首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have reported that p22, an N-myristoylated EF-hand Ca(2+)-binding protein, associates with microtubules and plays a role in membrane trafficking. Here, we show that p22 also associates with membranes of the early secretory pathway membranes, in particular endoplasmic reticulum (ER). On binding of Ca(2+), p22's ability to associate with membranes increases in an N-myristoylation-dependent manner, which is suggestive of a nonclassical Ca(2+)-myristoyl switch mechanism. To address the intracellular functions of p22, a digitonin-based "bulk microinjection" assay was developed to load cells with anti-p22, wild-type, or mutant p22 proteins. Antibodies against a p22 peptide induce microtubule depolymerization and ER fragmentation; this antibody-mediated effect is overcome by preincubation with the respective p22 peptide. In contrast, N-myristoylated p22 induces the formation of microtubule bundles, the accumulation of ER structures along the bundles as well as an increase in ER network formation. An N-myristoylated Ca(2+)-binding p22 mutant, which is unable to undergo Ca(2+)-mediated conformational changes, induces microtubule bundling and accumulation of ER structures along the bundles but does not increase ER network formation. Together, these data strongly suggest that p22 modulates the organization and dynamics of microtubule cytoskeleton in a Ca(2+)-independent manner and affects ER network assembly in a Ca(2+)-dependent manner.  相似文献   

2.
Calcium sensors in regulated exocytosis   总被引:8,自引:0,他引:8  
Burgoyne RD  Morgan A 《Cell calcium》1998,24(5-6):367-376
Neurotransmitter release, hormone secretion and a variety of other secretory process are tightly regulated with exocytotic fusion of secretory vesicles being triggered by a rise in cytosolic Ca2+ concentration. A series of proteins that act as part of a conserved core machinery for vesicle docking and fusion throughout the cell have been identified. In regulated exocytosis this core machinery must be controlled by Ca(2+)-sensor proteins that allow rapid activation of the fusion process following elevation of cytosolic Ca2+ concentration. The properties of such Ca2+ sensors are known from physiological studies but their molecular identity remains to be unequivocally established. The multiple Ca(2+)-dependent steps in the exocytotic pathway suggest the likely involvement of several Ca(2+)-binding proteins with distinct properties. Functional evidence for the role of various Ca(2+)-binding proteins and their possible sites of action is accumulating but a definitive identification of the major Ca(2+)-sensor in the final step of Ca(2+)-triggered membrane fusion in different cell types awaits further analysis.  相似文献   

3.
Annexin II, a major cytoplasmic substrate of the src tyrosine kinase, is a member of the annexin family of Ca2+/phospholipid-binding proteins. It is composed of a short N-terminal tail (30 residues) followed by four so-called annexin repeats (each 70-80 residues in length) which share sequence homologies and are thought to form (a) new type(s) of Ca(2+)-binding site(s). We have produced wild-type and site specifically mutated annexin II molecules to compare their structure and biochemistry. The recombinant wild-type annexin II displays biochemical and spectroscopical properties resembling those of the authentic protein purified from mammalian cells. In particular, it shows the Ca(2+)-induced blue shift in fluorescence emission which is typical for this annexin. Replacement of the single tryptophan in annexin II (Trp-212) by a phenylalanine abolishes the fluorescence signal and allows the unambiguous assignment of the Ca(2+)-sensitive spectroscopic properties to Trp-212. This residue is located in the third annexin repeat in a highly conserved stretch of 17 amino acids which are also found in the other repeats and known as the endonexin fold. To study the precise architecture of the Ca2+ site which must reside in close proximity to Trp-212, we changed several residues of the endonexin fold in repeat 3 by site-directed mutagenesis. An analysis of these mutants by fluorescence spectroscopy and Ca(2+)-dependent phospholipid binding reveals that Gly-206 and Thr-207 seem indispensible for a correct folding of this Ca(2+)-binding site.  相似文献   

4.
Calreticulin (CRT) is a highly conserved Ca(2+)-binding protein that resides in the lumen of the endoplasmic reticulum (ER). We overexpressed CRT in Xenopus oocytes to determine how it could modulate inositol 1,4,5-trisphosphate (InsP(3))-induced Ca(2+) influx. Under conditions where it did not affect the spatially complex elevations in free cytosolic Ca(2+) concentration ([Ca(2+)](i)) due to InsP(3)-induced Ca(2+) release, overexpressed CRT decreased by 46% the Ca(2+)-gated Cl(-) current due to Ca(2+) influx. Deletion mutants revealed that CRT requires its high capacity Ca(2+)-binding domain to reduce the elevations of [Ca(2+)](i) due to Ca(2+) influx. This functional domain was also required for CRT to attenuate the InsP(3)-induced decline in the free Ca(2+) concentration within the ER lumen ([Ca(2+)](ER)), as monitored with a "chameleon" indicator. Our data suggest that by buffering [Ca(2+)](ER) near resting levels, CRT may prevent InsP(3) from depleting the intracellular stores sufficiently to activate Ca(2+) influx.  相似文献   

5.
The Doc2 family comprises the brain-specific Doc2alpha and the ubiquitous Doc2beta and Doc2gamma. With the exception of Doc2gamma, these proteins exhibit Ca(2+)-dependent phospholipid-binding activity in their Ca(2+)-binding C2A domain and are thought to be important for Ca(2+)-dependent regulated exocytosis. In excitatory neurons, Doc2alpha interacts with Munc13-1, a member of the Munc13 family, through its N-terminal Munc13-1-interacting domain and the Doc2alpha-Munc13-1 system is implicated in Ca(2+)-dependent synaptic vesicle exocytosis. The Munc13 family comprises the brain-specific Munc13-1, Munc13-2, and Munc13-3, and the non-neuronal Munc13-4. We previously showed that Munc13-4 is involved in Ca(2+)-dependent secretory lysosome exocytosis in mast cells, but the involvement of Doc2 in this process is not determined. In the present study, we found that Doc2alpha but not Doc2beta was endogenously expressed in the RBL-2H3 mast cell line. Doc2alpha colocalized with Munc13-4 on secretory lysosomes, and interacted with Munc13-4 through its two regions, the N terminus containing the Munc13-1-interacting domain and the C terminus containing the Ca(2+)-binding C2B domain. In RBL-2H3 cells, Ca(2+)-dependent secretory lysosome exocytosis was inhibited by expression of the Doc2alpha mutant lacking either of the Munc13-4-binding regions and the inhibition was suppressed by coexpression of Munc13-4. Knockdown of endogenous Doc2alpha also reduced Ca(2+)-dependent secretory lysosome exocytosis, which was rescued by re-expression of human Doc2alpha but not by its mutant that could not bind to Munc13-4. Moreover, Ca(2+)-dependent secretory lysosome exocytosis was severely reduced in bone marrow-derived mast cells from Doc2alpha knockout mice. These results suggest that the Doc2alpha-Muunc13-4 system regulates Ca(2+)-dependent secretory lysosome exocytosis in mast cells.  相似文献   

6.
Calcium binding protein 40 (CBP40) is a Ca(2+)-binding protein abundant in the plasmodia of Physarum polycephalum. CBP40 consists four EF-hand domains in the COOH-terminal half and a putative alpha-helix domain in the NH(2)-terminal half. We expressed recombinant proteins of CBP40 in Escherichia coli to investigate its Ca(2+)-binding properties. Recombinant proteins of CBP40 bound 4 mol of Ca(2+) with much higher affinity (pCa(1/2) = 6.5) than that of calmodulin. When residues 1-196 of the alpha-helix domain were deleted, the affinity for Ca(2+) decreased to pCa(1/2) = 4.6. A chimeric calmodulin was generated by conjugating the alpha-helix domain of CBP40 with calmodulin. The affinity of Ca(2+) for the chimeric calmodulin was higher than that for calmodulin, suggesting that the alpha-helix domain is responsible for the high affinity of CBP40 for Ca(2+). CBP40 forms large aggregates reversibly in a Ca(2+)-dependent manner. A mutant protein with a deletion of NH(2)-terminal 32 residues, however, could not aggregate, indicating the importance of these residues for the aggregation. The aggregation occurs above micromolar levels of Ca(2+) concentration, so it may only occur when CBP40 is secreted out of the plasmodial cells.  相似文献   

7.
Two distinct alpha-actinin-like proteins were detected in chicken lung extract by immunoblot analysis with monoclonal antibodies against alpha-actinin. The mobilities of these proteins on SDS-polyacrylamide gel electrophoresis are very close (approximately 100 kDa). On SDS-polyacrylamide gel electrophoresis in the presence of 6 M urea, however, one of the proteins migrates at 115 kDa and is clearly separated from the other protein (105 kDa). The 115-kDa protein was purified and shown to have at least three unique amino acid sequences which were not detected in other kinds of alpha-actinins: one locates at the extreme NH2-terminal region, and the others locate at the COOH-terminal half region. Immunoblot and proteolytic cleavage analyses revealed that the 115-kDa protein has structural divergence at the COOH-terminal region that includes Ca(2+)-binding EF-hand motifs. Falling-ball viscometric studies showed that although the 115-kDa protein-induced gelation of F-actin is sensitive to Ca2+, the gelation activity of the 115-kDa protein is much higher than that of Ca(2+)-insensitive gizzard alpha-actinin regardless of Ca2+. This indicates that the 115-kDa protein is distinct from other nonmuscle alpha-actinins by its Ca2+ sensitivity.  相似文献   

8.
The EF-hand protein with a helix-loop-helix Ca(2+) binding motif constitutes one of the largest protein families and is involved in numerous biological processes. To facilitate the understanding of the role of Ca(2+) in biological systems using genomic information, we report, herein, our improvement on the pattern search method for the identification of EF-hand and EF-like Ca(2+)-binding proteins. The canonical EF-hand patterns are modified to cater to different flanking structural elements. In addition, on the basis of the conserved sequence of both the N- and C-terminal EF-hands within S100 and S100-like proteins, a new signature profile has been established to allow for the identification of pseudo EF-hand and S100 proteins from genomic information. The new patterns have a positive predictive value of 99% and a sensitivity of 96% for pseudo EF-hands. Furthermore, using the developed patterns, we have identified zero pseudo EF-hand motif and 467 canonical EF-hand Ca(2+) binding motifs with diverse cellular functions in the bacteria genome. The prediction results imply that pseudo EF-hand motifs are phylogenetically younger than canonical EF-hand motifs. Our prediction of Ca(2+) binding motifs provides not only an insight into the role of Ca(2+) and Ca(2+)-binding proteins in bacterial systems, but also a way to explore and define the role of Ca(2+) in other biological systems (calciomics).  相似文献   

9.
The formation of transport vesicles that bud from endoplasmic reticulum (ER) exit sites is dependent on the COPII coat made up of three components: the small GTPase Sar1, the Sec23/24 complex, and the Sec13/31 complex. Here, we provide evidence that apoptosis-linked gene 2 (ALG-2), a Ca(2+)-binding protein of unknown function, regulates the COPII function at ER exit sites in mammalian cells. ALG-2 bound to the Pro-rich region of Sec31A, a ubiquitously expressed mammalian orthologue of yeast Sec31, in a Ca(2+)-dependent manner and colocalized with Sec31A at ER exit sites. A Ca(2+) binding-deficient ALG-2 mutant, which did not bind Sec31A, lost the ability to localize to ER exit sites. Overexpression of the Pro-rich region of Sec31A or RNA interference-mediated Sec31A depletion also abolished the ALG-2 localization at these sites. In contrast, depletion of ALG-2 substantially reduced the level of Sec31A associated with the membrane at ER exit sites. Finally, treatment with a cell-permeable Ca(2+) chelator caused the mislocalization of ALG-2, which was accompanied by a reduced level of Sec31A at ER exit sites. We conclude that ALG-2 is recruited to ER exit sites via Ca(2+)-dependent interaction with Sec31A and in turn stabilizes the localization of Sec31A at these sites.  相似文献   

10.
A Ca2+-dependent regulator protein of cyclic 3':5'-nucleotide phosphodiesterase (EC 3.1.4.17) has previously been isolated from rat testis and shown to be a heat-stable, Ca2+-binding protein with a molecular weight of approximately 17,000. The Ca2+-dependent regulator protein is also structurally similar to troponin-C, the Ca2+-binding component of muscle troponin and Ca2+ mediator of muscle contraction. The present report describes a partial amino acid sequence of the Ca2+-dependent regulator. The protein (148 amino acids) is 50% homologous with skeletal muscle troponin-C, but is 11 residues shorter than the muscle protein. The Ca2+-dependent regulator protein has an NH2-terminal sequence of acetyl-Ala-Asp-Glu, a COOH-terminal sequence of Thr-Ala-Lys and 1 residue of epsilon-trimethyllysine located at position 115. All of these properties are distinct from those of other homologous Ca2+-binding proteins. These properties may account for the biological specificities demonstrated by these proteins as compared to the Ca2+-dependent regulator protein. Based on the sequence and a comparison of the Ca2+-dependent regulator protein to other calcium-binding proteins, our data support the view that all of these moecules contain common sequences, especially at their proposed metal-binding sites.  相似文献   

11.
Calcium (Ca2+) signaling-dependent systems, such as the epidermal differentiation process, must effectively respond to variations in Ca2+ concentration. Members of the Ca2+-binding proteins play a central function in the transduction of Ca2+ signals, exerting their roles through a Ca2+-dependent interaction with their target proteins, spatially and temporally. By performing a suppression subtractive hybridization screen we identified a novel mouse gene, Scarf (skin calmodulin-related factor), which has homology to calmodulin (CaM)-like Ca2+-binding protein genes and is exclusively expressed in differentiating keratinocytes in the epidermis. The Scarf open reading frame encodes a 148-amino acid protein that contains four conserved EF-hand motifs (predicted to be Ca2+-binding domains) and has homology to mouse CaM, human CaM-like protein, hClp, and human CaM-like skin protein, hClsp. The functionality of Scarf EF-hand domains was assayed with a radioactive Ca2+-binding method. By Southern blot and computational genome sequence analysis, a highly related gene, Scarf2, was found 15 kb downstream of Scarf on mouse chromosome 13. The functional Scarf Ca2+-binding domains suggest a role in the regulation of epidermal differentiation through the control of Ca2+-mediated signaling.  相似文献   

12.
A novel allergenic member of the family of Ca(2+)-binding proteins has been cloned from olive tree pollen. The isolated DNA codes for a protein of 171 amino acid residues, which displays four EF-hand sequence motifs. The encoded protein was overproduced in Escherichia coli and purified. The protein (18? omitted?795 Da), which binds Ca(2+) and IgE antibodies from patients allergic to olive pollen, undergoes Ca(2+)-dependent conformational changes. It is retained on a phenyl-Sepharose column, which indicates the existence of regulatory EF-hand domains. This fact suggests its involvement in Ca(2+)-dependent signal transduction events of the pollen grain. This allergen could be considered as a member of a new subfamily of EF-hand Ca(2+)-binding proteins since it displays a low amino acid sequence similarity with the so far known proteins.  相似文献   

13.
Lee SY  Klevit RE 《Biochemistry》2000,39(15):4225-4230
Calmodulin is an essential Ca(2+)-binding protein involved in a multitude of cellular processes. The calmodulin sequence is highly conserved among all eukaryotic species; calmodulin from the yeast S. cerevisiae (yCaM) is the most divergent form, while still sharing 60% sequence identity with vertebrate calmodulin (vCaM). Although yCaM can be functionally substituted by vCaM in vivo, the two calmodulin proteins possess significantly different Ca(2+)-binding properties as well as abilities to activate vertebrate target enzymes in vitro. In addition, it has been observed that certain properties of the N-terminal and C-terminal domains of Ca(2+)-yCaM differ depending on whether they are in the context of the whole protein or isolated as half-molecule fragments. To investigate the structural basis for these differing properties, we have undertaken nuclear magnetic resonance (NMR) studies on yCaM and the two half-molecule fragments representing its two individual domains, yTr1(residues 1-76) and yTr2 (residues 75-146). We present direct evidence that the two domains of Ca(2+)-yCaM interact via their exposed hydrophobic surfaces. Thus, the Ca(2+)-bound form of yCaM exists in a novel compact structure in direct contrast to the well-established structure of Ca(2+)-vCaM comprised of two independent globular domains.  相似文献   

14.
Presynaptic group III metabotropic glutamate receptors (mGluRs) and Ca(2+) channels are the main neuronal activity-dependent regulators of synaptic vesicle release, and they use common molecules in their signaling cascades. Among these, calmodulin (CaM) and the related EF-hand Ca(2+)-binding proteins are of particular importance as sensors of presynaptic Ca(2+), and a multiple of them are indeed utilized in the signaling of Ca(2+) channels. However, despite its conserved structure, CaM is the only known EF-hand Ca(2+)-binding protein for signaling by presynaptic group III mGluRs. Because the mGluRs and Ca(2+) channels reciprocally regulate each other and functionally converge on the regulation of synaptic vesicle release, the mGluRs would be expected to utilize more EF-hand Ca(2+)-binding proteins in their signaling. Here I show that calcium-binding protein 1 (CaBP1) bound to presynaptic group III mGluRs competitively with CaM in a Ca(2+)-dependent manner and that this binding was blocked by protein kinase C (PKC)-mediated phosphorylation of these receptors. As previously shown for CaM, these results indicate the importance of CaBP1 in signal cross talk at presynaptic group III mGluRs, which includes many molecules such as cAMP, Ca(2+), PKC, G protein, and Munc18-1. However, because the functional diversity of EF-hand calcium-binding proteins is extraordinary, as exemplified by the regulation of Ca(2+) channels, CaBP1 would provide a distinct way by which presynaptic group III mGluRs fine-tune synaptic transmission.  相似文献   

15.
Yuasa K  Maeshima M 《Plant physiology》2000,124(3):1069-1078
To understand the roles of plant vacuoles, we have purified and characterized a major soluble protein from vacuoles of radish (Raphanus sativus cv Tokinashi-daikon) taproots. The results showed that it is a novel radish vacuole Ca(2+)-binding protein (RVCaB). RVCaB was released from the vacuolar membrane fraction by sonication, and purified by ion exchange and gel filtration column chromatography. RVCaB is an acidic protein and migrated on sodium dodecyl sulfate-polyacrylamide gel with an apparent molecular mass of 43 kD. The Ca(2+)-binding activity was confirmed by the (45)Ca(2+)-overlay assay. RVCaB was localized in the lumen, as the protein was recovered in intact vacuoles prepared from protoplasts and was resistant to trypsin digestion. Plant vacuoles store Ca(2+) using two active Ca(2+) uptake systems, namely Ca(2+)-ATPase and Ca(2+)/H(+) antiporter. Vacuolar membrane vesicles containing RVCaB accumulated more Ca(2+) than sonicated vesicles depleted of the protein at a wide range of Ca(2+) concentrations. A cDNA (RVCaB) encoding a 248-amino acid polypeptide was cloned. Its deduced sequence was identical to amino acid sequences obtained from several peptide fragments of the purified RVCaB. The deduced sequence is not homologous to that of other Ca(2+)-binding proteins such as calreticulin. RVCaB has a repetitive unique acidic motif, but not the EF-hand motif. The recombinant RVCaB expressed in Escherichia coli-bound Ca(2+) as evidenced by staining with Stains-all and migrated with an apparent molecular mass of 44 kD. These results suggest that RVCaB is a new type Ca(2+)-binding protein with high capacity and low affinity for Ca(2+) and that the protein could function as a Ca(2+)-buffer and/or Ca(2+)-sequestering protein in the vacuole.  相似文献   

16.
Calreticulin is a highly conserved Ca(2+)-binding/storage protein of the endoplasmic reticulum (ER). Recently, it has been shown to play a role in the control of gene expression by interacting with the DNA-binding domain of various steroid receptors. How does this ER protein gain access to the nuclear steroid receptors? We propose that calreticulin undergoes unique intracellular trafficking that allows it to colocalize with and bind to steroid receptors.  相似文献   

17.
BACKGROUND: The EF-hand family is a large set of Ca(2+)-binding proteins that contain characteristic helix-loop-helix binding motifs that are highly conserved in sequence. Members of this family include parvalbumin and many prominent regulatory proteins such as calmodulin and troponin C. EF-hand proteins are involved in a variety of physiological processes including cell-cycle regulation, second messenger production, muscle contraction, microtubule organization and vision. RESULTS: We have determined the structures of parvalbumin mutants designed to explore the role of the last coordinating residue of the Ca(2+)-binding loop. An E101D substitution has been made in the parvalbumin EF site. The substitution decreases the Ca(2+)-binding affinity 100-fold and increases the Mg(2+)-binding affinity 10-fold. Both the Ca(2+)- and Mg(2+)-bound structures have been determined, and a structural basis has been proposed for the metal-ion-binding properties. CONCLUSIONS: The E101D mutation does not affect the Mg(2+) coordination geometry of the binding loop, but it does pull the F helix 1.1 A towards the loop. The E101D-Ca(2+) structure reveals that this mutant cannot obtain the sevenfold coordination preferred by Ca(2+), presumably because of strain limits imposed by tertiary structure. Analysis of these results relative to previously reported structural information supports a model wherein the characteristics of the last coordinating residue and the plasticity of the Ca(2+)-binding loop delimit the allowable geometries for the coordinating sphere.  相似文献   

18.
Apoaequorin was targeted to the cytosol, nucleus, and endoplasmic reticulum of HeLa cells in order to determine the effect of Ca(2+) release from the ER on protein degradation. In resting cells apoaequorin had a rapid half-life (ca. 20-30 min) in the cytosol or nucleus, but was relatively stable for up to 24 h in the ER (t(1/2) > 24 h). However, release of Ca(2+) from the ER, initiated by the addition of inhibitors of the ER Ca(2+)/Mg(2+) ATPase such as 2 microM thapsigargin or 1 microM ionomycin, initiated rapid loss of apoaequorin in the ER, but had no detectable effect on apoaequorin turnover in the cytosol nor the nucleus. This loss of apoprotein was not the result of secretion into the external fluid, and could not be inhibited by inhibitors of protein degradation by proteosomes. Proteolysis of apoaequorin in cell extracts (t(1/2) < 20 min) was completely inhibited in the presence of 1 mM Ca(2+), and this effect was independent of the ER retention signal KDEL at the C-terminus. Proteolysis was unaffected by the presence of selected serine protease inhibitors, or 10 microM Zn(2+), a known caspase-3 inhibitor. The results show that apoaequorin can monitor proteolysis of ER proteins activated by loss of ER Ca(2+). Several Ca(2+)-binding proteins exist in the ER, acting as the Ca(2+) store and chaperones. Our results have important implications both for the role of ER Ca(2+) in cell activation and stress and when using aequorin for monitoring free ER Ca(2+) over long time periods.  相似文献   

19.
Regulated exocytosis involves the Ca(2+)-triggered fusion of secretory vesicles with the plasma membrane, by activation of vesicle membrane Ca(2+)-binding proteins [1]. The Ca(2+)-binding sites of these proteins are likely to lie within 30 nm of the vesicle surface, a domain in which changes in Ca2+ concentration cannot be resolved by conventional fluorescence microscopy. A fluorescent indicator for Ca2+ called a yellow 'cameleon' (Ycam2) - comprising a fusion between a cyan-emitting mutant of the green fluorescent protein (GFP), calmodulin, the calmodulin-binding peptide M13 and an enhanced yellow-emitting GFP - which is targetable to specific intracellular locations, has been described [2]. Here, we generated a fusion between phogrin, a protein that is localised to secretory granule membranes [3], and Ycam2 (phogrin-Ycam2) to monitor changes in Ca2+ concentration ([Ca2+]) at the secretory vesicle surface ([Ca2+]gd) through alterations in fluorescence resonance energy transfer (FRET) between the linked cyan and yellow fluorescent proteins (CFP and YFP, respectively) in Ycam2. In both neuroendocrine PC12 and MIN6 pancreatic beta cells, apparent resting values of cytosolic [Ca2+] and [Ca2+](gd) were similar throughout the cell. In MIN6 cells following the activation of Ca2+ influx, the minority of vesicles that were within approximately 1 microm of the plasma membrane underwent increases in [Ca2+](gd) that were significantly greater than those experienced by deeper vesicles, and greater than the apparent cytosolic [Ca2+] change. The ability to image both global and compartmentalised [Ca2+] changes with recombinant targeted cameleons should extend the usefulness of these new Ca2+ probes.  相似文献   

20.
A 21,000-dalton Ca(2+)-binding protein (Walsh, M.P., Valentine, K.A., Ngai, P.K., Carruthers, C.A., and Hollengerg, M.D. (1984) Biochem. J. 224, 117-127) was purified from the rat brain and through the use of oligonucleotide probe based on partial amino acid sequence, cDNA clones were obtained from rat brain cDNA library. The complete amino acid sequence deduced from the cDNA contains 191 residues and has a calculated molecular mass of 22,142 daltons. There are three potential Ca(2+)-binding sites like the EF hands in the sequence. It displays striking sequence homology with visinin and recoverin, retina-specific Ca(2+)-binding proteins. Northern blot analysis revealed that the protein is highly and specifically expressed in the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号