首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The introduction of the snail-eating flatworm Platydemus manokwari (Tricladida: Rhynchodemidae) has been considered a cause of the extinction of native land snails on several Pacific islands. Although P. manokwari is known to attack land snails on the ground, whether P. manokwari attacks snails on trees remains unclear. To clarify the effect of P. manokwari on arboreal snails, we examined survival rates of land snails experimentally placed on tree trunks (0.5–2.0 m above the ground) in a forest on Chichijima, Ogasawara (Bonin) Islands, in the northwestern Pacific Ocean. The survival of snails experimentally placed on tree trunks with artificially created snail scent trails rapidly decreased for 7 days, and the mortality was caused by P. manokwari predation. However, snails placed on tree trunks without snail scent trails were not attacked by P. manokwari. Therefore, P. manokwari climbed tree trunks, likely tracking the snail scent. We found that over 40% of the snails placed on tree trunks with snail scent trails were eaten by P. manokwari within 7 days. This experiment supports the hypothesis that P. manokwari predation is an important cause of the rapid decline or extinction of native arboreal snails on Pacific islands.  相似文献   

2.
The introduction of a predatory flatworm, Platydemus manokwari, has been considered a cause of the decline of endemic land snails on the tropical oceanic islands. To clarify the effect of P. manokwari on land snail survival in the field, we examined survival rates of snails experimentally placed in areas where snails are absent (i.e., P. manokwari is present) on Chichijima, Ogasawara (Bonin) Islands. We found that over 50 and 90 percent of the snails were dead after 3 and 11 d, respectively, and that the main cause of mortality was predation by P. manokwari.  相似文献   

3.
Robert E. Ogren 《Hydrobiologia》1995,305(1-3):105-111
Predatory behaviour of land planarians is seldom observed or reported. Aspects reported are (1) finding prey; (2) attack behaviour; (3) capture using adhesive mucus, pharyngeal action, poisonous secretions, physical embrace; (4) feeding by extension of pharynx, releasing copious digestive fluid. The species Bipalium kewense, B. adventitium and B. pennsylvanicum attack earthworms, immobilizing them by physical holding, digesting by pharyngeal secretions and then ingesting the treated tissue. Group attacks on giant African land snails involving chemotactic tracking, occur in Platydemus manokwari and Endeavouria septemlineata. Specialized capture methods are used by some species; Rhynchodemus sylvaticus uses an expanded cephalic hood to capture small insects and in Africa, termites are captured by the elongated anterior of Microplana termitophaga as planarians wait within the colony air shaft openings to ensnare the workers in sticky mucus. The result of extensive predation by land planarians may seriously reduce the prey, e.g., providing effective population control of giant land snails by introduced Platydemus manokwari, or causing serious depletion of desirable earthworm populations by the exotic Artioposthia triangulata in North Ireland.  相似文献   

4.
There are several records of the carnivorous behaviour of land flatworms, considered to be top‐predators in their micro‐habitats, by preying upon various species of invertebrates. However, there is little knowledge of predators on land‐flatworms. The possible impact of invasive land flatworms on prey populations has caused widespread concern, when considering their predatory behaviour, combined with recent human influence on the distribution of certain species. This work is the first record of predation on land flatworms by a carnivorous snail. Various‐sized land flatworms of 10 native species of the subfamily Geoplaninae, as well as the exotic species Bipalium kewense (subfamily Bipaliinae), were offered to Rectartemon depressus (Gastropoda, Streptaxidae), which accepted all. The predator also fed on the snail Bradybaena similaris. The snails were maintained in laboratory for an average period of 12 months based on a mixed diet of flatworms and B. similaris, suggesting that the snail is a polyphagous predator. Because certain land‐flatworm species have been described as invasive species which may have a potential impact on prey populations in native and man‐made ecosystems, it is proposed that carnivorous snails of other native species, as potential predators of flatworms, should be tested for possible use in biological control programmes of these invasive planarians.  相似文献   

5.
The cause of mollusk decline on the Ogasawara Islands   总被引:2,自引:1,他引:1  
Decline of land snails on the Ogasawara Islands was studied. In Hahajima, major alien predators such as Euglandina rosea and Platydemus manokwari are not present, but some small endemic snails, for example, Hirasea spp. and Ogasawarana spp., are already rare and more common endemic snails, for example, Mandarina spp., are also declining in the northern mountains. The decline cannot be directly explained by forest deforestation and by its subsequent regeneration. Three species of flatworms were found to eat small snails under captive conditions. The distribution of these flatworms is restricted to the northern mountains of Hahajima where Mandarina is declining and its survival is low. These predators are plausible candidates as a cause of the decline of the endemic snails.  相似文献   

6.
On 8 May 2018 at 23:15?h physical contact was observed between an adult carnivorous land snail (Powelliphanta hochstetteri obscura) and an adult Maud Island frog (Leiopelma pakeka) on Te Pākeka/Maud Island, Marlborough Sounds, New Zealand. The land snail (40–45?mm diameter) was on its back with its foot under the frog (38.5?mm snout-vent length), raising the possibility that this was a predation attempt by the snail. Carnivorous endemic land snails are only known to consume a range of invertebrate species, especially earthworms. Our observation suggests that these snails might also opportunistically attempt to consume small ground vertebrates, although definitive evidence is required.  相似文献   

7.
Identifying impacts of exotic species on native populations is central to ecology and conservation. Although the effects of exotic predators on native prey have received much attention, the role of exotic prey on native predators is poorly understood. Determining if native predators actively prefer invasive prey over native prey has implications for interpreting invasion impacts, identifying the presence of evolutionary traps, and predator persistence. One of the world’s most invasive species, Pomacea maculata, has recently established in portions of the endangered Everglade snail kite’s (Rostrhamus sociabilis plumbeus) geographic range. Although these exotic snails could provide additional prey resources, they are typically much larger than the native snail, which can lead to lower foraging success and the potential for diminished energetic benefits in comparison to native snails. Nonetheless, snail kites frequently forage on exotic snails. We used choice experiments to evaluate snail kite foraging preference in relation to exotic species and snail size. We found that snail kites do not show a preference for native or exotic snails. Rather, snail kites generally showed a preference for medium-sized snails, the sizes reflective of large native snails. These results suggest that while snail kites frequently forage on exotic snails in the wild, this behavior is likely driven simply by the abundance of exotic snails rather than snail kites preferring exotics. This lack of preference offers insights to hypotheses regarding effects of exotic species, guidance regarding habitat and invasive species management, and illustrates how native-exotic relationships can be misleading in the absence of experimental tests of such interactions.  相似文献   

8.
The introduction of non-indigenous plants, animals and pathogens is one of today’s most pressing environmental challenges. Freshwater ecologists are challenged to predict the potential consequences of species invasions because many ecosystems increasingly support novel assemblages of native and non-native species that are likely to interact in complex ways. In this study we evaluated how native signal crayfish (Pacifastacus leniusculus) and non-native red swamp crayfish (Procambarus clarkii) and northern crayfish (Orconectes virilis) utilize a novel prey resource: the non-native Chinese mystery snail (Bellamya chinensis). All species are widespread in the United States, as well as globally, and recent surveys have discovered them co-occurring in lakes of Washington State. A series of mesocosm experiments revealed that crayfish are able to consume B. chinensis, despite the snail’s large size, thick outer shell and trapdoor defense behaviour. Crayfish exhibited size-selective predation whereby consumption levels decreased with increasing snail size; a common pattern among decapod predators. Comparison of prey profitability curves—defined as the yield of food (weight of snail tissue) per second of feeding time (the time taken to crack the shell and consume the contents)—suggests that small and very large snails may represent the most profitable prey choice. By contrast, previous studies have reported the opposite pattern for crayfish consumption on thin-shelled snails. For all snail size classes, we found that native P. leniusculus and invasive O. virilis consumed greater numbers of snails than invasive P. clarkii. Moreover, P. leniusculus consistently handled and consumed snails at a faster pace compared to both invasive crayfishes across the range of snail sizes examined in our study. These results suggest not only that B. chinensis is a suitable food source for crayfish, but also that native P. leniusculus may ultimately out-consume invasive crayfishes for this new prey resource.  相似文献   

9.
The native land snails of the Hawaiian Islands have suffered numerous extinctions and continue to decline rapidly. A leading cause of these extinctions has been the impact of non-native predators. Oxychilus alliarius is a European predatory snail that has been in Hawaii since at least 1937 and has become one of the most abundant invasive snails in the islands. It is a facultative carnivore and will also consume non-animal food. However, this species has been mostly ignored as a threat and the majority of conservation attention has been focused on Euglandina rosea, the Rosy Wolf Snail. Here we report predation by O. alliarius on two rare and endemic Hawaiian snail species: Kaala subrutila (Helicarionidae) and Pleuropoma cf. sandwichiensis (Helicinidae). The wide distribution of O. alliarius in Hawaii, its high abundance, and now compelling evidence that it preys on native (and probably endangered) snails, indicate that it could be a much greater threat than previously thought.  相似文献   

10.
Brenneis VE  Sih A  de Rivera CE 《Oecologia》2011,167(1):169-179
Introduced species interact both directly and indirectly with native species. We examine interactions between the introduced New Zealand mud snail (Potamopyrgus antipodarum) and native estuarine invertebrates and predators through experiments and field studies. A widely held management concern is that when P. antipodarum, which has low nutritional value, becomes abundant, it replaces nutritious prey in fish diets. We tested two key components of this view: (1) that fish consume, but get little direct nutritional value from P. antipodarum; and (2) that P. antipodarum has an indirect negative effect on fish by reducing the energy derived from native prey. We also examined predation by the native signal crayfish, Pacifastacus leniusculus. Laboratory feeding trials showed that both crayfish and fish consume P. antipodarum, a direct effect. Crayfish consumed and successfully digested higher numbers of snails than did fish [Pacific staghorn sculpin (Leptocottus armatus), three spine stickleback (Gasterosteus aculeatus), and juvenile starry flounder (Platicthys stellatus)]. P. antipodarum occurred at low frequencies in the stomachs of wild-caught fish. More interesting were the indirect effects of this invader, which ran counter to predictions. P. antipodarum presence was associated with no change or an increase in the amount of energy derived from native prey by predators. The presence of P. antipodarum also led to increased consumption of and preference for the native amphipod Americorophium salmonis over the native isopod Gnorimosphaeroma insulare. This is an example of short-term, asymmetric, apparent competition, in which the presence of one prey species (snails) increases predation on another prey species (the amphipod).  相似文献   

11.
Nyström  Per  Pérez  Jose R. 《Hydrobiologia》1998,368(1-3):201-208
Optimal foraging theory was used to explain selective foraging by the introduced signal crayfish (Pacifastacus leniusculus) on the thin-shelled common pond snail (Lymnaea stagnalis). Crayfish predation efficiency was studied in relation to habitat complexity and snail size. In a pool experiment (area 1.3 m2) single adult crayfish were allowed to feed on four size classes of snails for one week. A pair-wise preference trial (aquarium experiment) tested if adult crayfish selectively predated on particular size classes of snail and if prey value (expressed as snail dry mass per handling time) could explain the size range of snails chosen. Crayfish preferred the smallest size classes of snails in both pool and aquaria experiments. In the pool experiment crayfish had a strong effect on snail survival. Habitat complexity did not affect overall snail survival, but resulted in reduced predation pressure on the smallest size classes of snails. Handling time and shell-thickness increased exponentially with increasing snail size, and the two smallest size classes had the highest prey values. The results suggest that crayfish can structure the abundance and size distribution of thin-shelled snails, through size-selective predation and reduction of macrophytes. The mechanisms behind the choice of snails may be based on prey value and reduced exposure time to predators and conspecifics. Crayfish effects on snail size distribution may be less pronounced in complex habitats such as macrophyte beds. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Aim Predation is generally viewed as a factor that limits the distribution of animal prey species. However, in certain instances, such as seed dispersal, predation may enhance the dispersal capability of prey species. In a prior study, we found that land snails are preyed upon by the Japanese white‐eye (Zosterops japonicus) and the brown‐eared bulbul (Hypsipetes amaurotis) in the Ogasawara Islands. In this paper we provide experimental and field evidence indicating that land snails could potentially be dispersed through bird predation. Location Hahajima Island of the Ogasawara Islands in the western Pacific. Methods Experimentation was first performed to test whether the land snail Tornatellides boeningi could remain alive after being swallowed and passed through the bird digestive system. Next, in order to investigate the potential role of internal bird transport and dispersal of this snail, we investigated the relationship between the distribution of population genetic diversity in the snail and the regional geographical abundance of predatory birds. The population genetic structure of T. boeningi and isolation by distance were inferred with Arlequin . The association between nucleotide diversity in T. boeningi populations and population density of predators was examined using a generalized linear mixed model. We conducted a likelihood ratio test for the full model and for another model that removed the fixed effect. Results Of the 119 snails fed to Japanese white‐eyes and 55 snails fed to brown‐eared bulbuls, 14.3% and 16.4% of the snails, respectively, passed through the gut alive. Additionally, one snail gave birth to juveniles after emerging from a bird’s gut. Significant heterogeneity among the populations of T. boeningi on Hahajima was indicated using AMOVA; however, there was no evidence of isolation by distance. A positive correlation was found between levels of mitochondrial DNA variation among and within T. boeningi populations and the density of Japanese white‐eyes in the wild. Main conclusions Bird predation appears to be a method of dispersal for T. boeningi, and our results suggest that bird‐mediated dispersal plays a role in land snail population structure.  相似文献   

13.
Generalist predators have to deal with prey with sometimes very different morphologies and defensive behaviors. Therefore, such predators are expected to express plasticity in their predation strategy. Here we investigated the predatory behavior of the recluse spider Loxosceles rufipes (Araneae, Sicariidae) when attacking prey with different morphologies and defensive mechanisms. We expected L. rufipes to show different prey capture strategies and variable acceptance towards each prey type. Potential prey species were collected directly from the web or in the surroundings of the web-building site of L. rufipes. We collected and used the following in our experiments: termite workers (Nasutitermes sp.), lepidopteran larvae (Eurema salome), ants (Camponotus sp.) and isopods (Tylidae). We paired these prey with L. rufipes and recorded their behavior in captivity, quantifying acceptance rate, immobilization time and the sequence of behaviors by the predator. The acceptance rate was lower for isopods but not different among other prey. The immobilization time was higher for isopods than for termites and similar for the other pairwise comparisons. The behavioral sequence was similar for all prey except for isopods, which were also bit more often. Our combined results show plasticity in the behavior of L. rufipes and also show it subdues a potentially dangerous prey (ant) and an armored prey (isopod).  相似文献   

14.
All-male populations of the freshwater prawn Macrobrachium rosenbergii were recently produced by a novel temporal RNA interference (RNAi)-based biotechnology for aquaculture purposes. This biotechnology opens the way to the wide use of all-male prawn populations as sustainable biocontrol agents against invading populations of freshwater snails, for which there is currently no environmentally friendly solution. Among the most damaging of the invasive freshwater snail species are the apple snails (Pomacea spp.), which inflict major damage on natural ecosystems and rice fields. The proposed use of all-male prawn populations as environmentally friendly biocontrol agents against invasive freshwater snails has several advantages: efficient predation by the prawns over a wide range of freshwater snails, the ready availability of the prawns, and the monosex non-reproductive nature of the biocontrol agents. Since the aquatic predators are strongly size selective, we quantified the predation rate as a function of body size of both predator and prey (M. rosenbergii and P. caniculata). Medium-sized and large prawns (~10–30 g) efficiently preyed small and medium-sized snails (up to 15 mm), while small prawns (up to 4 g) immediately and completely eradicated snail hatchlings. Medium-sized prawns (~22 g) exterminated a significant fraction of snail biomass within 24 h (up to 58% of their body mass) after being introduced into a tank of snails. A typical ‘climbing-to-the surface’ anti-predator behavior of the snails was recorded. The potential of all-male prawns as efficient biocontrol agents over hatchling and adult apple snails as part of an integrated pest management program is discussed. Our experiments set the stage for evaluating the ecological and economic implications of this generic solution for a wide variety of habitats.  相似文献   

15.
The predation potential of the indigenous leech Glossiphonia weberi on the snail Pomacea bridgesii, introduced in India, was evaluated in the laboratory. Snails used belonged to the size-classes ≤‰3.0, 3.1–5.0, 5.1–7.0 and 7.1–9.0 mm in shell height, using them both separately and together (mixed) in combinations. In each experiment lasting 24 h a single leech belonging to the size-classes 2.0–3.9, 4.0–5.9, 6.0–7.9, 8.0–9.9 and 10.0–11.9 mm in length was used. Except the 4.0–5.9 mm size-class, leeches were able to capture and kill P. bridgesii irrespective of latter’s size; the predation, however, was confined to snails ≤3.0 mm. The rate of predation varied with the size of the predator and the prey, and a leech was able to kill a maximum of three snails per day. In India, in nature G. weberi feeds mostly on the pulmonate snail, Lymnaea (Radix) luteola. Experimental studies, however, revealed that G. weberi prefers the snails P. bridgesii and L. (R) luteola at the same rate from amongst the many other either less or not-preferred native operculate and non-operculate snails.  相似文献   

16.
Johan Ahlgren  Christer Brönmark 《Oikos》2012,121(9):1501-1506
Prey species are often exposed to multiple predators, which presents several difficulties to prey species. This is especially true when the response to one predator influences the prey’s susceptibility to other predators. Predator‐induced defences have evolved in a wide range of prey species, and experiments involving predators with different hunting strategies allow researchers to evaluate how prey respond to multiple threats. Freshwater snails are known to respond to a variety of predators with both morphological and behavioural defences. Here we studied how freshwater snails Radix balthica responded behaviourally to fish and leech predators, both separately and together. Our aim was to explore whether conflicting predator‐induced responses existed and, if so, what effect they had on snail survival when both predatory fish and leeches were present. We found that although R. balthica increased refuge use when exposed to predatory fish, they decreased refuge use when exposed to predatory leeches. When both predators were present, snails showed a stronger response towards leech than fish and responded by leaving the refuge. This response made the snails more susceptible to fish predation, which increased snail mortality when exposed to both fish and leech compared to fish only. We show that predators that have a relatively low predation rate can substantially increase mortality rates by indirect effects. By forcing snails out of refuges such as rock and macrophyte habitats, leeches can indirectly increase predation from molluscivorous fish and may thus affect snail densities.  相似文献   

17.
Studies of plant invasions rarely address impacts on molluscs. By comparing pairs of invaded and corresponding uninvaded plots in 96 sites in floodplain forests, we examined effects of four invasive alien plants (Impatiens glandulifera, Fallopia japonica, F. sachalinensis, and F.×bohemica) in the Czech Republic on communities of land snails. The richness and abundance of living land snail species were recorded separately for all species, rare species listed on the national Red List, and small species with shell size below 5 mm. The significant impacts ranged from 16–48% reduction in snail species numbers, and 29–90% reduction in abundance. Small species were especially prone to reduction in species richness by all four invasive plant taxa. Rare snails were also negatively impacted by all plant invaders, both in terms of species richness or abundance. Overall, the impacts on snails were invader-specific, differing among plant taxa. The strong effect of I. glandulifera could be related to the post-invasion decrease in abundance of tall nitrophilous native plant species that are a nutrient-rich food source for snails in riparian habitats. Fallopia sachalinensis had the strongest negative impact of the three knotweeds, which reflects differences in their canopy structure, microhabitat humidity and litter decomposition. The ranking of Fallopia taxa according to the strength of impacts on snail communities differs from ranking by their invasiveness, known from previous studies. This indicates that invasiveness does not simply translate to impacts of invasion and needs to be borne in mind by conservation and management authorities.  相似文献   

18.
The costs and benefits of anti-predator behavioral responses should be functions of the actual risk of predation, the availability of the prey's resources, and the physiological state of the prey. For example, a food-stressed individual risks starvation when hiding from predators, while a well-fed organism can better afford to hide (and pay the cost of not foraging). Similarly, the benefits of resource acquisition are probably highest for the prey in the poorest state, while there may be diminishing returns for prey nearing satiation. Empirical studies of state-dependent behavior are only beginning, however, and few studies have investigated interactions between all three potentially important factors. Here I present the results of a laboratory experiment where I manipulated the physiological state of pond snails (Physa gyrina), the abundance of algal resources, and predation cues (Belostoma flumineum waterbugs consuming snails) in a full factorial design to assess their direct effects on snail behavior and indirect effects on algal biomass. On average, snails foraged more when resources were abundant, and when predators were absent. Snails also foraged more when previously exposed to physiological stress. Snails spent more time at the water's surface (a refuging behavior) in the presence of predation cues on average, but predation, resource levels, and prey state had interactive effects on refuge use. There was a consistent positive trait-mediated indirect effect of predators on algal biomass, across all resource levels and prey states.  相似文献   

19.
The stylochid flatworm, Imogine mcgrathi was confirmed as a predator of the pteriid oyster Pinctada imbricata. Occurring at an average of 3.2 per oyster spat collector bag, the flatworms were found to consume oysters at a rate of 0.035–0.057 d–1 in laboratory trials. Predation was affected by flatworm size with larger worms capable of consuming larger oysters and of consuming greater dry weights of oyster flesh. Irrespective of flatworm size, predation was generally confined to oysters less than 40 mm in shell height. Although all predation occurred at night, shading flatworms during the day did not significantly increase the rate of predation, but there were significant increases in the dry weight of oyster meat consumed. As a means of controlling flatworm infestations, salt, brine baths (250 g kg–1) and freshwater baths were effective in killing I. mcgrathi. The ease of use of hyper- or hyposaline baths then encouraged assessments of I. mcgrathi halotolerance. The flatworms were exposed to solutions ranging in salinity from 0 to 250 g kg–1for periods of from 5 min to 3 h. Despite showing both behavioural and physiological signs of stress, I. mcgrathi survived the maximum exposure time of 3 h at salinities in the range 7.5–60 g kg–1, inclusive. Beyond this range, the duration of exposure tolerated by flatworms decreased until 0 and 250 g kg–1, at which the flatworms no longer survived the minimum tested exposure of 5 min. Thus, despite the significant impact of other stylochids on commercial bivalves, at their current prevalence, I. mcgrathi can be controlled by exposing them to hyper- and hyposaline baths for the culture of P. imbricata in Port Stephens, NSW, Australia.  相似文献   

20.
Autotomy of body parts offers various prey animals immediate benefits of survival in compensation for considerable costs. I found that a land snail Satsuma caliginosa of populations coexisting with a snail-eating snake Pareas iwasakii survived the snake predation by autotomizing its foot, whereas those out of the snake range rarely survived. Regeneration of a lost foot completed in a few weeks but imposed a delay of shell growth. Imprints of autotomy were found in greater than 10 per cent of S. caliginosa in the snake range but in only less than 1 per cent out of it, simultaneously demonstrating intense predation by the snakes and high efficiency of autotomy for surviving snake predation in the wild. However, in experiments, mature S. caliginosa performed autotomy less frequently. Instead of the costly autotomy, they can use defensive denticles on the inside of their shell apertures. Owing to the constraints from the additive growth of shells, most pulmonate snails can produce these denticles only when they have fully grown up. Thus, this developmental constraint limits the availability of the modified aperture, resulting in ontogenetic switching of the alternative defences. This study illustrates how costs of adaptation operate in the evolution of life-history strategies under developmental constraints  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号