, including pathogenic Fop, F. oxysporum f.sp. betae (Fob) isolates pathogenic on sugar beet, and non‐pathogenic (Fo) isolates, were selected for random‐amplified polymorphic DNA (RAPD) analysis. A total of 12 RAPD primers, which generated 105 polymorphic bands, were used to construct an unweighted paired group method with arithmetic averages dendrogram based on Jaccard's coefficient of similarity. All CHP Fop isolates had identical RAPD banding patterns, suggesting low genetic diversity for Fop in this region. CHP Fob isolates showed a greater degree of diversity, but in general clustered together in a grouping distinct from Fop isolates. As RAPD markers revealed such a high level of genetic diversity across all isolates examined, we conclude that RAPD markers had only limited usefulness in correlating pathogenicity among the isolates and races in this study.  相似文献   

5.
The two eggplant relatives Solanum aethiopicum gr. Gilo and Solanum aethiopicum gr. Aculeatum (=Solanum integrifolium) carry resistance to the fungal wilt disease caused by Fusarium oxysporum f. sp. melongenae, a worldwide soil-borne disease of eggplant. To introgress the resistance trait into cultivated eggplant, the tetraploid somatic hybrids S. melongena S. aethiopicum and S. melongena + S. integrifolium were used. An inheritance study of the resistance was performed on advanced anther culture-derived androgenetic backcross progenies from the two somatic hybrids. The segregation fitted a 3 resistant (R): 1 susceptible (S) ratio in the selfed populations and a 1R:1S ratio in the backcross progenies for the trait derived from S. aethiopicum and S. integrifolium. These ratios are consistent with a single gene, which we designated as Rfo-sa1, controlling the resistance to Fusarium oxysporum f. sp. melongenae. The allelic relationship between the resistance genes from S. aethiopicum and S. integrifolium indicate that these two genes are alleles of the same locus. Bulked Segregant Analysis (BSA) was performed with RAPD markers on the BC3/BC5 resistant advanced backcross progenies, and three RAPD markers associated with the resistance trait were identified. Cleaved Amplified Polymorphic Sequences (CAPSs) were subsequently obtained on the basis of the amplicon sequences. The evaluation of the efficiency of these markers in predicting the resistant phenotype in segregating progenies revealed that they represent useful tools for indirect selection of Fusarium resistance in eggplant.  相似文献   

6.
Twenty one isolates of Fusarium oxysporum f. sp. psidii (Fop), causing a vascular wilt in guava (Psidium guajava L.), were collected from different agro-ecological regions of India. The pathogenicity test was performed in guava seedlings, where the Fop isolates were found to be highly pathogenic. All 21 isolates were confirmed as F. oxysporum f. sp. psidii by a newly developed, species-specific primer against the conserved regions of 28S rDNA and the intergenic spacer region. RAPD and PCR-RFLP were used for genotyping the isolates to determine their genetic relationships. Fifteen RAPD primers were tested, of which five primers produced prominent, polymorphic, and reproducible bands. RAPD yielded an average of 6.5 polymorphic bands per primer, with the amplified DNA fragments ranging from 200–2,000 bp in size. A dendrogram constructed from these data indicated a 22–74% level of homology. In RFLP analysis, two major bands (350 and 220 bp) were commonly present in all isolates of F. oxysporum. These findings provide new insight for rapid, specific, and sensitive disease diagnosis. However, genotyping could be useful in strain-level discrimination of isolates from different agro-ecological regions of India.  相似文献   

7.
Fusarium wilt of tomato (Solanum lycopersicum Mill.) caused by Fusarium oxysporum f. sp. lycopersici (Sacc.) W. C. Snyder and H. N. Hans (Fol.), is most serious and versatile pathogen. Chemical control of disease is not satisfactory and biological control is an attractive and potential alternative to the use of chemicals to control fusarium wilt of tomato. No any bioagent is universally effective everywhere therefore, search for potential biocontrol agent is continuous process and mandatory for several and individual ecological niches. In this experiment biocontrol efficacy of five species of Aspergillus and five species of Trichoderma were evaluated in vitro against Fusarium oxysporum f. sp. lycopersici. In both the experiments (dual culture and culture filtrates) T. harzianum was found to be highly effective against the isolates of Fol. followed by A. niger biocontrol potential of A. terreus is least among all the isolates tested. Culture filtrates obtained from A. luchuensis exerted least inhibition of Fol. The most sensitive isolate of Fol. against all the antagonists tested was identified as IIVR-2 (Fol. 9). Inherent diversity among Fol. isolates, from different tomato growing regions in India, was determined using RAPD primers. The genetic similarity coefficients ranged from 0.20 to 0.96, indicating that no any two or more isolates were 100% similar. RAPD profiles revealed up to 20% genetic diversity among ten isolates of Fusarium oxysporum f. sp. lycopersici.  相似文献   

8.
Genetic variability among isolates of Fusarium oxysporum f. sp. cepae was obtained from different onion-growing areas of Tamil Nadu, India. Random amplified polymorphic DNA (RAPD) analysis was carried out using 12 random primers, each of them consisting of 10 base pairs. Four out of the 12 primers were differentiated between some of the tested F. oxysporum f. sp. cepae isolates. Analysis of the genetic coefficient matrix derived from the scores of RAPD profile showed that minimum and maximum per cent similarities among the F. oxysporum f. sp. cepae isolates were in the range of 14–85%. Cluster analysis, using the unweighted pair-group method with arithmetic average, clearly separated the isolates into two clusters (A and B) confirming the genetic diversity among the isolates of F. oxysporum f. sp. cepae from onion.  相似文献   

9.
Fusarium wilt (Fusarium oxysporum Schlecht. f. sp. melongenae) is a vascular disease of eggplant (Solanum melongena L.). The objectives of this work were (1) to confirm the monogenic inheritance of fusarium wilt resistance in eggplant, (2) to identify molecular markers linked to this resistance, and (3) to develop SCAR markers from most informative markers. We report the tagging of the gene for resistance to fusarium wilt (FOM) in eggplant using SRAP, RGA, SRAP-RGA and RAPD markers. Analysis of segregation data confirmed the monogenic inheritance of resistance. DNA from F2 and BC1 populations of eggplant segregating for fusarium wilt resistance was screened with 2,316 primer combinations to detect polymorphism. Three markers were linked within 2.6 cM of the gene. The codominant SRAP marker Me8/Em5 and dominant SRAP-RGA marker Em12/GLPL2 were tightly linked to each other and mapped 1.2 cM from the resistance gene, whereas RAPD marker H12 mapped 2.6 cM from the gene and on the same side as the other two markers. The SRAP marker was converted into two dominant SCAR markers that were confirmed to be linked to the resistance gene in the F2, BC1 and F2 of BC3 generations of the same cross. These markers provide a starting point for mapping the eggplant FOM resistance gene in eggplant and for exploring the synteny between solanaceous crops for fusarium wilt resistance genes. The SCAR markers will be useful for identifying fusarium wilt-resistant genotypes in marker-assisted selection breeding programs using segregating progenies of the resistant eggplant progenitor used in this study.  相似文献   

10.
The major constrains for practical exploitation of the somatic hybrids between eggplant and its wild relatives have been their sterility and tetraploidy which prevented their incorporation into breeding programs. Here we demonstrate that anther culture was successfully utilized to bring back the ploidy level to the diploid status in tetraploid interspecific hybrids between eggplant and the allied species S. integrifolium and S. aethiopicum gr. gilo. Both the relative species are resistant to Fusarium oxysporum f. sp. melongenae and to some strains of bacterial wilt (Ralstonia solanacearum) which are very destructive diseases of eggplant. Dihaploid androgenetic plants were obtained from the somatic hybrids, from the “double somatic hybrid” obtained by sexual cross of the two somatic hybrids [(eggplant + S. aethiopicum) × (eggplant + S. integrifolium)], and from tetraploid backcrossed plants between the somatic hybrid with S. aethiopicum and eggplant. Phenotypical, molecular, biological and biochemical characterization, and also artificial inoculation with Fusarium oxysporum are consistent with a recombination between the genomes of the species involved in the hybridizations. Dihaploids resistant to Fusarium were successfully backcrossed with eggplant. Besides their utility as potential valuable breeding materials, the introgressed lines obtained may be utilized in genetic and molecular studies about the resistance to Fusarium from S. integrifolium and S. aethiopicum gr. gilo.  相似文献   

11.
Fusarium crown and root rot of tomato (Lycopersicon esculentum) caused by Fusarium oxysporum f. sp. radicis‐lycopersici is a new devastative disease of tomato greenhouse crops in Tunisia. Nothing is known neither about the population of this pathogen in this region, nor about the population of F. oxysporum f. sp. lycopersici the causal agent of Fusarium wilt of tomato. In order to examine the genetic relatedness among the F. oxysporum isolates by intergenic spacer restriction fragment length polymorphism (IGS‐RFLP) analysis and to elucidate the origin of the formae specialesradicis‐lycopersici in Tunisia by looking for genetic similarity of Tunisians isolates with isolates from a foreign source, the genetic diversity among F. oxysporum f. sp. radicis‐lycopersici and F. oxysporum f. sp. lycopersici populations was investigated. A total of 62 isolates of F. oxysporum, obtained from symptomless tomato plants, were characterized using IGS typing and pathogenicity tests on tomato plants. All Fusarium isolates were highly pathogenic on tomato. Fusarium oxysporum f. sp. radicis‐lycopersici isolates were separated into five IGS types. From the 53 F. oxysporum f. sp. radicis‐lycopersici isolates, 34 isolates have the same IGS types (IGS type 25), and the remaining 19 isolates were distributed into four IGS types. However, the only nine isolates of F. oxysporum f. sp. lycopersici have six different IGS types. This difference of diversity between the two formae speciales suggests that F. oxysporum f. sp. radicis‐lycopersici isolates have a foreign origin and may have been accidentally introduced into Tunisia.  相似文献   

12.
Incidence of root, stem and beans rot of vanilla (Vanilla planifolia Andrews) caused by Fusarium oxysporum Schlecht was surveyed in vanilla growing areas of south India during December 2008. The incidence of the disease varied from 1 to 100% in different locations. A total of 60 isolates of F. oxysporum were obtained from diseased samples, and nine morphologically different isolates were taken for molecular characterization using Randomly Amplified Polymorphic DNA (RAPD) markers to study the genetic variability if any, among them. PCR amplification of total genomic DNA with random oligonucleotide primers generated unique banding patterns depending upon primers and isolates. Nine oligonucleotide primers were selected for the RAPD assays, which resulted in 384 bands for nine isolates of F. oxysporum. The number of bands obtained was entered into a NTSYS and the results showed that the variability among the pathogen isolates was moderate. The nine isolates studied were grouped into single major cluster at 0.66 similarity index. Hence, it is inferred that F. oxysporum infecting vanilla in south India consists of a single clonal lineage with a moderate level of genetic diversification.  相似文献   

13.
In the current study, 160 pathogenic strains of Fusarium oxysporum collected from tomato, eggplant and pepper were studied. Eighteen inter‐primer binding site (iPBS)‐retrotransposon primers were used, and these primers generated 205 scorable polymorphic bands. The number of polymorphic bands per primer varied between 9 and 19, with a mean of 11 bands per primer. The highest polymorphism information content (PIC) value was determined as 0.27, and the lowest was 0.05. The unweighted pair‐group method with arithmetic averages (UPGMA) dendrogram including a heat map revealed that the 160 pathogenic strains of F. oxysporum were divided into two main clusters. The first cluster mainly included F. oxysporum f. sp. capsici (FOC) and F. oxysporum f. sp. melongenae (FOMG) isolates. The second cluster mainly comprised F. oxysporum f. sp. lycopersici (FOL) and F. oxysporum f. sp. radicis lycopersici (FORL) isolates. The highest percentage of loci in significant linkage disequilibrium (LD) was detected for FOL, whereas the lowest level of LD was found for FOC, and 95.2%, 99.4%, 99.1% and 97.4% of the relative kinship estimates were less than 0.4 for FOL, FOMG, FORL and FOC, respectively. LD differences were detected among formae speciales, and LD was higher in FOL as compare to FOC species. The findings of this study confirm that iPBS‐retrotransposon markers are highly polymorphic at the intraspecific level in Fusarium spp.  相似文献   

14.
《Mycological Research》2006,110(8):929-935
Fusarium wilt of banana is a potentially devastating disease throughout the world. Options for control of the causal organism, Fusarium oxysporum f.sp. cubense (Foc) are limited. Suppressive soil sites have previously been identified where, despite the presence of Foc, Fusarium wilt does not develop. In order to understand some aspects of this disease suppression, endophytic Fusarium oxysporum isolates were obtained from banana roots. These isolates were genetically characterized and compared with an isolate of Fusarium oxysporum previously identified as being capable of suppressing Fusarium wilt of banana in glasshouse trials. Three additional isolates were selected for glasshouse trials to assess suppression of Fusarium wilt in two different cultivars of banana, Cavendish and Lady Finger. One isolate (BRIP 29089) was identified as a potential biocontrol organism, reducing the disease severity of Fusarium wilt in Lady Finger and Cavendish cultivars. Interestingly, one isolate (BRIP 45952) increased Fusarium wilt disease severity on Cavendish. The implications of an isolate of Fusarium oxysporum, non-pathogenic on banana, increasing disease severity and the potential role of non-pathogenic isolates of Fusarium oxysporum in disease complexes are discussed.  相似文献   

15.
For the detection of Fusarium oxysporum f. sp. cucumerinum pathogenic groups, a specific PCR-based marker was developed. Specific random amplified polymorphic DNA (RAPD) markers which identified in four pathogenic groups I, II, III, and IV were cloned into PGem-Teasy vector. Cloned fragments were sequenced, and used for developing sequence characterized amplified regions (SCAR) primers for detection of pathogenic groups. F. oxysporum f. sp. cucumerinum isolates belonging to four pathogenic groups in India, cucumber nonpathogenic F. oxysporum, F. oxysporum f. sp. moniliforme and melonis, Fusarium udum, and isolate of Alternaria sp. were tested using developed specific primers. A single 1.320 kb, 770 bp, 1.119 kb, and 771 bp fragment were amplified from pathogenic group I, II, III, and IV isolates, respectively. Results showed the PCR based marker, which used in this research work, could detect up to 1 ng of fungal genomic DNA. The specific SCAR primers and PCR technique developed in this research easily detect and differentiate isolates of each F. oxysporum f. sp. cucumerinum pathogenic groups.  相似文献   

16.
利用RAPD、ISSR和AFLP分子标记技术对50个西瓜枯萎病菌株进行了分析。结果表明,21个RAPD引物、21个ISSR引物和21对AFLP引物分别对供试菌株扩增出113、134和389条带,三种分子标记的遗传相似系数比较一致,均可揭示西瓜枯萎病菌的遗传变异特点。三种分子标记产生的聚类分析结果存在一定差异,其中RAPD类群与生理小种和地理来源之间均不存在明显关系;而AFLP和ISSR类群与生理小种之间存在一定相关性,与菌株的地理来源关系不明显。  相似文献   

17.
基于RAPD、ISSR和AFLP对西瓜枯萎病菌遗传多样性的评价   总被引:7,自引:0,他引:7  
利用RAPD、ISSR和AFLP分子标记技术对50个西瓜枯萎病菌株进行了分析。结果表明,21个RAPD引物、21个ISSR引物和21对AFLP引物分别对供试菌株扩增出113、134和389条带,三种分子标记的遗传相似系数比较一致,均可揭示西瓜枯萎病菌的遗传变异特点。三种分子标记产生的聚类分析结果存在一定差异,其中RAPD类群与生理小种和地理来源之间均不存在明显关系;而AFLP和ISSR类群与生理小种之间存在一定相关性,与菌株的地理来源关系不明显。  相似文献   

18.
Fusarium oxysporum (Schlechtend.: Fr.) f. sp. melongenae (Fomg) recovered from symptomatic eggplants from five eggplant‐growing areas in Turkey, including the south, west, north‐west, north and south‐east regions. The objective of this study was to investigate the genetic diversity of the Fomg isolates from different geographical location by pathogenicity and VCG tests. Three hundred and seventy‐four Fomg isolates were classified as highly virulent, virulent, moderately virulent and low virulent through pathogenicity assays. No correlation was observed between virulence of Fomg isolates and their locations. The nitrate non‐utilizing mutants (nit) were generated as nit1, nit3 and NitM, based on phenotyping of Fomg growth characteristics of the Fomg isolates on diagnostic media with various sources of nitrogen. The majority of nit mutants (39.4%) recovered were nit1 from minimal medium (MM) containing of 2.0% potassium chlorate (MMC). The most of Fomg isolates were identified as heterokaryon self‐compatible (HSC) based on their ability to form a stable heterokaryon, while four isolates were classified as heterokaryon self‐incompatible (HSI). A large amount of Fomg isolates were vegetatively compatible and assigned as members of the same VCG, whereas nit mutants of 10 Fomg isolates that did not complement with tester strains only paired by themselves (HSC), these isolates were termed vegetative incompatible (vic). The complementation of 33 isolates with tester strains was slow and quite weak, but not paired with themselves even though they are HSC. About 96.3% of the Fomg isolates were assigned to VCG 0320, while the remaining 3.7% were classified as vegetative incompatible group.  相似文献   

19.
Dubey SC  Singh SR 《Mycopathologia》2008,165(6):389-406
Virulence analysis of 64 isolates of Fusarium oxysporum f. sp. ciceris causing chickpea wilt collected from major chickpea growing states of India on 14 varieties, including 10 international differentials revealed that the isolates from each state were highly variable. Based on the reactions on international differentials, more than one race was found to be prevalent in every state. Majority of the isolates were not matched with the race specific reactions. Therefore, some of the cultivars, namely, GPF 2, DCP 92-3, and KWR 108 should be included as new differentials to obtain clear-cut differential responses. Randomly amplified polymorphic DNA (RAPD), inter-simple sequence repeat (ISSR), and simple sequence repeat (SSR) markers were used to assess the genetic diversity of these isolates. Unweighted paired group method with arithmetic average (UPGMA) cluster analysis was used to divide the isolates into distinct clusters. The clusters generated by RAPD grouped all isolates into three categories at 25% genetic similarity and into two major categories at 30% genetic similarity. ISSR and SSR analyses also grouped all the isolates into two major categories. Majority of the isolates from Punjab and a few from Rajasthan were grouped in one category while the isolates from all other states were grouped in another suggesting the existence of diverse genetic populations of the pathogen at the same location. Some of the RAPD (OPM 6, OPI 9, P 17, OPN 4, OPF 1, P 17, P 21, and SC 1), ISSR (ISSR 7, ISSR 11, and ISSR 12) and SSR (MB 17) markers clearly distinguished area specific isolates.  相似文献   

20.
Random Amplified Polymorphic DNA (RAPD), inter simple sequence repeat (ISSR) and Amplified Fragment Length Polymorphism (AFLP) profiling were evaluated for assessing the extent of genetic variation among the isolates of Ustilago tritici (Pers.) Rostr., which causes the loose smut disease of wheat.Thirty random decamer primers, six random primer pairs, four SSR primers such as (GACA)4, (GATA)4, (CAA)5 and (GTG)5 and nine combinations of AFLP selective primers were used to characterize nine isolates of the fungus. These isolates were collected from infected earheads of seven commercial wheat cultivars grown at eight different locations in Haryana, which is a major wheat growing state in the North-West Plain Zone of India. The RAPD and ISSR primers generated 21 0 scorable amplified fragments, all of which were monomorphic among the isolates.The AFLP primer combinations generated 239 fragments out of which 193 were polymorphic. All the isolates could be precisely differentiated from each other employing AFLP and grouped into two distinct clusters.The molecular classification partly corresponded with geographic distribution and host origin of the isolates. AFLP profiling was found superior to RAPD and ISSR and can be effectively utilized for further characterization of loose smut pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号