首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Resident peritoneal macrophages synthesized and released eicosanoids when challenged by zymosan, a phagocytosable particle. Incubation of these cells with ethanol resulted in dose-dependent inhibition of arachidonic acid release and eicosanoid generation in response to zymosan. Ethanol affected the extent but not the ratio of eicosanoids released. When assayed in a cell-free system, endogenous phospholipase A2 activity was neither affected by the presence of ethanol in the incubation medium nor by preincubation of the cells with ethanol. Ethanol also inhibited arachidonic acid release in response to phorbol myristate acetate, a compound that, like zymosan, triggered a pertussis-toxin-sensitive response. When cells that had been previously treated with pertussis toxin were used, no further inhibitory effect of ethanol was seen in response to both zymosan and phorbol myristate acetate. On the other hand, ethanol had no effect on arachidonic acid release stimulated by ionophore A23187 or lipopolysaccharide, two compounds that triggered a pertussis-toxin-insensitive response. Moreover, ethanol was able to nearly abolish arachidonic acid release in response to fluoroaluminate, a direct activator of G-proteins. Altogether, the results of this study suggest that ethanol inhibits zymosan-stimulated eicosanoid production by interacting with a G-protein — or a G-protein-mediated process — that is critically involved in arachidonic acid mobilization.  相似文献   

2.

Background

δ-Sarcoglycan (δ-SG) knockout (KO) mice develop skeletal muscle histopathological alterations similar to those in humans with limb muscular dystrophy. Membrane fragility and increased Ca2+ permeability have been linked to muscle degeneration. However, little is known about the mechanisms by which genetic defects lead to disease.

Methods

Isolated skeletal muscle fibers of wild-type and δ-SG KO mice were used to investigate whether the absence of δ-SG alters the increase in intracellular Ca2+ during single twitches and tetani or during repeated stimulation. Immunolabeling, electrical field stimulation and Ca2+ transient recording techniques with fluorescent indicators were used.

Results

Ca2+ transients during single twitches and tetani generated by muscle fibers of δ-SG KO mice are similar to those of wild-type mice, but their amplitude is greatly decreased during protracted stimulation in KO compared to wild-type fibers. This impairment is independent of extracellular Ca2+ and is mimicked in wild-type fibers by blocking store-operated calcium channels with 2-aminoethoxydiphenyl borate (2-APB). Also, immunolabeling indicates the localization of a δ-SG isoform in the sarcoplasmic reticulum of the isolated skeletal muscle fibers of wild-type animals, which may be related to the functional differences between wild-type and KO muscles.

Conclusions

δ-SG has a role in calcium homeostasis in skeletal muscle fibers.

General significance

These results support a possible role of δ-SG on calcium homeostasis. The alterations caused by the absence of δ-SG may be related to the pathogenesis of muscular dystrophy.  相似文献   

3.
In PC12 cells, cultured in the presence of nerve growth factor to increase their complement of muscarinic receptors, treatment with carbachol induces muscarinic receptor-dependent rises in free cytosolic Ca2+ as well as hydrolysis of membrane phosphoinositides. Experiments were carried out to clarify the relationship between these two receptor-triggered events. In particular, since inositol-1,4,5-trisphosphate (the hydrophilic metabolite produced by the hydrolysis of phosphatidylinositol-4,5-bisphosphate) is believed to mediate intracellularly the release of Ca2+ from nonmitochondrial store(s), it was important to establish whether it can be generated at resting cytoplasmic concentration of Ca2+ (approximately 0.1 microM). Cells incubated in Ca2+-free medium were depleted of their cytoplasmic Ca2+ stores by pretreatment with ionomycin. When these cells were then treated with carbachol, their cytosolic concentration of Ca2+ remained at the resting level, whereas inositol-1,4,5-trisphosphate generation was still markedly stimulated. Our results demonstrate that an increase in the concentration of cytosolic Ca2+ is not a necessary intermediate between receptor activation and phosphoinositide hydrolysis, and therefore support the second-messenger role of inositol-1,4,5-trisphosphate.  相似文献   

4.
1. Using the perforated patch recording, the effects of ATP on membrane current were investigated in mouse peritoneal macrophages. 2. Extracellularly applied ATP induced a biphasic current consisting of a initial inward current [Ii(ATP)] followed by an outward current [Io(ATP)]. These currents were associated with a marked increase in conductance at their peaks. 3. Ii(ATP) reversed close to 0 mV and was attenuated by removal of external Na+. 4. Io(ATP) reversed near -80 mV and was increased by decreasing the external concentration of K+. 5. Io(ATP) was completely abolished by removal of external Ca2+, treatment with an intracellular Ca2+ chelator, the acetoxymethyl ester of 1,2-bis (2-aminophenoxy) ethane-N,N,N',N'-tetra acetic acid (BAPTA-AM) and bath applied quinidine but not tetraethylammonium (TEA) or apamin. 6. These results suggest that Ii(ATP) and Io(ATP) are due to an activation of nonspecific cationic and Ca2(+)-dependent K+ conductances, respectively, and raise the possibility that the putative ATP receptor may be important in regulating macrophage functions, motility, phagocytosis and cytokines secretion.  相似文献   

5.
Passive permeability of the endoplasmic reticulum of saponin-treated macrophages to Ca2+ was studied by the filtration method using 45Ca. The Ca2+ release from the endoplasmic reticulum of macrophages was enhanced by the presence of submicromolar concentrations of Ca2+ in the medium. The Ca2+ release was enhanced by caffeine, and suppressed by MgCl2. These phenomena are similar to the Ca2+-induced Ca2+ release reported for the sarcoplasmic reticulum of skeletal muscle. On the other hand, adenine suppressed the Ca2+ release from the endoplasmic reticulum, while it reportedly enhanced the Ca2+-induced Ca2+ release of the skeletal muscle. The threshold concentration of Ca2+ for the Ca2+-induced Ca2+ release was approximately 10(-8) M in the presence of 0.95 mM MgCl2 in macrophages. The spontaneous spreading of macrophages and spontaneous migration of macrophages were inhibited by adenine, and also by caffeine in spite of the enhancement of the Ca2+-induced Ca2+ release.  相似文献   

6.
Mechanisms of the Ca2+ signal generation and regulation in peritoneal macrophages activated with purinergic agonists (ATP, UTP), as well as endoplasmic Ca(2+)-ATPase inhibitors, were investigated. Using a wide range of drugs affecting the intracellular signaling systems' components, an important role of second messenger systems and other key functional cellular systems in Ca2+ signals regulation in the macrophages, was shown.  相似文献   

7.
To determine the role of calcium and calmodulin in mouse oocyte maturation, we examined the distribution of intracellular calcium during mouse oocyte maturation by using Mira Cal Imaging System. The calcium was present homogeneously in oocytes with intact germinal vesicle (GV) and accumulated around the nuclear region after GV breakdown(GVBD). The high level of calcium disappeared 6 hours later after GVBD. In the presence of 50 mumol/L BAPTA/AM, we failed to observe this phenomena. All eggs treated with 20 mumol/L W7, an antagonist of calmodulin, 50 mumol/L BAPTA/AM, a calcium chelator, could not develop to metaphase II (MII), although GVBD was not affected. We also detected the activity of a cytoplasmic maturation-promoting factor (MPF). W7 and BAPTA/AM had no effects on the rise of MPF activity in the course of maturation. We suggest that compartment distribution of calcium around nuclear region plays an important role in mouse oocyte maturation.  相似文献   

8.
We have previously demonstrated that snake venom phospholipases A2 (PLA2s) and mammalian PLA2s induced inflammatory processes. This effect was correlated with the activity of the enzymes and the release of lipid mediators. We have now determined the role of lysophosphatidylserine (LysoPS) as an inflammatory lipid mediator. Thus, we have studied the possibility that intracellular calcium concentration, phosphoinositide hydrolysis, and the subsequent histamine release in mast cells is due to the action of lysophosphatidylserine. Lysophosphatidylserine-stimulated release of histamine was significantly higher than release by other lysophospholipids. The contribution of increased phospholipase C activity and the intracellular Ca2+ influx were therefore examined. LysoPS increased mast cell calcium concentration, and this increment was associated with phospholipase C activation and release of inositol phosphates. The increase in intracellular calucium and histamine degranulation induced by LysoPS were inhibited by apomorphine. Pretreatment of mast cells with pertussis toxin decreased the secretagogic effect of LysoPS and compound 48/80 without modifying the effect of the ionophore A23187. These results suggest that pertussis toxinsensitive G-protein might be involved in the mast cell degranulation produced by lysophosphatidylserine and allow the increase in phospholipase C activity, thus enhancing intracellular calcium concentration, which then induces exocytosis of histamine. © 1995 Wiley-Liss Inc.  相似文献   

9.
The mechanism of Ca2+ influx stimulated by arginine vasopressin (AVP) was studied in cultured rat smooth muscle cells. AVP stimulated 45Ca2+ influx even in the presence of nifedipine, a Ca2+ antagonist that inhibits voltage-dependent Ca2+ channel. NaF, a GTP-binding protein activator, mimicked the AVP-stimulated 45Ca2+ influx. The 45Ca2+ influx stimulated by a combination of AVP and NaF was not additive. The affinity of AVP receptor was decreased by guanosine 5'-O-(3-thiotriphosphate). Pertussis toxin failed to affect the AVP-stimulated 45Ca2+ influx. AVP did not stimulate cAMP production, but increased inositol trisphosphate generation. Both AVP-stimulated 45Ca2+ influx and inositol trisphosphate generation were inhibited by neomycin, a phospholipase C inhibitor, in a dose-dependent manner, and the patterns of both inhibitions were similar. These results suggest that, in rat smooth muscle cells, AVP-stimulated Ca2+ influx is mediated exclusively through phosphoinositide hydrolysis.  相似文献   

10.
The effect of 5-hydroxytryptamine (5-HT) on phospholipase C (PLC)-mediated phosphoinositide (PI) hydrolysis and intracellular Ca2+ ([Ca2+]i) changes was investigated in canine cultured aorta smooth muscle cells (ASMCs). 5-HT-stimulated inositol phosphate (IP) accumulation was time and concentration dependent with a half-maximal response (pEC50) and a maximal response at 6.4 and 10 microM, n = 6, respectively. Stimulation of ASMCs by 5-HT produced an initial transient peak followed by a sustained, concentration-dependent elevation in [Ca+]i. The half-maximal response (pEC50) values of 5-HT for the peak and sustained plateau were 7.1 and 6.9, respectively. Ketanserin and mianserin (1 and 3 nM), 5-HT2A antagonists, were equipotent and had high affinity in antagonising the 5-HT-induced IP accumulation and [Ca2+]i change with pK(B) values of 8.6-9.1 and 8.6-9.4, respectively. In contrast, the concentration-effect curves of 5-HT-induced IP and [Ca2+]i responses were not shifted until the concentrations of NAN-190 and metoctopramide (5-HT1A and 5-HT3 receptor antagonists, respectively) were increased to as high as 1 microM with pK(B) values of 5.7-6.3 and 6.1-6.6, respectively, indicating that the 5-HT receptor-mediated responses had low affinity for these antagonists. Pre-treatment of ASMCs with pertussis toxin (100 ng/mL, 24 h) caused a significant inhibition of 5-HT-induced IP accumulation and [Ca2+]i change in ASMCs. Depletion of external Ca2+ or removal of Ca2+ by addition of EGTA led to a significant attenuation of IP accumulation and [Ca2+]i change induced by 5-HT. Influx of external Ca2+ was required for the 5-HT-induced responses, because Ca2+-channel blockers--verapamil, nifedipine and Ni2+--partly inhibited the 5-HT-induced IP accumulation and Ca2+ mobilisation. The sustained elevation of [Ca2+]i response to 5-HT was dependent on the presence of external Ca2+. Removal of external Ca2+ by addition of 5 mM EGTA during the sustained phase caused a rapid decline in [Ca2+]i to lower than the resting level. The sustained elevation of [Ca2+]i could then be evoked by addition of 1.8 mM Ca2+ in the continued presence of 5-HT. These results demonstrate that 5-HT directly stimulates PLC-mediated PI hydrolysis and Ca2+ mobilisation, at least in part, through a pertussis toxin-sensitive G protein in canine ASMCs. 5-HT2A receptors may be predominantly mediating IP accumulation, and subsequently IP-induced Ca2+ mobilisation may function as the transducing mechanism for 5-HT-stimulated contraction of aorta smooth muscle.  相似文献   

11.
12.
13.
The patterning of cardiac myocytes on a micron scale ( approximately 5 microm) was achieved by microcontact printing of fibronectin onto a hydrophobically pretreated glass substrate. The patterned cardiac myocytes conjugated with each other by forming a gap junction, as judged from the synchronized Ca(2+) transition over the pattern, and thus simultaneously contracted. The dynamic change of the Ca(2+) concentration within the patterned tissue was analyzed quantitatively during successive contraction and relaxation using a Nipkow-type high-speed confocal microscope.  相似文献   

14.

Introduction

The possible role of UCP2 in modulating mitochondrial Ca2+-uptake (mCa2+-uptake) via the mitochondrial calcium uniporter (MCU) is highly controversial.

Methods

Thus, we analyzed mCa2+-uptake in isolated cardiac mitochondria, MCU single-channel activity in cardiac mitoplasts, dual Ca2+-transients from mitochondrial ((Ca2+)m) and intracellular compartment ((Ca2+)c) in the whole-cell configuration in cardiomyocytes of wild-type (WT) and UCP2-/- mice.

Results

Isolated mitochondria showed a Ru360 sensitive mCa2+-uptake, which was significantly decreased in UCP2-/- (229.4±30.8 FU vs. 146.3±23.4 FU, P<0.05). Single-channel registrations confirmed a Ru360 sensitive voltage-gated Ca2+-channel in mitoplasts, i.e. mCa1, showing a reduced single-channel activity in UCP2-/- (Po,total: 0.34±0.05% vs. 0.07±0.01%, P<0.05). In UCP2-/- cardiomyocytes (Ca2+)m was decreased (0.050±0.009 FU vs. 0.021±0.005 FU, P<0.05) while (Ca2+)c was unchanged (0.032±0.002 FU vs. 0.028±0.004 FU, P>0.05) and transsarcolemmal Ca2+-influx was inhibited suggesting a possible compensatory mechanism. Additionally, we observed an inhibitory effect of ATP on mCa2+-uptake in WT mitoplasts and (Ca2+)m of cardiomyocytes leading to an increase of (Ca2+)c while no ATP dependent effect was observed in UCP2-/-.

Conclusion

Our results indicate regulatory effects of UCP2 on mCa2+-uptake. Furthermore, we propose, that previously described inhibitory effects on MCU by ATP may be mediated via UCP2 resulting in changes of excitation contraction coupling.  相似文献   

15.
J Kishino  K Hanasaki  T Kato  H Arita 《FEBS letters》1991,280(1):103-106
We studied the presence of specific binding sites for endothelin (ET) and the effect of ET on cytosolic free Ca2+ concentration ([Ca2+]i) in murine thioglycolate-activated peritoneal macrophages. Scatchard analysis for binding experiments using [125I]ET-1 or [125I]ET-3 revealed the existence of a single class of binding sites. The binding parameters (Kd and Bmax) for [125I]ET-1 were almost identical to those for [125I]ET-3. In addition, unlabeled 3 ET isopeptides (ET-1, ET-2 and ET-3) inhibited the specific binding of both ET-1 and ET-3 with similar inhibitory potencies. All 3 ET isopeptides caused an increase in [Ca2+]i in the same dose-dependent manner (0.01-100 nM). These results demonstrate the existence of an ET receptor with the same affinity for all isoforms that mediates the ET-induced intracellular Ca2+ mobilization in murine peritoneal macrophages.  相似文献   

16.
17.
Inositol 1,4,5-trisphosphate (InsP3) releases Ca2+ from the non-mitochondrial Ca2+ store site of various types of cells. To study the mechanisms of the Ca2+ release from the store site, the effect of InsP3 on the passive Ca2+ release and influx, and the active Ca2+ uptake in the presence of oxalate, was examined using saponin-treated guinea pig peritoneal macrophages. InsP3 stimulated the passive Ca2+ release and influx. Although InsP3 slightly inhibited the active Ca2+ uptake in the presence of oxalate, it seems unlikely that the Ca2+ release by this agent is caused by the inhibition of the Ca2+ uptake, because the addition of apyrase or hexokinase (which removes ATP within 30 s, so that no more Ca2+ can be accumulated) or vanadate (which inhibits the Ca2+ uptake) resulted in very slow release of Ca2+. These results suggest that the Ca2+ permeability of the Ca2+ store membrane is increased by InsP3. InsP3 did not cause an increase in the Ca2+ permeability of phospholipid vesicles (liposomes), indicating that this agent may bring about Ca2+ release by a specific effect on the physiologically relevant Ca2+ channels or carriers in the non-mitochondrial Ca2+ store site. The passive Ca2+ release by InsP3 was enhanced by ATP and an unhydrolyzable ATP analogue, 5'-adenylyimidodiphosphate, but not by ADP or AMP. The passive Ca2+ release by InsP3 was observed even at 0 degree C.  相似文献   

18.
Endothelialization repairs the lining of damaged vasculature and is a key process in preventing thrombosis and restenosis. It has been demonstrated that extracellular calcium ([Ca2+](o)) influx is important for subsequent endothelialization. The role of intracellular Ca2+ stores in mechanical denudation induced intracellular calcium ([Ca2+](i)) rise and endothelialization remains to be demonstrated. Using monolayer culture of a human endothelial cell line (human umbilical vein endothelial cell, HUVEC), we investigated [Ca2+](i) wave propagation and re-endothelialization following mechanical denudation. Consistent with previous reports for other types of cells, mechanical denudation induces calcium influx, which is essential for [Ca2+](i) rise and endothelialization. Moreover, we found that intracellular Ca(2+) stores are also essential for denudation induced [Ca2+](i) wave initiation and propagation, and the subsequent endothelialization. Thapsigargin which depletes intracellular Ca2+ stores completely abolished [Ca2+](i) wave generation and endothelialization. Xestospongin C (XeC), which prevents Ca2+ release from intracellular Ca2+ stores by inhibition of inositol 1,4,5-trisphosphate (IP(3)) receptor, inhibited intercellular Ca2+ wave generation and endothelialization following denudation. Purinergic signaling through a suramin sensitive mechanism and gap junction communication also contribute to in intercellular Ca(2+) wave propagation and re-endothelialization. We conclude that intracellular Ca2+ stores, in addition to extracellular Ca2+, are essential for intracellular Ca2+ signaling and subsequent endothelialization following mechanical denudation.  相似文献   

19.
Mitosis in mouse peritoneal macrophages   总被引:5,自引:0,他引:5  
  相似文献   

20.
The ventricular action potential (AP) is characterized by a fast depolarizing phase followed by a repolarization that displays a second upstroke known as phase 2. This phase is generally not present in mouse ventricular myocytes. Thus we performed colocalized electrophysiological and optical recordings of APs in Langendorff-perfused mouse hearts founding a noticeable phase 2. Ryanodine as well as nifedipine reduced phase 2. Our hypothesis is that a depolarizing current activated by Ca(2+) released from the sarcoplasmic reticulum (SR) rather than the "electrogenicity" of the L-type Ca(2+) current is crucial in the generation of mouse ventricular phase 2. When Na(+) was partially replaced by Li(+) in the extracellular perfusate or the organ was cooled down, phase 2 was reduced. These results suggest that the Na(+)/Ca(2+) exchanger functioning in the forward mode is driving the depolarizing current that defines phase 2. Phase 2 appears to be an intrinsic characteristic of single isolated myocytes and not an emergent property of the tissue. As in whole heart experiments, ventricular myocytes impaled with microelectrodes displayed a large phase 2 that significantly increases when temperature was raised from 22 to 37°C. We conclude that mouse ventricular APs display a phase 2; however, changes in Ca(2+) dynamics and thermodynamic parameters also diminish phase 2, mostly by impairing the Na(+)/Ca(2+) exchanger. In summary, these results provide important insights about the role of Ca(2+) release in AP ventricular repolarization under physiological and pathological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号