首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tumour suppressor HIPK2 is an important regulator of cell death induced by DNA damage, but how its activity is regulated remains largely unclear. Here we demonstrate that HIPK2 is an unstable protein that colocalizes and interacts with the E3 ubiquitin ligase Siah-1 in unstressed cells. Siah-1 knockdown increases HIPK2 stability and steady-state levels, whereas Siah-1 expression facilitates HIPK2 polyubiquitination, degradation and thereby inactivation. During recovery from sublethal DNA damage, HIPK2, which is stabilized on DNA damage, is degraded through a Siah-1-dependent, p53-controlled pathway. Downregulation of Siah-1 inhibits HIPK2 degradation and recovery from damage, driving the cells into apoptosis. We have also demonstrated that DNA damage triggers disruption of the HIPK2-Siah-1 complex, resulting in HIPK2 stabilization and activation. Disruption of the HIPK2-Siah-1 complex is mediated by the ATM/ATR pathway and involves ATM/ATR-dependent phosphorylation of Siah-1 at Ser 19. Our results provide a molecular framework for HIPK2 regulation in unstressed and damaged cells.  相似文献   

2.
3.
In response to DNA‐damage, cells have to decide between different cell fate programmes. Activation of the tumour suppressor HIPK2 specifies the DNA damage response (DDR) and tips the cell fate balance towards an apoptotic response. HIPK2 is activated by the checkpoint kinase ATM, and triggers apoptosis through regulatory phosphorylation of a set of cellular key molecules including the tumour suppressor p53 and the anti‐apoptotic corepressor CtBP. Recent work has identified HIPK2 as a regulator of the ultimate step in cytokinesis: the abscission of the mother and daughter cells. Since proper cytokinesis is essential for genome stability and maintenance of correct ploidy, this finding sheds new light on the tumour suppressor function of HIPK2. Here we highlight the molecular mechanisms coordinating HIPK2 function and discuss its emerging role as a tumour suppressor.  相似文献   

4.
The non-receptor tyrosine kinase c-Abl is activated in response to DNA damage and induces p73-dependent apoptosis. Here, we investigated c-Abl regulation of the homeodomain-interacting protein kinase 2 (HIPK2), an important regulator of p53-dependent apoptosis. c-Abl phosphorylated HIPK2 at several sites, and phosphorylation by c-Abl protected HIPK2 from degradation mediated by the ubiquitin E3 ligase Siah-1. c-Abl and HIPK2 synergized in activating p53 on apoptotic promoters in a reporter assay, and c-Abl was required for endogenous HIPK2 accumulation and phosphorylation of p53 at Ser46 in response to DNA damage by γ- and UV radiation. Accumulation of HIPK2 in nuclear speckles and association with promyelocytic leukemia protein (PML) in response to DNA damage were also dependent on c-Abl activity. At high cell density, the Hippo pathway inhibits DNA damage-induced c-Abl activation. Under this condition, DNA damage-induced HIPK2 accumulation, phosphorylation of p53 at Ser46, and apoptosis were attenuated. These data demonstrate a new mechanism for the induction of DNA damage-induced apoptosis by c-Abl and illustrate network interactions between serine/threonine and tyrosine kinases that dictate cell fate.  相似文献   

5.
6.
7.
The DNA damage-responsive tumor suppressors p53 and HIPK2 are well established regulators of cell fate decision-making and regulate the cellular sensitivity to DNA-damaging drugs. Here, we identify Deleted in Azoospermia-associated protein 2 (DAZAP2), a small adaptor protein, as a novel regulator of HIPK2 and specifier of the DNA damage-induced p53 response. Knock-down or genetic deletion of DAZAP2 strongly potentiates cancer cell chemosensitivity both in cells and in vivo using a mouse tumour xenograft model. In unstressed cells, DAZAP2 stimulates HIPK2 polyubiquitination and degradation through interplay with the ubiquitin ligase SIAH1. Upon DNA damage, HIPK2 site-specifically phosphorylates DAZAP2, which terminates its HIPK2-degrading function and triggers its re-localization to the cell nucleus. Interestingly, nuclear DAZAP2 interacts with p53 and specifies target gene expression through modulating a defined subset of p53 target genes. Furthermore, our results suggest that DAZAP2 co-occupies p53 response elements to specify target gene expression. Collectively, our findings propose DAZAP2 as novel regulator of the DNA damage-induced p53 response that controls cancer cell chemosensitivity.  相似文献   

8.
Non-receptor tyrosine kinase Src is a master regulator of cell proliferation. Hyperactive Src is a potent oncogene and a driver of cellular transformation and carcinogenesis. Homeodomain-interacting protein kinase 2 (HIPK2) is a tumor suppressor mediating growth suppression and apoptosis upon genotoxic stress through phosphorylation of p53 at Ser46. Here we show that Src phosphorylates HIPK2 and changes its subcellular localization. Using mass spectrometry we identified 9 Src-mediated Tyr-phosphorylation sites within HIPK2, 5 of them positioned in the kinase domain. By means of a phosphorylation-specific antibody we confirm that Src mediates phosphorylation of HIPK2 at Tyr354. We demonstrate that ectopic expression of Src increases the half-life of HIPK2 by interfering with Siah-1-mediated HIPK2 degradation. Moreover, we find that hyperactive Src binds HIPK2 and redistributes HIPK2 from the cell nucleus to the cytoplasm, where both kinases partially colocalize. Accordingly, we find that hyperactive Src decreases chemotherapeutic drug-induced p53 Ser46 phosphorylation and apoptosis activation. Together, our results suggest that Src kinase suppresses the apoptotic p53 pathway by phosphorylating HIPK2 and relocalizing the kinase to the cytoplasm.  相似文献   

9.
Ultraviolet irradiation (UV) is the major risk factor for the development of skin cancer. Moreover, increasing evidence suggests cutaneotropic human papillomaviruses (HPV) from the beta genus to play a causal role as a co-factor in the development of cutaneous squamous cell carcinoma. Homeodomain-interacting protein kinase 2 (HIPK2) operates as a potential suppressor in skin tumorigenesis and is stabilized by UV-damage. HIPK2 is an important regulator of apoptosis, which forms a complex with the tumor suppressor p53, mediating p53 phosphorylation at Ser 46 and thus promoting pro-apoptotic gene expression. In our study, we demonstrate that cutaneous HPV23 E6 protein directly targets HIPK2 function. Accordingly, HPV23 E6 interacts with HIPK2 both in vitro and in vivo. Furthermore, upon massive UVB-damage HPV23 E6 co-localizes with endogenous HIPK2 at nuclear bodies. Functionally, we demonstrate that HPV23 E6 inhibits HIPK2-mediated p53 Ser 46 phosphorylation through enforcing dissociation of the HIPK2/p53 complex. In addition, HPV23 E6 co-accumulates with endogenous HIPK2 upon UV damage suggesting a mechanism by which HPV23 E6 keeps HIPK2 in check after UV damage. Thus, cutaneous HPV23 E6 prevents HIPK2-mediated p53 Ser 46 phosphorylation, which may favour survival of UV-damaged keratinocytes and skin carcinogenesis by apoptosis evasion.  相似文献   

10.
Homeodomain-interacting protein kinase 2 (HIPK2) is a member of the nuclear protein kinase family, which induces both p53- and CtBP-mediated apoptosis. Levels of HIPK2 were increased by UV irradiation and cisplatin treatment, thereby implying the degradation of HIPK2 in cells under normal conditions. Here, we indicate that HIPK2 is ubiquitinated and degraded by the WD40-repeat/SOCS box protein WSB-1, a process that is blocked under DNA damage conditions. Yeast two-hybrid screening was conducted to identify the proteins that interact with HIPK2. WSB-1, an E3 ubiquitin ligase, was characterized as an HIPK2-interacting protein. The coexpression of WSB-1 resulted in the degradation of HIPK2 via its C-terminal region. Domain analysis of WSB-1 showed that WD40-repeats and the SOCS box were required for its interaction with and degradation of HIPK2, respectively. In support of the degradation of HIPK2 by WSB-1, HIPK2 was polyubiquitinated by WSB-1 in vitro and in vivo. The knockdown of endogenous WSB-1 with the expression of short hairpin RNA against WSB-1 increases the stability of endogenous HIPK2 and resulted in the accumulation of HIPK2. The ubiquitination and degradation of HIPK2 by WSB-1 was inhibited completely via the administration of DNA damage reagents, including Adriamycin and cisplatin. These findings effectively illustrate the regulatory mechanisms by which HIPK2 is maintained at a low level, by WSB-1 in cells under normal conditions, and stabilized by genotoxic stresses.  相似文献   

11.
12.
13.
14.
The serine/threonine kinase HIPK2 phosphorylates the p53 protein at Ser 46, thus promoting p53-dependent gene expression and subsequent apoptosis. Here, we show that DNA damaging chemotherapeutic drugs cause degradation of endogenous HIPK2 dependent on the presence of a functional p53 protein. Early induced p53 allows caspase-mediated cleavage of HIPK2 following aspartic acids 916 and 977. The resulting C-terminally truncated HIPK2 forms show an enhanced induction of the p53 response and cell death, thus allowing the rapid amplification of the p53-dependent apoptotic program during the initiation phase of apoptosis by a regulatory feed-forward loop. The active HIPK2 fragments are further degraded during the execution and termination phase of apoptosis, thus ensuring the occurrence of HIPK2 signaling only during the early phases of apoptosis induction.  相似文献   

15.
16.
17.
18.
19.
The tumor suppressor p53 guides the cellular response to DNA damage mainly by regulating expression of target genes. The cyclin-dependent kinase inhibitor p21, which is induced by p53, can both arrest the cell cycle and inhibit apoptosis. Interestingly, p53-inducible DDB2 (damaged-DNA binding protein 2) promotes apoptosis by mediating p21 degradation after ultraviolet (UV)-induced DNA damage. Here, we developed an integrated model of the p53 network to explore how the UV-irradiated cell makes a decision between survival and death and how the activities of p21 and DDB2 are modulated. By numerical simulations, we found that p53 is activated progressively and the promoter selectivity of p53 depends on its concentration. For minor DNA damage, p53 settles at an intermediate level. p21 is induced by p53 to arrest the cell cycle via inhibiting E2F1 activity, allowing for DNA repair. The proapoptotic genes are expressed at low levels. For severe DNA damage, p53 undergoes a two-phase behavior and accumulates to high levels in the second phase. Consequently, those proapoptotic proteins accumulate remarkably. Bax activates the release of cytochrome c, while DDB2 promotes the degradation of p21, which leads to activation of E2F1 and induction of Apaf-1. Finally, the caspase cascade is activated to trigger apoptosis. We revealed that the downregulation of p21 is necessary for apoptosis induction and PTEN promotes apoptosis by amplifying p53 activation. This work demonstrates that how the dynamics of the p53 network can be finely regulated through feed-forward and feedback loops within the network and emphasizes the importance of p21 regulation in the DNA damage response.  相似文献   

20.
Song MS  Song SJ  Kim SY  Oh HJ  Lim DS 《The EMBO journal》2008,27(13):1863-1874
The tumour suppressor p53, which accumulates in response to DNA damage and induces cell-cycle arrest and apoptosis, has a key function in the maintenance of genome integrity. Under normal conditions, the antiproliferative effects of p53 are inhibited by MDM2, a ubiquitin ligase that promotes p53 ubiquitination and degradation. MDM2 is also self-ubiquitinated and degraded. Here, we show that the tumour suppressor RASSF1A regulates G(1)-S cell-cycle progression in a p53-dependent manner by promoting MDM2 self-ubiquitination and preventing p53 degradation. Importantly, RASSF1A associates with MDM2 and death-domain-associated protein (DAXX) in the nucleus, thereby disrupting the interactions between MDM2, DAXX, and the deubiquitinase, HAUSP, and enhancing the self-ubiquitin ligase activity of MDM2. Moreover, RASSF1A partially contributes to p53-dependent checkpoint activation at early time points in response to DNA damage. These findings reveal a new and important function for RASSF1A in regulating the p53-MDM2 pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号