首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Susan Lurie 《Planta》1978,140(3):245-249
The effect of broad band green, blue and red light on stomatal opening of Vicia faba L. (broad bean) leaves was examined. In air, blue light caused greater stomatal opening than red light. In air with green light stomata were only slightly opened. In a nitrogen atmosphere red light caused greater opening than blue light, and green light caused only slight opening. Opening in air or nitrogen atmosphere in red or blue light was inhibited by the uncoupler CCCP, while the photosynthetic inhibitor DCMU inhibited opening in air but not in nitrogen atmosphere. We concluded that more than one light activated metabolic pathway can supply the energy needed to effect stomatal opening and that different pathways are operative under different conditions.  相似文献   

2.
Boron enhances stomalal opening in epidermal strips of Commelina communis L. under conditions conductive to opening, i.e . light and KCI. This effect is obtained when boron is given together or before KCI application. Since boron increases 86Rb net uptake in both illuminated epidermal strips and illuminated isolated guard cells, it is suggested that boron acts either by reducing potassium leakage or by increasing its uptake, thus leading to increased osmotic potential and, as a result, to stomatal opening.  相似文献   

3.
Reversal of blue light-stimulated stomatal opening by green light   总被引:3,自引:0,他引:3  
Blue light-stimulated stomatal opening in detached epidermis of Vicia faba is reversed by green light. A 30 s green light pulse eliminated the transient opening stimulated by an immediately preceding blue light pulse. Opening was restored by a subsequent blue light pulse. An initial green light pulse did not alter the response to a subsequent blue light pulse. Reversal also occurred under continuous illumination, with or without a saturating red light background. The magnitude of the green light reversal depended on fluence rate, with full reversal observed at a green light fluence rate twice that of the blue light. Continuous green light given alone stimulated a slight stomatal opening, and had no effect on red light-stimulated opening. An action spectrum for the green light effect showed a maximum at 540 nm and minor peaks at 490 and 580 nm. This spectrum is similar to the action spectrum for blue light-stimulated stomatal opening, red-shifted by about 90 nm. The carotenoid zeaxanthin has been implicated as a photoreceptor for the stomatal blue light response. Blue/green reversibility might be explained by a pair of interconvertible zeaxanthin isomers, one absorbing in the blue and the other in the green, with the green absorbing form being the physiologically active one.  相似文献   

4.

Background

Resolving the kinetics of agonist binding events separately from the subsequent channel gating processes requires the ability of applying and removing the agonist before channel gating occurs. No reported system has yet achieved pulses shorter than 100 µs, necessary to study nicotinic ACh receptor or AMPA receptor activation.

Methodology/Principal Findings

Solution exchange systems deliver short agonist pulses by moving a sharp interface between a control and an experimental solution across a channel preparation. We achieved shorter pulses by means of an exchange system that combines a faster flow velocity, narrower partition between the two streams, and increased velocity and bandwidth of the movement of the interface. The measured response of the entire system was fed back to optimize the voltage signal applied to the piezoelectric actuator overcoming the spurious oscillations arising from the mechanical resonances when a high bandwidth driving function was applied. Optimization was accomplished by analyzing the transfer function of the solution exchange system. When driven by optimized command pulses the enhanced system provided pulses lasting 26 ± 1 µs and exchanging 93 ± 1% of the solution, as measured in the open tip of a patch pipette.

Conclusions/Significance

Pulses of this duration open the experimental study of the molecular events that occur between the agonist binding and the opening of the channel.  相似文献   

5.
An H+ ATPase at the plasma-membrane of guard cells is thought to establish an electrochemical gradient that drives K+ and Cl uptake, resulting in osmotic swelling of the guard cells and stomatal opening. There are, however, conflicting results regarding the effectiveness of the plasma-membrane H+-ATPase inhibitor, vanadate, in inhibiting both H+ extrusion from guard cells and stomatal opening. We found that 1 mM vanadate inhibited light-stimulated stomatal opening in epidermal peels of Commelina communis L. only at KCl concentrations lower than 50 mM. When impermeant n-methylglucamine and HCl (pH 7.2) were substituted for KCl, vanadate inhibition was still not observed at total salt concentrations50 mM. In contrast, in the absence of Cl, when V2O5 was used to buffer KOH, vanadate inhibition of stomatal opening occurred at K+ concentrations as high as 70 mM. Partial vanadate inhibition was observed in the presence of the impermeant anion, iminodiacetic acid (100 mM KHN(CH2CO2H)2). These results indicate that high concentrations of permeant anions prevent vanadate uptake and consequently prevent its inhibitory effect. In support of this hypothesis, an inhibitor of anion uptake, anthracene-9-carboxylic acid, partially prevented vanadate inhibition of stomatal opening. Other anion-uptake inhibitors (1 mM 4,4-diisothiocyanatostilbene-2,2-disulfonic acid, 1 mM 4-acetamido-4-isothiocyanostilbene-2,2-disulfonic acid, 200 M Zn2+) were not effective. Decreased vanadate inhibition at high Cl/vanadate ratios may result from competition between vanadate and Cl for uptake. Unlike metabolic inhibitors, vanadate did not affect the extent of stomatal closure stimulated by darkness, further indicating that the observed action of vanadate represents a specific inhibition of the guard-cell H+ ATPase.Abbreviations DIDS 4,4-diisothiocyanatostilbene-2,2-disulfonic acid - FC fusicoccin - SITS 4-acetamido-4-isothiocyanostilbene-2,2-disulfonic acid We thank Drs. R.T. Leonard (University of California, Riverside, USA) and K.A, Rubinson (Yellow Springs, Oh., USA) for helpful comments on the research, Janet Sherwood (Harvard University) for excellent plant care, and Angela Ciamarra, Anne Gershenson, Gustavo Lara (Harvard University) and Orit Tal (Hebrew University) for valuable technical assistance. This research was supported by a grant from the National Science Foundation (DCB-8904041) to S.M.A.  相似文献   

6.
The effects of three morphactins, chlorflurenol, flurenol andEMD 7301 W, were examined on the stomatal aperture using isolatedepidermal strips of Commelina benghalensis. Morphactins produced,a striking decrease in the stomatal opening in light but hadno effect on stomatal closure in darkness. Various catalystsand inhibitors of photophosphorylation had no influence on themorphactin-induced stomatal closure. The stimulatory effectsof ATP, pyruvate and KC1 on stomatal opening were suppressedby the morphactins. The cytokinin, benzyladenine stimulatedthe stomatal opening even in the presence of a morphactin. Theinfluence of morphactins on the stomatal aperture closely resembledthe effect of abscisic acid. 1Present address: Central Plantation Crops Research Institute,Regional Station, Vittal 574243, Karnataka, India. (Received September 16, 1975; )  相似文献   

7.
In the light of stomatal opening: new insights into 'the Watergate'   总被引:1,自引:0,他引:1  
Stomata can be regarded as hydraulically driven valves in the leaf surface, which open to allow CO2 uptake and close to prevent excessive loss of water. Movement of these 'Watergates' is regulated by environmental conditions, such as light, CO2 and humidity. Guard cells can sense environmental conditions and function as motor cells within the stomatal complex. Stomatal movement results from the transport of K+ salts across the guard cell membranes. In this review, we discuss the biophysical principles and mechanisms of stomatal movement and relate these to ion transport at the plasma membrane and vacuolar membrane. Studies with isolated guard cells, combined with recordings on single guard cells in intact plants, revealed that light stimulates stomatal opening via blue light-specific and photosynthetic-active radiation-dependent pathways. In addition, guard cells sense changes in air humidity and the water status of distant tissues via the stress hormone abscisic acid (ABA). Guard cells thus provide an excellent system to study cross-talk, as multiple signaling pathways induce both short- and long-term responses in these sensory cells.  相似文献   

8.
《Plant Science Letters》1976,6(2):111-115
Abscisic acid (ABA) inhibited the light-induced opening of stomata in isolated epidermal strips of Commelina benghalensis. It did not alter stomatal closure in the dark. The ABA-induced inhibition in light was released under conditions conducive for cyclic photophosphorylation and remarkably reversed by ATP in the presence of pyruvate. Cyclic photophosphorylation rates of isolated guard cell chloroplasts were significantly reduced by ABA. It is proposed that the direct effect of ABA on stomatal opening was mediated in two ways: (1) by inhibition of cyclic photophosphorylation activities of guard cell chloroplasts and (2) by blocking organic acid formation in guard cells.  相似文献   

9.
Studying ligand-gated ion channels often requires the ability to change solutions quickly. Using finite element models, I have examined the practical limitations of how fast solutions can be exchanged on an outside-out patch using a dual stream switcher. The primary factors controlling the speed of response are the flow velocity, proximity of the patch to the exit ports, the width of the partition between the two streams, the velocity with which the streams can be moved across the patch, and the viscosity of the solutions. The practical limit seems to be a rise time of approximately 20 microseconds. The rate-limiting step is the velocity of the (usually piezo) motor that translates the streams across the patch. Increasing the perfusate viscosity improves speed by slowing dissipation of the concentration gradients. A flow switcher can also be used for bipolar temperature jumps with a rise time of approximately 100 microseconds.  相似文献   

10.
11.
The time course of change in current through KATP channels in inside-out membrane patches, after step change of permeant ion (K+) concentration, was measured. A simple model of the patch as a membrane disc at the base of a cone with the apex removed, was able to describe the time course of channel activity after step change of [K+]. By measuring pipette geometry and using jumps of [permeant ion], it was then possible to estimate the time course of concentration at the membrane for jumps of any other ion or gating ligand. A simple channel block mechanism was used to simulate experiments with concentration jumps of a blocking ligand. The rate constants for ligand-channel interaction were extracted by least-squares fitting of computed mass action responses to those observed in simulated experiments. The simulations showed that even with diffusion delays of hundreds of milliseconds (as may occur in inside-out patch experiments), ligand association and dissociation rates of up to 1,000 s-1 could be accurately extracted by this approach. The approach should be generally applicable to the analysis of ligand concentration jump experiments on any ion channel whose activity is modulated by intracellular ligand.  相似文献   

12.
13.
Abscisic acid-insensitive mutants of Arabidopsis thaliana L. var. Landsberg erecta were selected for their decreased sensitivity to ABA during germination. Two of these mutants, abi-1 and abi-2 , display a wilty phenotype as adult plants, indicating disturbed water relations. Experiments were undertaken to find out if this results from insensitivity of mutant stomates to ABA.
Growth conditions and methods to isolate epidermal strips were optimized to study stomatal movement. Wild type stomates required external ionic conditions comparable to those found for other species such as Commelina communis . The largest light-induced opening of A. thaliana stomates was found at an external KCl concentration of 50 m M . Stomatal apertures were increased by lowering external Ca2+ to 0.05 m M . The apertures of stomates incubated with 10 μ M ABA were not altered by changes in Ca2+ from 0.05 to 1.0 m M .
Stomates of all abi mutants showed a light-stimulated stomatal opening. The opening of wild type and abi-3 stomates was inhibited by ABA, while stomates of abi-1 and abi-2 did not respond to ABA. The insensitivity of abi-1 and abi-2 stomates to ABA may thus explain the observed disturbed water relations.  相似文献   

14.
Dittrich  P.  Mayer  M. 《Planta》1978,139(2):167-170
The uptake of glucose and other carbohydrates into the guard cells of Commelina communis L. was found to inhibit the opening of the stomata. The concentration of glucose necessary to achieve about 50% inhibition was of the same order of magnitude as the potassium concentration required for opening; the uptake systems for potassium and glucose appear to be competitive and to exhibit the same degree of affinity. It is suggested that the uptake of glucose occurs via a proton cotransport, which, depolarizing the membrane potential, slows down the electrogenic import of potassium ions. The process of stomatal closure, in contrast, appears not to be affected by carbohydrate uptake. In guard cells of Tulipa gesneriana L. and Vicia faba L., which do not possess subsidiary cells, import of glucose or other carbohydrates did not interfere with the regulation of stomatal movements.  相似文献   

15.
Since the late 1960s, researchers have observed that starch in the chloroplasts of the guard cells breaks down during the day and accumulates in the dark. Based on this, carbohydrates have historically been regarded as the primary osmotica modulating stomatal opening. However, the discovery of an important role for potassium uptake has led to the replacement of that starch-sugar hypothesis. Current research now focuses mainly on how K+ is transported in and out of cells when the stomata open or close. However, questions remain concerning photoreceptors, and the functioning of guard cell chloroplasts is still disputed. Coincidentally, some recent study results have again suggested that sucrose may play a major role in guard cell osmoregulation, thus supporting the original theory of starch-sugar involvement.  相似文献   

16.
Rapid interactions in cell division and cytodifferentiationare induced by hormone treatments in dark-cultured explantsof Jerusalem artichoke. Fusicoccin, at concentrations between10–6 and 10–5 M, markedly inhibited the division-promotingactivity induced by plant hormones. Further, fusicoccin-treatedmeristematic root tips of Vicia faba and Allium cepa showeda rapid decrease in the mitotic index. Fusicoccin seems to inhibitsome hormone-sensitive processes required during the inductionand regulation of cell division. (Received March 28, 1979; )  相似文献   

17.
Reversal by green light of blue-light-stimulated stomatal opening was found across a number of plant species, including leguminous and nonleguminous dicots and grass and nongrass monocots. Simultaneous exposure to equal fluence rates of blue and green light resulted in ~50% reversal of normal blue light opening. Complete reversal occurred when the fluence rate of green light was approximately twice that of blue light. These results suggest that blue-green reversibility of stomatal opening is a basic photobiological property of guard cells. The blue-green reversibility of stomatal opening has been hypothesized to ensue from the cycling of two interconvertible, isomeric forms of the blue-light photoreceptor, zeaxanthin. Testing of blue-green reversibility could provide a valuable diagnostic tool for zeaxanthin-mediated blue-light photoperception.  相似文献   

18.
M. Pollok  U. Heber  M. S. Naik 《Planta》1989,178(2):223-230
When leaves of Helianthus annuus, whose stomates had been opened in the dark in the absence of CO2, were exposed to 25% carbon monoxide (CO), stomatal conductivity for water vapor decreased from about 0.4 to 0.2 cm·s-1. The CO effect on stomatal aperture required a CO/O2 ratio of about 25. As this ratio was decreased the stomata opened, indicating that inhibitio of cytochrome-c oxidase by CO is competitive in respect to O2. Photosynthetically active red light was unable to reverse CO-induced stomatal closure even at high irradiances, when CO2 was absent. When it was present, stomatal opening was occasionally, but not consistently observed. Carbon monoxide did not inhibit photosynthetic carbon reduction in leaves of Helianthus.In contrast to red light, very weak blue light (405 nm) increased the stomatal aperture in the presence of CO. It also increased leaf ATP/ADP ratios which had been decreased in the presence of CO. The blue-light effect was not related to photosynthesis. Neither could it be explained by photodissociation of the cytochrome a 3-CO complex which has an absorption maximum at 430 nm. The data indicate that ATP derived from mitochondrial oxidative phosphorylation provides energy for stomatal opening in sunflower leaves in the dark as well as in the light. Indirect transfer of ATP from chloroplasts to the cytosol via the triose phosphate/phosphoglycerate exchange which is mediated by the phosphate translocator of the chloroplast envelope can support stomatal opening only if metabolite concentrations are high enough for efficient shuttle transfer of ATP. Blue light causes stomatal opening in the presence of CO by stimulating ATP synthesis.  相似文献   

19.
Persistent circadian rhythms in photosynthesis and stomatal opening occurred in bean (Phaseolus vulgaris L.) plants transferred from a natural photoperiod to a variety of constant conditions. Photosynthesis, measured as carbon assimilation, and stomatal opening, as conductance to water vapor, oscillated with a freerunning period close to 24 h under constant moderate light, as well as under light-limiting and CO2-limiting conditions. The rhythms damped under constant conditions conducive to high photosynthetic rates, as did rates of carbon assimilation and stomatal conductance, and this damping correlated with the accumulation of carbohydrate. No rhythm in respiration occurred in plants transferred to constant darkness, and the rhythm in stomatal opening damped rapidly in constant darkness. Damping of rhythms also occurred in leaflets exposed to constant light and CO2-free air, demonstrating that active photosynthesis and not simply light was necessary for sustained expression of these rhythms. This is CIWDPB Publication No. 1142 This research was supported by National Science Foundation grant BSR 8717422 (C.B.F.) and a U.S. Department of Agriculture training grant to Stanford University (T.L.H.).  相似文献   

20.
Recent studies have shown that blue light-specific stomatal opening is reversed by green light and that far-red light can be used to probe phytochrome-dependent stomatal movements. Here, blue-green reversibility and far-red light were used to probe the stomatal responses of the npq1 mutant and the phot1 phot2 double mutant of Arabidopsis. In plants grown at 50 micromol m-2 s-1, red light (photosynthetic)-mediated opening in isolated stomata from wild type (WT) and both mutants saturated at 100 micromol m-2 s-1. Higher fluence rates caused stomatal closing, most likely due to photo-inhibition. Blue light-specific opening, probed by adding blue light (10 micromol m-2 s-1) to a 100 micromol m-2 s-1 red background, was found in WT, but not in npq1 or phot1 phot2 double mutant stomata. Under 50 micromol m-2 s-1 red light, 10 micromol m-2 s-1 blue light opened stomata in both WT and npq1 mutant stomata but not in the phot1 phot2 double mutant. In npq1, blue light-stimulated opening was reversed by far-red but not green light, indicating that npq1 has a phytochrome-mediated response and lacks a blue light-specific response. Stomata of the phot1 phot2 double mutant opened in response to 20 to 50 micromol m-2 s-1 blue light. This opening was green light reversible and far-red light insensitive, indicating that stomata of the phot1 phot2 double mutant have a detectable blue light-specific response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号