共查询到20条相似文献,搜索用时 15 毫秒
1.
Kinetic studies on the interactions of two forms of inorganic pyrophosphatase of heart mitochondria with physiological ligands 总被引:2,自引:0,他引:2
A scheme of interactions of Mg2+ ions and their 1:1 complex with PPi (PPiMg') with two forms of inorganic pyrophosphatase isolated from beef heart mitochondria has been deduced from the analysis of enzyme kinetics at pH varying from 5.6 to 8.5. The scheme implies the existence of two catalytically important metal-binding sites on the enzyme. The two enzyme forms differ in maximal velocity and affinity for the metal activator. The pH dependence of kinetic parameters suggests that the active form of the substrate is MgP2O2-7. Ca2+ ions strongly inhibit pyrophosphatase activity and the corresponding Hill coefficient is 1.5. Phosphate and ATP are weak inhibitors of pyrophosphatase of the competitive and noncompetitive type respectively. The results show that these forms of mitochondrial pyrophosphatase are similar to pyrophosphatases isolated from other sources. 相似文献
2.
Isolation, subunit structure and localization of inorganic pyrophosphatase of heart and liver mitochondria 总被引:1,自引:0,他引:1
A procedure has been developed to isolate separately two forms (I and II) of inorganic pyrophosphatase (pyrophosphate phosphohydrolase, EC 3.6.1.1) from bovine heart mitochondria with specific activities of 250 and 39 IU/mg, respectively. The values of Mr for enzymes I and II are about 60000 and 185000, respectively. Polyacrylamide gel electrophoresis of pyrophosphatase II in the presence of sodium dodecyl sulfate reveals polypeptides of four types with Mr of 28000 (alpha), 30000 (beta), 40000 (gamma) and 60000 (delta). Enzyme I consists of two subunits similar in mass to alpha and beta. When rat heart and liver mitochondria are fractionated with digitonin and Lubrol WX, pyrophosphatase II, but not I, remains bound to inner membrane fragments. The results show that the two forms of the mitochondrial pyrophosphatase, one of which is localized in the inner membrane, differ in subunit structure but have a common catalytic part. 相似文献
3.
Z Suarez de Mata R Lizardo F Diaz H J Saz 《Archives of biochemistry and biophysics》1991,285(1):158-165
The condensation of two propionyl-CoA units or a propionyl-CoA with acetyl-CoA is required for the synthesis of 2-methylvalerate or 2-methylbutyrate, respectively, two of the major fermentation products of Ascaris anaerobic muscle metabolism. An enzyme that preferentially catalyzes the condensation of propionyl-CoA rather than acetyl-CoA has been purified from the mitochondria of the parasitic intestinal nematode Ascaris lumbricoides var. suum. The purified enzyme is over 10 times more active with propionyl-CoA than with acetyl-CoA as substrate. It also catalyzes the coenzyme A-dependent hydrolysis of acetoacetyl-CoA at a rate four times higher than the propionyl-CoA condensation reaction. The purified Ascaris condensing enzyme preferentially forms the 2-methyl-branched-chain keto acids rather than the corresponding straight chain compounds. The native molecular weight of the purified enzyme was estimated to be 160,000 by gel filtration chromatography and 158,000 by high pressure liquid chromatography. The enzyme migrated as a single protein band with Mr 40,000 during sodium dodecyl sulfate-polyacrylamide electrophoresis, indicating that the enzyme is composed of four subunits of the same molecular weight. Chromatography on CM-sephadex resulted in the isolation of two separate peaks of activity, designated as A and B. Both A and B had the same molecular weight and subunit composition. However, they differed in their specific activities and isoelectric points. The pIs of condensing enzymes A and B were 7.6 and 8.4, respectively. Propionyl-CoA was the best substrate for the condensation reaction with both enzymes. However, the specific activity of enzyme B for both propionyl-CoA condensation (3.4 mumol/min/mg protein) and acetoacetyl-CoA thiolysis (13.8 mumol/min/mg protein) was 2.4 times higher than that obtained with enzyme A. Similarly, chromatography on phosphocellulose resolved the Ascaris condensing enzyme activity into one minor and two major peaks. All of these components had the same molecular weight and subunit composition, but differed in their specific activities. The two major phosphocellulose peaks cross-reacted immunologically when examined by the Ouchterlony double immunodiffusion technique. In addition, antiserum against the phosphocellulose most active form cross-reacted with forms A and B isolated by chromatography of the enzyme on CM-Sephadex, indicating that all forms were immunochemically related. 相似文献
4.
5.
O R Rampersad R Zak M Rabinowitz I G Wool L DeSalle 《Biochimica et biophysica acta》1965,108(1):95-105
6.
Inorganic pyrophosphatase [EC 3.6.1.1] was purified from Bacillus stearothermophilus to a homogeneous state both ultracentrifugally and electrophoretically. Ultracentrifugal analysis revealed that the molecular weight of the enzyme is 122,000 and the sedimentation coefficient (S0.34%/20, W) is 5.2S. The enzyme molecule in 0.1% sodium dodecylsulfate solution containing 1 mM 2-mercaptoethanol had an estimated molecular weight of 70,000 on the basis of SDS-polyacrylamide gel electrophoresis results, which indicates that the enzyme may consist of two subunits. Divalent cations such as Mg2+, Mn2+, and Co2+ are required for the enzymatic activity. Pyrophosphate is the only substrate for the enzyme. ATP and p-chloromercuribenzoate inhibit the enzyme reaction markedly. 相似文献
7.
An inorganic pyrophosphatase [EC 3.6.1.1] was isolated from Thiobacillus thiooxidans and purified 975-fold to a state of apparent homogeneity. The enzyme catalyzed the hydrolysis of inorganic pyrophosphate and no activity was found with a variety of other phosphate esters. The cation Mg2+ was required for maximum activity; Co2+ and Mn2+ supported 25 per cent and 10.6 per cent of the activity with Mg2+, respectively. The pH optimum was 8.8. The molecular weight was estimated to be 88,000 by gel filtration and SDS gel electrophoresis, and the enzyme consisted of four identical subunits. The isoelectric point was found to be 5.05. The enzyme was exceptionally heat-stable in the presence of 0.01 M Mg2+. 相似文献
8.
Visser Karin Heimovaara-Dijkstra Sjoukje Kijne Jan W. Wang Mei 《Plant molecular biology》1998,37(1):131-140
A cDNA clone with sequence homology to soluble inorganic pyrophosphatase (IPPase) was isolated from a library of developing barley grains. The protein encoded by this clone was produced in transgenic Escherichia coli, and showed IPPase activity. In nondormant barley grains, the gene appeared to be expressed in metabolically active tissue such as root, shoot, embryo and aleurone. During imbibition, a continuous increase of the steady state mRNA level of IPPase was observed in embryos of non-dormant grains. In the embryos of dormant grains its production declined, after an initial increase. With isolated dormant and nondormant embryos, addition of recombinant IPPase, produced by E. coli, enhanced the germination rate. On the other hand, addition of pyrophosphate (PPi), substrate for this enzyme, appeared to reduce the germination rate. A role for this IPPase in germination is discussed. 相似文献
9.
10.
Calcium ion is an uncompetitive inhibitor of the inorganic pyrophosphatases of bovine heart and rat liver mitochondria with respect to substrate MgPPi at pH 8.5 and a non-competitive inhibitor of the former enzyme at pH 7.2. The concentration of Ca2+ required to decrease the maximal velocities for both enzymes at pH 8.5, 0.4 mM Mg2+ was about 10 microM. The inhibition results from the binding of two Ca2+ ions to both free enzymes and their complexes with the substrate. The results suggest that Ca2+ regulates pyrophosphatase activity and hence PPi level in mammalian mitochondria. 相似文献
11.
Comparative kinetic studies on the two interconvertible forms of Streptococcus faecalis inorganic pyrophosphatase.
下载免费PDF全文

In this work the two interconvertible forms of inorganic pyrophosphatase (EC 3.6.1.1) of Streptococcus faecalis were shown to differ in kinetics. The highly active form of the enzyme was more sensitive to the changes in the Mg2+ concentration, and thus also more sensitive to the inhibition caused by ATP, which competes with PPi for the chelation of Mg2+ ions. We have previously described a kinetic model for the less-active form of S. faecalis inorganic pyrophosphatase [Lahti & Jokinen (1985) Biochemistry 24, 3526-3530]. The kinetic model of the highly active enzyme form is proposed to be a modification of the model of the less-active form in which enzyme activation by free Mg2+ is necessary for the reaction to occur. In this model the enzyme exists in two states, referred to as R- and T-states. In the absence of ligands the enzyme is in the T-state. R-state, i.e. the catalytically active state, exists only in the presence of free Mg2+. Mg1PPi2- is the primary substrate, and free pyrophosphate is a weak inhibitor that cannot serve as a substrate for the highly active form of S. faecalis inorganic pyrophosphatase. This model closely resembles that previously presented for yeast inorganic pyrophosphatase. 相似文献
12.
C Montecucco G Schiavo B Bacci R Bisson 《Comparative biochemistry and physiology. B, Comparative biochemistry》1987,87(4):851-856
1. Several bird and fish heart mitochondrial cytochrome c oxidases have been isolated with a rapid and simple method involving hydrophobic and affinity chromatography. 2. Their spectrophotometric and kinetic properties are very similar to those of the mammalian enzymes. 3. These oxidases show a polypeptide composition simpler than the mammalian enzymes being composed of 9-10, instead of 13, different polypeptides. 4. These data suggest that the complexity of the mitochondrial heart oxidase increases with the stage of evolution. 相似文献
13.
An ATPase inhibitor protein was isolated from mitochondria of rat skeletal muscle by alkaline extraction and then was purified, It differed in definitive ways from the ATPase inhibitor protein isolated previously by Ca2+-stripping of submitochondrial particles of rat skeletal muscle. The two ATPase inhibitor proteins were shown to be present together in intact mitochondria. 相似文献
14.
15.
Intact rat liver mitochondria possess a very low hydrolytic activity, if any, towards exogenous pyrophosphate. This activity can be unmasked by making mitochondria permeable to PPi by toluene treatment or by disrupting them with detergents or ultrasound, thus indicating that the active site of pyrophosphatase is localized in the matrix. The initial rates of PPi hydrolysis of toluene-permeabilized mitochondria and purified pyrophosphatase were found to depend, in a similar manner, on PPi and Mg2+ concentrations. The simplest model consistent with these data in both cases implies that the reaction proceeds via two pathways and requires MgPPi as substrate and at least one Mg2+ ion as activator. In the presence of 0.4 mM Mg2+ (physiological concentration) the inhibition constant for Ca2+ is 12 microM and the enzyme activity is no less than 50% of the maximal one. The data obtained suggest that the activity of pyrophosphatase in mitochondria is high enough to keep free PPi concentration at a level close to the equilibrium one. 相似文献
16.
Isolation and characterization of two forms of a cytoskeleton 总被引:2,自引:6,他引:2
K T Edds 《The Journal of cell biology》1979,83(1):109-115
Isolated petaloid coelomocytes from the sea urchin Strongylocentrotus droebachiensis transform to a filopodial morphology in hypotonic media. Electron micrographs of negatively stained Triton-insoluble cytoskeletons show that the petaloid form consists of a loose net of microfilaments while the filopodial form consists of paracrystalline bundles of microfilaments. Actin is the major protein of both forms of the cytoskeleton. Additional polypeptides have molecular weights of approximately 220,000, 64,000, 57,000, and 27,000 daltons. Relative to actin the filopodial cytoskeletons have an average of 2.5 times as much 57k polypeptide as the petaloid cytoskeletons. Treatment with 0.25 M NaCl dissociates the filament bundles into individual actin filaments free of the actin-associated polypeptides. Thus, one or more of these actin-associated polypeptides may be responsible for crosslinking the actin filaments into bundles and maintaining the three-dimensional nature of the cytoskeletons. 相似文献
17.
Adelheid Jacobs-Sturm Burkhardt Dahlmann Hans Reinauer 《Biochimica et Biophysica Acta (BBA)/General Subjects》1982,715(1):34-41
An arylamidase hydrolysing L-leucine-4-nitroanilide was extracted from rat skeletal muscle homogenate and furified by means of anion-exchange chromatography on DEAE-Sephadex A-50 followed by gel filtration on Sephadex G-150 and Sepharose 6B. The enzyme was isolated in the form of three different protein complexes that differ in molecular weight, kinetic data, and sensitivity to metal ions. As studied by SDS-gel electrophoresis and repeated gel chromatography on Sepharose 6B these forms are: 1. a stable monomer (A1) of Mr 122 000; 2. a stable dimer (A2) of Mr 244 000; and 3. a stable polymer (A3) of more than Mr 4·106. The arylamidase was optimally active at pH 7.3 and did not require metal ions. Treatment with 1,10-phenanthroline resulted in complete inactivation, the activity could be restored by the addition of manganous chloride. The sulphhydryl-blocking reagent 4-hydroxymercuribenzoate strongly inactivated the arylamidase, this inhibition could be reversed by the addition of 2-mercaptoethanol. Addition of phenylmethylsulfonyl fluoride had no effect on the enzyme activity. Furthermore, the influence of metal ions as well as the substrate specificity were investigated and compared for all three forms of arylamidase. 相似文献
18.
Two soluble forms of AChE from lymphocyte membrane have been obtained, the Triton solubilized Sd form and the high molar salt solubilized Ss form. They present similar Km (0.10 mM). Hydrodynamic properties of these forms have been studied on saccharose gradients with and without detergent or salt. A similar sedimentation coefficient has been found for these two forms (5.7 S). Lymphocyte plasma membrane AChE is a dimeric form (G2). Without detergent, the Sd form shows multiple secondary forms due to main form polymerization. Increase of NaCl concentration (2M) gives rise to a partial dissociation of these polymers. In the same conditions, the Ss form is not affected. The Ss form centrifugated on cesium chloride gradient has a higher density than the Sd form. These two forms have been treated by HPLC: the Stokes radii are respectively 7.1 nm for the Sd form and 4.5 nm for the Ss form. The molecular weights have been estimated at 175 000 for the Sd form and 105 000 for the Ss form. Pronase enzymatic digestion shows that the Ss form is more rapidly inactivated than the Sd form. Phospholipase C inhibits the Ss form and indicates that this form is a lipid-enzyme complex. The Sd form presents a different behaviour: this form is first activated, and afterwards inhibited by phospholipase C. This behaviour could be due to a more preponderant lipidic environment for the Sd form. The Sd form is probably a detergent-lipid-enzyme complex with an important hydrophobocity. These two forms can be explained by a different association between the enzyme and the phospholipids at the plasma membrane. 相似文献
19.
Alfred Kwan Daniel A. Kaplansky Martin Gross 《Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression》1984,783(1):80-88
We have separated and purified two forms of Met-tRNAf deacylase (or two separate enzymes), an activity that mediates in part the suppression of polypeptide chain initiation that occurs in heme deficiency or with double-stranded RNA, 1000-fold from the 0.5 M KCl wash of rabbit reticulocyte ribosomes. Deacylase I is a minor activity with an S20,w of 5.9, D20,w of 4.9 and Mr of 110 000, while deacylase II is the major activity with an S20,w of 3.3, D20,w of 7.1 and Mr of 43 000. Both convert crude reticulocyte or pure yeast, wheat germ, and E. coli [35S]Met-tRNAf to [35S]methionine and tRNAMetf and have no effect on reticulocyte [35S]fMet-tRNAf, [3H]Ala-tRNA or [3H]Lys-tRNA. However, while deacylase I has similar activity throughout the pH range of 6.1–8.1, deacylase II has a sharp pH optimum at 7.9 and is almost completely inactive at 6.1. In addition, deacylase II shows a much greater affinity for pure Met-tRNAf than deacylase I (Km of 1.5–3 nM vs. 100 nM), and, while deacylase II is selectively inhibited by tRNAMetf, deacylase I is inhibited similarly by any added tRNA. 相似文献
20.
Rat skin contains αA and αB collagen the proportion of which changes independently with age. The proportion of αA chains alters more rapidly when compared to αB. It has been also shown that both these collagen categories are closely associated with tissue vasculature. It is suggested that αA and αB constitute two different collagen molecules of the composition (αA)3 and (αB)3 respectively. 相似文献