首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Independent Component Analysis (ICA) was used for 19-channel resting EEG analysis 111 patients at early stages of depressive disorder and 526 age-matched healthy subjects. Comparison of independent components power spectra in depressed patients and healthy subjects in two states: Eyes closed and Eyes open, has revealed significant differences between groups for three frequency bands: Theta (4-7.5 Hz), Alpha (7.5-14 Hz), and Beta (14-20 Hz). Increased power of alpha and theta activity in depressed patients at parietal and occipital sites may be caused by decreased cortical activation of these regions. Diffuse enhancement of beta activity level can correlate with anxiety symptoms which take an important place in clinical picture of depressive disorder at early stages. Using of ICA method for comparison of spectral characteristics of EEG in groups of patients with different brain pathology and healthy subjects gives a possibility to localize more precisely the discovered differences as compare to traditional analysis of EEG spectra.  相似文献   

2.
Features of EEG pattern during verbal creative thinking depending on experimental instruction were studied in men and women. Spectral power density was analyzed in six frequency bands (4-30 Hz). Performance of a creative task produced an increase in the power of theta (4-6 Hz) and beta2 (20-40 Hz) components and decrease in the power of alpha (8-13 Hz) and betal (13-20 Hz). Changes in the alpha and betal bands were observed, predominantly, in the posterior areas, whereas power of the thetal and beta2 bands increased in the anterior areas. Independently of instruction, women demonstrated greater synchronization in the theta1 band than men, whereas in men the desynchronization in the alpha2 band (10-13 Hz) was more pronounced. When the subjects were instructed to create original sentences, a widespread decrease in the EEG power was observed in the band of 8-30 Hz as compared to instruction "to create sentences". Thus, the instruction-related changes in EEG power were not gender-specific. They may reflect neural activity mediating selective attention.  相似文献   

3.
The resting EEGs of several brain structures (motor and visual cortex, caudate nucleus and intralaminar thalamic nuclei) were submitted to spectral and coherence computer analyses in two rat strains. Genetically predisposed to convulsive state KM rats were shown to differ from nonpredisposed Wistar rats in EEG spectral properties. KM rats EEG pattern was characterized by increase of low frequencies (1-2 Hz) power and decrease of faster activity (5-12 Hz) power in cortical spectrograms as well as by decrease of caudate nucleus EEG absolute power. The coherence value between cortical or subcortical structures at below 4 Hz was intensified in KM rats. Reinforcement of cortical auto-oscillating properties manifested by ECoG synchronization in cortical-thalamic resonance interaction as well as weakening of striatal inhibitory system may constitute neurophysiological mechanisms of enhanced convulsive readiness. The probable role of mediator imbalance in these mechanisms is discussed.  相似文献   

4.
With the aim to reveal features of the neocortical spatiotemporal organization of potentials characteristic of different genetically predetermined emotional levels, momentary values of EEG potentials were analyzed in inbred rats of MR and MNRA strains. A topogram was described by a basic parameter such as its general level (the mean of momentary values of potentials derived from 24 symmetrical electrodes bilaterally implanted into the brain cortex) and a similarity coefficient (correlation between the set of its momentary values and that of a standard topogram). The general level and similarity coefficient values were calculated for a series of successive topograms individually for the right and left hemisphere. Also, right- and left-side power spectra of these series were calculated. In rats of MR strain, significant (p < 0.05) peaks in the general level and similarity coefficient spectra were observed in the delta (2.0 Hz), teta (6.5 Hz) and alpha (9 Hz) frequency bands. In this strain, the general level power was higher at the right side, and the similarity coefficient power displayed the left-side dominance. In rats of MNRA strain, peaks in the delta(2.0 Hz) band coinsided in the general level and similarity coefficient spectra, whereas, independently, the general level spectra had peaks in the theta band (7.0 Hz), and similarity coefficient had peaks at frequencies 3.0, 4.5, and 6.0 Hz. The left-side general level spectral power was higher than the right-side general level spectral power in the delta and lower in the high-frequency theta bands. The similarity coefficient power displayed the left-side dominance for the peaks in the delta (2.0 Hz) and theta (3.0 Hz) bands, and it displayed the right-side dominance for the peaks in the theta (4.5 Hz) band. The specific features of the cortical spatiotemporal organization of potentials revealed in rats of MR and MNRA strains suggest different modes of functioning of at least two systems, reticulo-thalamo-corticaland hippocampo-cortical.  相似文献   

5.
The efficacy of linkage studies using microsatellites and single-nucleotide polymorphisms (SNPs) was evaluated. Analyzed data were supplied by the Collaborative Study on the Genetics of Alcoholism (COGA). Alcoholism was analyzed together with a simulated trait caused by a gene of known position, through a nonparametric linkage test (NPL). For the alcoholism trait, four densities of SNPs (1 SNP per 0.2 cM, 0.5 cM, 1 cM and 2 cM) showed higher peaks of NPL z scores and smaller significant p-values than the usual 10-cM density of microsatellites. However, the two highest densities of SNPs had unstable z score signals, and therefore were difficult to interpret. Analyzing a simulated trait with the same markers in the same pedigrees, we confirmed the higher power of all four densities of SNPs compared to the 10-cM microsatellites panel, although the existence of other confounding peaks was confirmed for maps that are denser than 1 SNP/cM. We further showed that estimating the gene position using SNPs is far less biased than using the usual panel of microsatellites (biases of 0-2 cM for SNPs vs. 8.9 cM for microsatellites). We conclude that using dense maps of SNPs in linkage analysis is more powerful and less biased than using the 10-cM maps of microsatellites. However, linkage signals can be unstable and difficult to interpret when several SNPs are genotyped per centimorgan. The power and accuracy of 1 SNP/cM or 1 SNP/2 cM may be sufficient in a genome-wide linkage scan while denser maps may be most useful in fine-gene mapping studies exploiting linkage disequilibrium.  相似文献   

6.
Neocortical local field potentials have shown that gamma oscillations occur spontaneously during slow-wave sleep (SWS). At the macroscopic EEG level in the human brain, no evidences were reported so far. In this study, by using simultaneous scalp and intracranial EEG recordings in 20 epileptic subjects, we examined gamma oscillations in cerebral cortex during SWS. We report that gamma oscillations in low (30-50 Hz) and high (60-120 Hz) frequency bands recurrently emerged in all investigated regions and their amplitudes coincided with specific phases of the cortical slow wave. In most of the cases, multiple oscillatory bursts in different frequency bands from 30 to 120 Hz were correlated with positive peaks of scalp slow waves ("IN-phase" pattern), confirming previous animal findings. In addition, we report another gamma pattern that appears preferentially during the negative phase of the slow wave ("ANTI-phase" pattern). This new pattern presented dominant peaks in the high gamma range and was preferentially expressed in the temporal cortex. Finally, we found that the spatial coherence between cortical sites exhibiting gamma activities was local and fell off quickly when computed between distant sites. Overall, these results provide the first human evidences that gamma oscillations can be observed in macroscopic EEG recordings during sleep. They support the concept that these high-frequency activities might be associated with phasic increases of neural activity during slow oscillations. Such patterned activity in the sleeping brain could play a role in off-line processing of cortical networks.  相似文献   

7.
The EEG was recorded in 19 standard derivations in 88 students in the following states: rest with the eyes open, memorization (learning) of bilingual verbal semantic pairs (Latin and Russian), and retrieval (check) of the learned information. In order to calculate the mean heart rate (HR) in each state, the electrocardiogram was recorded. The subjective difficulty of task performance was assessed. Statistical comparison of the spectral power estimates in these states for frequency bands θ (4–7 Hz), α1 (7–10 Hz), α2 (10–13 Hz), β1 (13–18 Hz), β2 (18–30 Hz), and γ (30–40 Hz) demonstrated a number of significant differences in the EEG absolute power (local synchronization) between the states reproducible in subgroups. Comparison of the states of memorization and retrieval showed that, in the state of memorization, the EEG power in the γ, β2, and θ bands was significantly lower throughout the cortical surface. Comparison of the active states with the reference state of rest showed that, in both active states, changes in the EEG power were of the same direction in the majority of the frequency bands (an increase in the θ, β2, and γ bands and a decrease in the α2 band) except α1, in which memorization was predominantly accompanied by a decrease in the power, whereas retrieval was associated with an increase. No significant differences were found between the states of memorization and retrieval in the HR or the subjective estimate of task difficulty. The results can be interpreted as a reflection of cognitive-specific forms of general preparatory attention.  相似文献   

8.
We conducted genome-wide linkage scans using both microsatellite and single-nucleotide polymorphism (SNP) markers. Regions showing the strongest evidence of linkage to alcoholism susceptibility genes were identified. Haplotype analyses using a sliding-window approach for SNPs in these regions were performed. In addition, we performed a genome-wide association scan using SNP data. SNPs in these regions with evidence of association (P 相似文献   

9.
The electrophysiological correlates of major depression disorder with anxious distress in patients of different age groups have been investigated. The spectral characteristics of 19-channel background EEG were analyzed and the power spectra recorded with the eyes closed vs. eyes open in 64 patients with anxiety–depressive disorder and in 194 healthy subjects were compared. The subjects were divided into the two age groups: 18–39 and 40–76 years old. The spectral parameters were calculated for 5 main EEG frequency bands: θ (4–8 Hz), α (8–12 Hz), β1 (12–20 Hz), β2 (20–30 Hz), and γ (30–40 Hz). The most statistically significant differences between the groups were found in the α, β, and γ bands. Lower values of spectral power of the α rhythm in occipital areas and the higher values of spectral power of the β and γ rhythms in the frontocentral region were recorded in the group of 18-to-39-year-old patients with the eyes closed. Higher values of spectral power of the β rhythm in the fronto-central region and in the left temporal lobe were recorded in the group of 40-to-76-year-old patients with both the eyes closed and the eyes open. The higher β-activity in the fronto-central regions in both groups of patients may be caused by increased excitability of the cerebral cortex and decreased activity of inhibitory processes. Increased activation of the left temporal lobe in older subjects is probably associated with the severity of anxiety symptoms and may be a distinctive marker of mixed anxiety and depressive disorder. The lower values of α-power revealed only in the group of younger subjects are probably associated with age-related reorganization of EEG in older subjects.  相似文献   

10.
A selection procedure with three rules, high efficiency, low individual variability, and low redundancy, was developed to screen electroencephalogram (EEG) features for predicting behavioral alertness levels. A total of 24 EEG features were derived from temporal, frequency spectral, and statistical analyses. Behavioral alertness levels were quantified by correct rates of performance on an auditory and a visual vigilance task, separately. In the auditory task study, a subset of three EEG features, the relative spectral amplitudes in the alpha (alpha%, 8-13 Hz) and theta (theta%, 4-8 Hz) bands, and the mean frequency of the EEG spectrum (MF), was found to be the best combination for predicting the auditory alertness level. In the visual task study, the mean frequency of the beta band (Fbeta, 13-32 Hz) was the only EEG feature selected. The application of an averaging subwindow procedure within a moving time window to EEG analysis increased the predictive power of EEG features and decreased the disturbing effect of movement artifacts on the EEG data.  相似文献   

11.
There is increasing interest in the intrinsic activity in the resting brain, especially that of ultraslow and slow oscillations. Using near-infrared spectroscopy (NIRS), electroencephalography (EEG), blood pressure (BP), respiration and heart rate recordings during 5 minutes of rest, combined with cross spectral and sliding cross correlation calculations, we identified a short-lasting coupling (duration [Formula: see text] s) between prefrontal oxyhemoglobin (HbO2) in the frequency band between 0.07 and 0.13 Hz and central EEG alpha and/or beta power oscillations in 8 of the 9 subjects investigated. The HbO2 peaks preceded the EEG band power peaks by 3.7 s in 6 subjects, with moderate or no coupling between BP and HbO2 oscillations. HbO2 and EEG band power oscillations were approximately in phase with BP oscillations in the 2 subjects with an extremely high coupling (squared coherence [Formula: see text]) between BP and HbO2 oscillation. No coupling was identified in one subject. These results indicate that slow precentral (de)oxyhemoglobin concentration oscillations during awake rest can be temporarily coupled with EEG fluctuations in sensorimotor areas and modulate the excitability level in the brains' motor areas, respectively. Therefore, this provides support for the idea that resting state networks fluctuate with frequencies of between 0.01 and 0.1 Hz (Mantini et.al. PNAS 2007).  相似文献   

12.
Independent component analysis (ICA) of 19-channel background EEG was performed in 111 patients with the early signs of depressive disorders and in 526 healthy subjects. The power spectra of the independent components were compared in the depressive patients and in healthy subjects at the eyes closed and eyes opened states. Statistically significant differences between the groups were detected in three frequency bands: θ (4–7.5 Hz), α (7.5–14 Hz), and β (14–20 Hz). Increased θ and α activities in parietal and occipital derivations of depressive patients may have been caused by a reduced cortical activity in the projection of these derivation. Diffuse enhancement of the β activity may be correlated with anxiety symptoms that are pronounced in the clinical picture of depressive disorders at early stages of the disease. ICA used to compare quantitative EEG parameters in different groups of patients and in healthy persons makes it possible to localize the differences more accurately than the traditional analysis of EEG spectra.  相似文献   

13.
Summary Family, twin, and adoption studies have shown that genetic factors are involved in the etiology of alcoholism. Based on earlier EEG findings in alcoholics and on the known genetic determination of the alcohol effect on the EEG, the hypothesis was tested whether the resting EEG reflects a certain disposition to alcoholism. Resting EEGs were examined for 115 alcoholics (78 males, 37 females) and matched controls. In addition, the first-degree relatives of two extreme groups of alcoholics—those with poor and those with particularly good alpha waves—were examined and compared with matched controls. The EEGs were analyzed with an EEG processor. Whereas male alcoholics did not differ from their controls, female patients showed a shift from the alpha and theta to the beta bands of the brain wave pattern. The relatives of the two extreme groups of alcoholics, who did not misuse alcohol, exhibited the same tendency. This is an argument supporting the notion that in females a poorly synchronized EEG pattern reflects a certain disposition to alcoholism. This finding is discussed in light of drinking motivation in males and females. The latter more often belong to the alpha-and gamma-types of alcoholism than do males. Because of comparable findings in schizophrenics it is argued that a genetically determined desynchronized resting EEG pattern is not specific for a certain illness, but reflects basic mechanisms that enhance the risk for different psychiatric disorders.This study was supported by the Bundesminister für Jugend, Familie und Gesundheit, Bonn (Gesch.-Z.343-4919-0/15)  相似文献   

14.
Electroencephalograms (EEG) were recorder in 19 standard derivations in 88 healthy subjects, while they were in the states: rest with eyes open; memorization (learning) of verbal bilingual semantic pairs (Latin and Russian languages); the retrieval of the rote information from memory (control). We compared estimates of EEG coherence in these states for the frequency bands theta (4-7 Hz), alpha-1 (7-10 Hz), alpha-2 (10-13 Hz), beta-1 (13-18 Hz), beta-2 (18-30 Hz), gamma (30-40 Hz). When compared with the rest most strongly expressed: for memorization a decrease of coherence in the pairs of derivations from frontal and central areas of the cortex in the EEG frequency bands; for retrieval an increase of coherence in interhemispheric derivation pairs of pariental-occipital region in majority of the frequency bands. For the retrieval also increases of coherence in the beta2 and gamma bands, along with coherence decreases at low frequencies take place in pairs formed by derivations from the parieto-occipital region with derivations from the frontal and the central ones. Dynamics of EEG coherence in comparisons of memorization and retrieval from the rest and each are expressed significantly more in the interhemispheric and crosshemispheric pairs of derivations than in the intrahemispheric pairs. Revealed topographic specificity of the dynamics of EEG coherence by changing the states is considered in terms of ideas about cognitive-specific forms of sustained goal-directed mental attention.  相似文献   

15.
Energy characteristics (power spectra) of short-term (less than 1 s) EEG-reactions were studied in dogs in the course of instrumental conditioning. These reactions were observed in different areas of the cortex during selective attention in response to positive conditioned stimuli. They immediately preceded strong blow with a paw on the pedal of feeding cup and taking the reward. The EEG power at these moments was 1.5-3 times higher than the baseline EEG power level in a prestimulus period. The high-frequency structure of corresponding EEG reactions comprised discrete individual spectral peaks both in traditional (1-30 Hz) and gamma (30-80 Hz) ranges and higher-frequency components (80-200 Hz) as well. In some cases, the higher-frequency components (80-200 Hz) were most pronounced.  相似文献   

16.
Alcoholism is a complex disease with both genetic and environmental risk factors. To identify genes that affect the risk for alcoholism, we systematically ascertained and carefully assessed individuals in families with multiple alcoholics. Linkage and association analyses suggested that a region of chromosome 4p contained genes affecting a quantitative endophenotype, brain oscillations in the beta frequency range (13-28 Hz), and the risk for alcoholism. To identify the individual genes that affect these phenotypes, we performed linkage disequilibrium analyses of 69 single-nucleotide polymorphism (SNPs) within a cluster of four GABA(A) receptor genes, GABRG1, GABRA2, GABRA4, and GABRB1, at the center of the linked region. GABA(A) receptors mediate important effects of alcohol and also modulate beta frequencies. Thirty-one SNPs in GABRA2, but only 1 of the 20 SNPs in the flanking genes, showed significant association with alcoholism. Twenty-five of the GABRA2 SNPs, but only one of the SNPs in the flanking genes, were associated with the brain oscillations in the beta frequency. The region of strongest association with alcohol dependence extended from intron 3 past the 3' end of GABRA2; all 43 of the consecutive three-SNP haplotypes in this region of GABRA2 were highly significant. A three-SNP haplotype was associated with alcoholism, with P=.000000022. No coding differences were found between the high-risk and low-risk haplotypes, suggesting that the effect is mediated through gene regulation. The very strong association of GABRA2 with both alcohol dependence and the beta frequency of the electroencephalogram, combined with biological evidence for a role of this gene in both phenotypes, suggest that GABRA2 might influence susceptibility to alcohol dependence by modulating the level of neural excitation.  相似文献   

17.
The study of electroencephalographic (EEG) activity during sleep in the spider monkey has provided new insights into primitive arboreal sleep physiology and behavior in anthropoids. Nevertheless, studies conducted to date have maintained the frequency ranges of the EEG bands commonly used with humans. The aim of the present work was to determine the EEG broad bands that characterize sleep and wakefulness in the spider monkey using principal component analysis (PCA). The EEG activity was recorded from the occipital, central, and frontal EEG derivations of six young-adult male spider monkeys housed in a laboratory setting. To determine which frequencies covaried and which were orthogonally independent during sleep and wakefulness, the power EEG spectra and interhemispheric and intrahemispheric EEG correlations from 1 to 30 Hz were subjected to PCA. Findings show that the EEG bands detection differed from those reported previously in both spider monkeys and humans, and that the 1–3 and 2–13 Hz frequency ranges concur with the oscillatory activity elucidated by cellular recordings of subcortical regions. Results show that applying PCA to the EEG spectrum during sleep and wakefulness in the spider monkey led to the identification of frequencies that covaried with, and were orthogonally independent of, other frequencies in each behavioral vigilance state. The new EEG bands differ from those used previously with both spider monkeys and humans. The 1–3 and 2–13 Hz frequency ranges are in accordance with the oscillatory activity elucidated by cellular recordings of subcortical regions in other mammals.  相似文献   

18.
Transcranial magnetic theta burst stimulation (TBS) differs from other high-frequency rTMS protocols because it induces plastic changes up to an hour despite lower stimulus intensity and shorter duration of stimulation. However, the effects of TBS on neuronal oscillations remain unclear. In this study, we used electroencephalography (EEG) to investigate changes of neuronal oscillations after continuous TBS (cTBS), the protocol that emulates long-term depression (LTD) form of synaptic plasticity. We randomly divided 26 healthy humans into two groups receiving either Active or Sham cTBS as control over the left primary motor cortex (M1). Post-cTBS aftereffects were assessed with behavioural measurements at rest using motor evoked potentials (MEPs) and at active state during the execution of a choice reaction time (RT) task in combination with continuous electrophysiological recordings. The cTBS-induced EEG oscillations were assessed using event-related power (ERPow), which reflected regional oscillatory activity of neural assemblies of θ (4-7.5 Hz), low α (8-9.5 Hz), μ (10-12.5 Hz), low β (13-19.5 Hz), and high β (20-30 Hz) brain rhythms. Results revealed 20-min suppression of MEPs and at least 30-min increase of ERPow modulation, suggesting that besides MEPs, EEG has the potential to provide an accurate cortical readout to assess cortical excitability and to investigate the interference of cortical oscillations in the human brain post-cTBS. We also observed a predominant modulation of β frequency band, supporting the hypothesis that cTBS acts more on cortical level. Theta oscillations were also modulated during rest implying the involvement of independent cortical theta generators over the motor network post cTBS. This work provided more insights into the underlying mechanisms of cTBS, providing a possible link between synchronised neural oscillations and LTD in humans.  相似文献   

19.
P300 amplitude is an electrophysiological quantitative trait that is correlated with both alcoholism and smoking status. Using the Collaborative Study on the Genetics of Alcoholism data, we performed model-free linkage analysis to investigate the relationship between alcoholism, P300 amplitude, and habitual smoking. We also analyzed the effect of parent-of-origin on alcoholism, and utilized both microsatellites (MS) markers and single-nucleotide polymorphisms (SNPs). We found significant evidence of linkage for alcoholism to chromosome 10; inclusion of P300 amplitude as a covariate provided additional evidence of linkage to chromosome 12. This same region on chromosome 12 showed some evidence for a parent-of-origin effect. We found evidence of linkage for the P300 phenotype to chromosome 7 in non-smokers, and to chromosome 17 in alcoholics. The effects of alcoholism and habitual smoking on P300 amplitude appear to have separate genetic determinants. Overall, there were few differences between MS and SNP genome scans. The use of covariates and parent-of-origin effects allowed detection of linkage not seen otherwise.  相似文献   

20.
EEG power in frequency bands beta2 (18.5-29.5 Hz) and low gamma (30-40 Hz) was compared for situations while reading aloud with the technique "self-regulative utterance" texts as follow: a text with neutral emotional-semantic dominant; literary texts with either a positive or a negative emotional-semantic dominant; personal texts--recollections with similar dominants. Two groups of healthy subjects participated--a group of actor students (N=22) and a group of non-actor students (N=23). EEG power values in the states of emotiogenic texts reading are reproducibly differed with statistical significance from those in the state of reading ofa non-emotiogenic text. States of reading emotionally-positive texts are characterized by increases of EEG power in these bands, while those for emotionally negative texts--by decreases if compared with the state of emotionally neutral reading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号