首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Copolymers of sodium 4‐styrene sulfonate (SS) and hydroxyethyl methacrylate (HEMA) were investigated as sequestrants of α‐gliadin, a gluten protein, for the treatment of gluten intolerance. The interactions of α‐gliadin with poly(SS) and poly(HEMA‐co‐SS) with 9 and 26 mol% SS content were studied at gastric (1.2) and intestinal (6.8) pH using circular dichroism and measurements of turbidity, dynamic light scattering and zeta potential. The interactions and their influence on α‐gliadin secondary and aggregated structures depended mainly on the ratio of polymer negative and protein positive charges at pH 1.2, and on polymer SS content at polymer concentrations providing in excess of negative charges at either pH. Poly(SS) could not form complex particles with α‐gliadin in a sufficient excess of negative charges. Copolymerization with HEMA enhanced the formation of complex particles. Poly(HEMA‐co‐SS) with intermediate SS content was found to be the most effective sequestrant for α‐gliadin. This study provides insight into design considerations for polymer sequestrants used in the supportive treatment of celiac disease. © 2009 Wiley Periodicals, Inc. Biopolymers 93:418–428, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

2.
M E Marsh 《Biochemistry》1989,28(1):339-345
Self-association of rat dentin phosphophoryn in the presence of calcium and magnesium ions was examined by chemical cross-linking and electron microscopy. Highly phosphorylated phosphophoryn (HP) binds a maximum of 1.33 calcium ions or 1.07 magnesium ions per organic phosphate residue at pH 7.4-8.0. The Ca-HP complexes are predominantly linear when the calcium content of the complex is less than about 65% of the saturation level. At higher calcium levels, the protein has a folded conformation, and transient protein-protein interactions occur. The equilibrium mixture of monomers and oligomers is predominantly monomeric unless the protein is saturated with calcium. The saturated Ca-HP complex forms discrete high molecular weight particles about 25 nm in diameter. The particles are electrically neutral and generally occur in clusters. Mg-HP complexes appear predominantly linear by electron microscopy at all concentrations of bound magnesium up to about 99% of the saturation level; however, protein-protein interaction is measurable when the magnesium content is as little as 65% of the saturation level. At saturation, Mg-HP complexes form high molecular weight particles which are negatively charged. Because of the negative charge, these particles form a stable colloidal suspension and have a rather stellate configuration.  相似文献   

3.
We have studied by X-ray diffraction fibres of complexes of polypurine-polypyrimidine with divalent cations. In the presence of Mg++, poly(dC) and poly(dG) form a very stable triple helix at neutral pH, based on G-G-C triplexes, whereas Zn++ prevents its formation, both at neutral and acidic pH. The poly(dC) . poly(dG) complex with Zn++ is of the B form, but its X-ray diffraction pattern shows an unusual intensity distribution. This is probably due to the fact that counterions occupy defined positions on the helix. The A form has not been observed. With poly[d(A-G)].poly [d(C-T)] a different triple helical structure is formed, both with Zn++ and Mg++. Direct, X-ray diffraction evidence for these triple helices is provided here for the first time.  相似文献   

4.
The faculty for and degree of oligo(C)-poly(G) interaction is described as an essentially chain length - sensitive phenomenon. At neutral pH under suitable experimental conditions, oligocytidylates of chain length greater than four associate with poly(G) to form double-stranded structures, as does poly(C). The extent of complex formation increases with degree of polymerization. The complex at acid pH is shown to be triple-stranded, of stoicheometry 2C/1G. The observation of a 2G/1C artifact is discussed.  相似文献   

5.
A randomly alkylated copolymer of N-isopropylacrylamide, methacrylic acid and N-vinyl-2-pyrrolidone was characterized with regard to its pH- and temperature-triggered conformational change. It was then complexed to liposomes to produce pH-responsive vesicles. Light scattering and differential scanning calorimetry experiments performed at neutral pH revealed that the polymer underwent coil-to-globule phase transition over a wide range of temperatures. At 37 degrees C and pH 7.4, although the polymer was water-soluble, Fourier transform infrared spectroscopy analysis showed that it was partly dehydrated. At acidic pH, the decrease in the lower critical solution temperature was accompanied by an increase in cooperativity degree of the phase transition. Complexation of copolymer to liposomes did not substantially influence its phase transition. The liposome/copolymer complexes were stable at neutral pH but rapidly released their contents under acidic conditions. The copolymer slightly increased liposome circulation time following intravenous administration to rats. The addition of poly(ethylene glycol) to the formulation had a detrimental effect on pH-sensitivity but enhanced substantially the circulation time.  相似文献   

6.
Celiac disease is a permanent immune-mediated food intolerance triggered by ingestion of wheat gliadins in genetically susceptible individuals. It has been reported that tissue transglutaminase plays an important role in the onset of celiac disease by converting specific glutamine residues within gliadin fragments into glutamic acid residues. This process increases binding affinity of gliadin peptides to HLA-DQ2/DQ8 molecules, thus enhancing the immune response. The aim of the present study was to achieve a detailed structural characterization of modifications induced by transglutaminase on gliadin peptides. Therefore, structural analyses were carried out on a recombinant alpha-gliadin and on a panel of 26 synthetic peptides, overlapping the complete protein sequence. Modified glutamine residues were identified by means of advanced mass-spectrometric methodologies on the basis of MALDI-TOF-MS and tandem mass spectrometry. Results led to the identification of 19 of 94 glutamine residues present in the recombinant alpha-gliadin, which were converted into glutamic acid residues by a transglutaminase-mediated reaction. This allowed us to achieve a global view of the modifications induced by the enzyme on this protein. Furthermore, results gathered could likely be utilized as relevant information for a better understanding of processes leading to T-cell recognition of gliadin peptides involved in celiac disease.  相似文献   

7.
Change in pH plays a crucial role in the stability and function of the dengue envelope (DENV) protein during conformational transition from dimeric (pre-fusion state) to trimeric form (post-fusion state). In the present study we have performed various molecular dynamics (MD) simulations of the trimeric DENV protein at different pH and ionic concentrations. We have used total binding energy to justify the stability of the complex using the MMPBSA method. We found a remarkable increase in the stability of the complex at neutral pH (pH ~ 7) due to the increment of sodium ions. However, at very low pH (pH ~ 4), the total energy of the complex becomes high enough to destabilize the complex. At a specific pH, almost at a range of 6, the stability of the complex is significantly better than the stability of the trimer at neutral pH, which connotes that the trimer is most stable at this pH (pH ~ 6).  相似文献   

8.
Bioresponsive poly(amidoamine)s (PAA)s are currently under development as endosomolytic polymers for intracellular delivery of proteins and genes. Here for the first time, small-angle neutron scattering (SANS) is used to systematically investigate the pH-dependent conformational change of an endosomolytic polymer, the PAA ISA 23. The radius of gyration of the ISA23 was determined as a function of pH and counterion, the aim being to correlate changes in polymer conformation with membrane activity assessed using a rat red blood cell haemolysis assay. With decreasing pH, the ISA23 radius of gyration increased to a maximum (R(g) approximately 80 A) around pH = 3, before subsequently decreasing once more. At high pH and therefore high ionic strengths, the polymer is negatively charged and adopts a rather compact structure (R(g) approximately 20 A), presumably with the dissociated carboxylic groups on the exterior of the polymer coil. At low pH, the coil again collapses (R(g) < 20 A), presumably due to the effects of the high ionic strength. It is concluded that the nature of the salt form has no direct bearing on the size of the polymer coil, but it does indirectly determine the prevailing pH and, hence, polymer conformation. Pulsed-gradient spin-echo NMR measurements were in good agreement with the SANS estimates of the radius of gyration, although ISA23 polydispersity does complicate the data interpretation/comparison. These results support the proposed mode of action of PAAs, namely a coil expansion on passing from a neutral pH (extracellular) to an acidic pH (endosomal and lysosomal) environments. The results do, however, suggest that the charge on the polymer shows a closer correlation with the haemolysis activity rather than the polymer conformation.  相似文献   

9.
A study of the interaction between poly(dG)-poly(dC) and poly(rC) demonstrates that, at neutral pH and high ionic strength, there is replacement of the dC strand by poly(rC). At acid pH, formation of a triple-stranded complex which equally may involve the replacement phenomenon is observed. There is no evidence for interaction at neutral pH between poly(dG)-poly(dC) and oligo(rC), while a three-stranded complex is formed at acid pH. These data are consistent with the studies of comparative stabilities of double stranded deoxy or ribo polymers and deoxy-ribo hybrids.  相似文献   

10.
Segmental mobility dynamic peculiarities of poly(U), poly(A) and poly(C) synthetic polymers and their complexes were investigated by spin-label method. Imidazolide spin-label was introduced into 2'-oxi-groups of polymer ribose in correlation: one spin-label on 18-20 bases. Formation of complexes was observed by ESR spectra at two pH: 4.2 and 7.2. Segmental mobility of only single strand spin-labelled polymer segment and in the complex was evaluated by measuring rotational correlation time (tau) determined by dependence of distances between outer wide extrema in ESR spectra from solvent viscosity at different temperatures. It turned out that correlation time tau of single strand structures in a high degree depend on pH and temperature. For three strand structures abrupt increase of tau because of appearance of rigidity was observed. It is possible to evaluate part of triple complexes poly(U.A.A) and poly(U.U.A) existing in dynamic equilibrium depending on pH and temperature by the form of outer wide extrema. Adding of dye to complex of poly(U).poly(A) causes an increase of rigidity of the supermolecular structure. Quantitative characteristics of formed complexes were obtained by simulation of ESR spectra on computer.  相似文献   

11.
Preparation and properties of poly 2''-O-ethylcytidylic acid.   总被引:1,自引:1,他引:0       下载免费PDF全文
Poly 2'0-ethylcytidylic acid (poly (Ce)) was prepared by polymerization of 2'-0-ethylcytidine-5'-pyrophosphate with Escherichia coli polynucleotide phosphorylase in the presence of Mn++, and its properties compared with those of poly (rC), poly (Cm) and poly (dC). The neutral form of pOLY (Ce) exhibits properties similar to those of poly (rC) and poly (Cm). It also forms an acid twin-stranded helix with a transition pH of 5.9 in 0.1 M NaCl. The neutral form readily forms a double-stranded helical complex with poly (rI). Relative to poly (Cm), replacement of the 2'-0-methyl by 2-0-ethyl leads to increased enhancement of the thermal stabilities of both the acid helical form of poly (Ce) and its complex with poly (rI).  相似文献   

12.
Zhou J  Wang G  Zou L  Tang L  Marquez M  Hu Z 《Biomacromolecules》2008,9(1):142-148
The dispersion of microgels with two interpenetrating polymer networks of poly( N-isopropylacrylamide) and poly(acrylic acid) (PNIPAM-IPN-PAAc) has been studied for its viscoelastic behavior, biocompatibility, and in vivo release properties. The IPN microgels in water had an average hydrodynamic radius of about 85 nm at 21 degrees C, measured by dynamic light scattering method. The atomic force microscope image showed that the particles were much smaller after they were dried but remained spherical shape. The storage and loss moduli ( G' and G') of dispersions of IPN microgels were measured in the linear stress regime as functions of temperature and frequency at various polymer concentrations using a stress-controlled rheometer. For dispersions with polymer concentrations of 3.0 and 6.0 wt % above 33 degrees C, the samples behave as viscoelastic solids and the storage modulus was larger than the loss modulus over the entire frequency range. The loss tangent was measured at various frequencies as a function of temperature. The gelation temperature was determined to be 33 degrees C at the point where a frequency-independent value of the loss tangent was first observed. At pH 2.5, when heated above the gelation temperature, IPN microgels flocculate by pumping a large amount of water from the gel. When the pH value was adjusted to neutral, deprotonation of -COOH groups on PAAc made the microgel keep water even above the gelation temperature. Using an animal implantation model, the biocompatibility and drug release properties of the IPN microgel dispersion were evaluated. Fluorescein as a model drug was mixed into an aqueous microgel dispersion at ambient temperature. This drug-loaded liquid was then injected subcutaneously in Balb/C mice from Taconic Farms. The test results have shown that the IPN microgels did not adversely promote foreign body reactions in this acute implantation model and the presence of gelled microgel dispersion substantially slowed the release of fluorescein.  相似文献   

13.
Thermosensitive poly(N-isopropylacrylamide)-based polymer particles were synthesised, and screened for the adsorption of human immunoglobulin G (hIgG). At pH 9 the adsorption on microgel particles was strongly affected by temperature, approximately 40 mg hIgG/g support (90% of initial hIgG) being adsorbed at 40°C but only 10% of initial hIgG at 25°C. At pH 5 the maximum adsorbed amount (20 mg hIgG/g support) was similar for both temperatures. The adsorption of hIgG on to charged poly(methyl methacrylate)/poly(N-isopropylacrylamide) core-shell latexes was negligible (5–10 mg hIgG/g support) at the same temperature and pH conditions. The lower adsorption of hIgG onto the core-shell particles is explained by steric interactions due to the small size of the shell.  相似文献   

14.
On the basis of circular dichroism (CD) data, we have now identified six different conformational states (other than the duplex) of poly[d(A-G).d(C-T)] at pH values between 8 and 2.5 (at 0.01M Na+; 20 degrees C). Three of these structural rearrangements were observed as the pH was lowered from 8 to 2.5, and three additional rearrangements were observed as the pH was raised from 2.5 back to neutral pH. The major components of the six conformational states were defined using appropriate combinations of the CD spectra of the duplex, triplex, and denatured forms of this polymer, as well as the CD spectra of the individual single strands and their respective acid-induced self-complexes. Our results show that the acid-induced rearrangements of poly[d(A-G).d(C-T)] include not only the poly[d(C+-T).d(A-G).d(C-T)] triplex, but also include the poly[d(C-T)] loop-out structure and a self-complexed form of the poly[d(A-G)] strand that is pH-dependent.  相似文献   

15.
Precipitation of enzymes with reversible soluble–insoluble polymers is a simple approach which can be easily scaled up. This work reports investigations aiming at verifying the existence of specific interactions and complex formation between porcine trypsin and poly acrylic acids using spectroscopy techniques. The trypsin–polymer complex was insoluble at pH lower than 5, with a stoichiometric ratio polymer mol per protein mol of 1:148. It took only a minute for the insoluble complex to form and it was redissolved modifying the pH of the medium. The enzymatic activity of trypsin was maintained even in the presence of the polymer and after precipitation poly acrylic acid presence protect the enzyme from itself degradation. The conditions of complex formation were studied using pure proteins that could be applied on porcine pancreas homogenates as an isolation strategy of trypsin.  相似文献   

16.
B C Sang  D M Gray 《Biochemistry》1987,26(23):7210-7214
Circular dichroism (CD) data indicated that fd gene 5 protein (G5P) formed complexes with double-stranded poly(dA.dT) and poly[d(A-T).d(A-T)]. CD spectra of both polymers at wavelengths above 255 nm were altered upon protein binding. These spectral changes differed from those caused by strand separation. In addition, the tyrosyl 228-nm CD band of G5P decreased more than 65% upon binding of the protein to these double-stranded polymers. This reduction was significantly greater than that observed for binding to single-stranded poly(dA), poly(dT), and poly[d(A-T)] but was similar to that observed for binding of the protein to double-stranded RNA [Gray, C.W., Page, G.A., & Gray, D.M. (1984) J. Mol. Biol. 175, 553-559]. The decrease in melting temperature caused by the protein was twice as great for poly[d(A-T).d(A-T)] as for poly(dA.dT) in 5 mM tris(hydroxymethyl)aminomethane hydrochloride (Tris-HCl), pH 7. Upon heat denaturation of the poly(dA.dT)-G5P complex, CD spectra showed that single-stranded poly(dA) and poly(dT) formed complexes with the protein. The binding of gene 5 protein lowered the melting temperature of poly(dA.dT) by 10 degrees C in 5 mM Tris-HCl, pH 7, but after reducing the binding to the double-stranded form of the polymer by the addition of 0.1 M Na+, the melting temperature was lowered by approximately 30 degrees C. Since increasing the salt concentration decreases the affinity of G5P for the poly(dA) and poly(dT) single strands and increases the stability of the double-stranded polymer, the ability of the gene 5 protein to destabilize poly(dA.dT) appeared to be significantly affected by its binding to the double-stranded form of the polymer.  相似文献   

17.
The binding of proflavine (D) to single stranded poly(A) (P) was investigated at pH 7.0 and 25 degrees C using T-jump, stopped-flow and spectrophotometric methods. Equilibrium measurements show that an external complex PD(I) and an internal complex PD(II) form upon reaction between P and D and that their concentrations depend on the polymer/dye concentration ratio (C(P)/C(D)). For C(P)/C(D)<2.5, cooperative formation of stacks external to polymer strands prevails (PD(I)). Equilibria and T-jump experiments, performed at I=0.1M and analyzed according to the Schwarz theory for cooperative binding, provide the values of site size (g=1), equilibrium constant for the nucleation step (K( *)=(1.4+/-0.6)x10(3)M(-1)), equilibrium constant for the growth step (K=(1.2+/-0.6)x10(5)M(-1)), cooperativity parameter (q=85) and rate constants for the growth step (k(r)=1.2x10(7)M(-1)s(-1), k(d)=1.1 x 10(2)s(-1)). Stopped-flow experiments, performed at low ionic strength (I=0.01 M), indicate that aggregation of stacked poly(A) strands do occur provided that C(P)/C(D)<2.5.  相似文献   

18.
To obtain a novel biodegradable cross-linker, polymerizable polyphosphate (PIOP) was synthesized by ring-opening polymerization of 2-i-propyl-2-oxo-1,3,2-dioxaphospholane with 2-(2-oxo-1,3,2-dioxaphosphoroyloxyethyl methacrylate) (OPEMA). The number averaged molecular weight of the PIOP was 1.2 x 10(4), and the number of OPEMA units in one PIOP molecule was 2.2. Nonenzymatic degradation of the PIOP was evaluated in various pH aqueous media. The degree of hydrolysis was dependent on the pH; that is, it increased with an increase in the pH of the medium. At pH 11.0, the PIOP completely degraded in only 6 days. The poly[2-methacryloyloxyethyl phosphorylcholine (MPC)] cross-linked with the PIOP was prepared by radical polymerization. This polymer could form hydrogel, and the free water fraction in the hydrogel was high. The enzymatic activity of trypsin in contact with the hydrogel was similar to that in buffer solution. There is no adverse effect caused by the hydrogel to reduce the function of the trypsin. The cytotoxicity of poly(MPC) and degraded PIOP was evaluated using v79 cells, and it was not observed in either case. In conclusion, PIOP is a hydrolyzable polymer, which can be used as a cross-linker, and novel hydrogels having biodegradability and biocompatibility were prepared from poly(MPC) cross-linked with the PIOP.  相似文献   

19.
Ultraviolet differential spectra of poly A we studied in the presence of Ca2+ ions with 10(-3)M Na+ in the solution. At concentrations lower than 10(-3)M Ca2+, the ions bind to phosphate groups of the single helical polymer, thus increasing its degree of helicity. At higher concentrations, the ions start binding to the bases of poly A, producing aggregates whose effective radius, as found with an electric microscope, is not more than 10(2) A. These particles stack to form aggregates of an order-of-magnitude higher size. The mutual orientation of bases in the poly A aggregates is of a high degree of order. The calculation of concentration dependences of Ca2+-poly A binding constants shows that this process is cooperative.  相似文献   

20.
The absorption spectra and circular dichroism of aqueous solutions of acridine orange mixed with polY(riboadenylic acid) [poly(rA)] have been measured for different mixing ratios at acid and neutral pH. The binding ratio of dye to poly(rA) has been determined by equilibrium dialysis. At acid pH where poly(rA) is in a double-stranded helix, monomeric dye molecules are intercalated between base pairs, first sparsely and then at neighbouring sites with mutual coupling, as the nucleotide-to-dye mixing ratio decreases. In the presence of excess dye, dimeric dye molecules of antiparallel type are bound to phosphate groups electrostatically and stack together to form linear sequences along a poly(rA) chain. At neutral pH where poly(rA) is single-stranded, isolated intercalation of monomeric dye molecules can occur in the helical parts. At intermediate mixing ratios, half-intercalated dimeric dye molecules are bound to adjacent sites and electronically coupled, inducing characteristic circular dichroism. In the presence of higher amounts of dye, external stacking of dimeric dye molecules of antiparallel type occurs along a poly(rA) chain. The binding of dye cations is suppressed to some degree at acid pH compared to that at neutral pH, owing to the repulsion exerted by protonated adenine bases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号