共查询到20条相似文献,搜索用时 0 毫秒
1.
The Piwi-interacting RNA interference pathway plays an important role in suppressing transposable elements in the Drosophila germline. Now, deep sequencing of short RNAs from somatic tissue and cell culture has identified a novel class of endogenous siRNAs that may have a similar role in the soma. 相似文献
2.
Background
The siRNA and piRNA pathways have been shown in insects to be essential for regulation of gene expression and defence against exogenous and endogenous genetic elements (viruses and transposable elements). The vast majority of endogenous small RNAs produced by the siRNA and piRNA pathways originate from repetitive or transposable elements (TE). In D. melanogaster, TE-derived endogenous siRNAs and piRNAs are involved in genome surveillance and maintenance of genome integrity. In the medically relevant malaria mosquito Anopheles gambiae TEs constitute 12-16% of the genome size. Genetic variations induced by TE activities are known to shape the genome landscape and to alter the fitness in An. gambiae.Results
Here, using bioinformatics approaches we analyzed the small RNA data sets from 6 libraries formally reported in a previous study and examined the expression of the mixed germline/somatic siRNAs and piRNAs produced in adult An. gambiae females. We characterized a large population of TE-derived endogenous siRNAs and piRNAs, which constitutes 56-60% of the total siRNA and piRNA reads in the analysed libraries. Moreover, we identified a number of protein coding genes producing gene-specific siRNAs and piRNAs that were generally expressed at much lower levels than the TE-associated small RNAs. Detailed sequence analysis revealed that An. gambiae piRNAs were produced by both “ping-pong” dependent (TE-associated piRNAs) and independent mechanisms (genic piRNAs). Similarly to D. melanogaster, more than 90% of the detected piRNAs were produced from TE-associated clusters in An. gambiae. We also found that biotic stress as blood feeding and infection with Plasmodium parasite, the etiological agent of malaria, modulated the expression levels of the endogenous siRNAs and piRNAs in An. gambiae.Conclusions
We identified a large and diverse set of the endogenously derived siRNAs and piRNAs that share common and distinct aspects of small RNA expression across insect species, and inferred their impact on TE and gene activity in An. gambiae. The TE-specific small RNAs produced by both the siRNA and piRNA pathways represent an important aspect of genome stability and genetic variation, which might have a strong impact on the evolution of the genome and vector competence in the malaria mosquitoes.Electronic supplementary material
The online version of this article (doi:10.1186/s12864-015-1436-1) contains supplementary material, which is available to authorized users. 相似文献3.
Physical and functional mapping of two cointegrate plasmids derived from RP4 and TOL plasmid pDK1 总被引:5,自引:0,他引:5
Cointegrate plasmids were formed in vivo between the broad-host-range R-plasmid RP4 and two catabolic plasmids derived from Pseudomonas putida HS1. One of these was the wild-type plasmid pDK1 encoding the complete inducible toluene/xylene (TOL) catabolic pathway and one was pDKT1, a deletion derivative of pDK1 selected after growth of HS1 on benzoate and supporting growth on only toluene. The two plasmids formed, pDK2 and pDKT2 respectively, each consisted of a complete RP4 replicon in which was an insert of the parent plasmid DNA respectively 40 and 20 kbp in size. The detailed restriction maps of the two plasmids were determined and many of the catabolic genes were located by subcloning and enzyme assay of recombinant plasmids in Escherichia coli and Pseudomonas hosts. The insert in pDK2 contained both operons of the catabolic pathway, the 'upper pathway' operon (xylCAB) and the meta pathway operon (xylDLEGF(I,J,K)H), and a region identified as having the function of the regulator gene xylS. The insert in pDKT2 contained only the upper pathway operon and the regulatory region. Within each of the three coding regions there was great similarity with the same regions on TOL plasmids pWW0 and pWW53-4 apparent (a) by the same order of the genes, (b) by a similar pattern of restriction sites and (c) by hybridization studies. However, the order and orientations of the three coding regions differed from those previously described for both pWW0 and pWW53-4. The significance of these findings to the evolution of TOL plasmids is discussed. 相似文献
4.
5.
A host-dependent hybrid plasmid suitable as a suicidal carrier for transposable elements 总被引:2,自引:0,他引:2
Mamoru Sato Brian J. Staskawicz Nickolas J. Panopoulos Sasha Peters Mary Honma 《Plasmid》1981,6(3):325-331
Plasmid pAS8Tcs rep-1::Tn7 (abbreviated pAS8Rep-1), a derivative of the RP4-ColE1 hybrid plasmid pAS8 displaying ColE1-dependent replication/maintenance, was found capable of the introduction of transposon Tn7 into the genome of phytopathogenic Pseudomonas. The plasmid is potentially useful as a general purpose suicidal Tn carrier for bacteria that do not support stable replication/maintenance of ColE1 but are within the conjugational host range of RP4. 相似文献
6.
Marislane Carvalho Paz de Souza Jéssica Naiana Silva Cícero Almeida 《Genetics and molecular biology》2013,36(3):408-412
Cultivars of sugarcane (Saccharum) are hybrids between species S. officinarum (x = 10, 2n = 8x = 80) and S. spontaneum (x = 8, 2n = 5 – 16x = 40 – 128). These accessions have 100 to 130 chromosomes, 80–85% of which are derived from S. officinarum, 10–15% from S. spontaneum, and 5–10% are possible recombinants between the two genomes. The aim of this study was to analyze the repetition of DNA sequences in S. officinarum and S. spontaneum. For this purpose, genomic DNA from S. officinarum was digested with restriction enzymes and the fragments cloned. Sixty-eight fragments, approximately 500 bp, were cloned, sequenced and had their identity analyzed in NCBI, and in the rice, maize, and sorghum genome databases using BLAST. Twelve clones containing partial transposable elements, one single-copy control, one DNA repetitive clone control and two genome controls were analyzed by DNA hybridization on membrane, using genomic probes from S. officinarum and S. spontaneum. The hybridization experiment revealed that six TEs had a similar repetitive DNA pattern in the genomes of S. officinarum and S. spontaneum, while six TEs were more abundant in the genome of S. officinarum. We concluded that the species S. officinarum and S. spontaneum have differential accumulation LTR retrotransposon families, suggesting distinct insertion or modification patterns. 相似文献
7.
Transposable elements Tn5, Tn7, and Tn76 were transferred to Azotobacter beijerinckii. Evidence was obtained for the transposition of Tn5 but cells of the majority of presumptive transposition isolates had abnormal morphologies and rapidly lost viability when subcultured. Data are presented that indicate that plasmid RP4::Tn76 behaves as a suicide vector upon transfer to this host, allowing the isolation of A. beijerinckii::Tn76 isolates at a high frequency. Nitrogen-fixing mutants and leucine and adenine auxotrophs were isolated from cultures in which the transposition of Tn76 occurred. 相似文献
8.
9.
Map of plasmid RP4 derived by insertion of transposon C. 总被引:21,自引:0,他引:21
We have determined the location of 36 sites on plasmid RP4 into which transposon C (an 8.5 × 106 molecular weight DNA sequence conferring trimethoprim and streptomycin resistance) had spontaneously inserted itself. These were located by sucrose gradient analysis of EcoRI-generated and then, separately, the HindIII-generated DNA fragments from each RP4-TnC2 plasmid. RP4 has a single EcoRI-susceptible site and, suitably displaced from this, a HindIII-susceptible site, whereas TnC has, respectively, one and two sites for these two enzymes. Thus the sizes of the restriction fragments depend on the location and orientation of the inserted TnC.Some of the RP4-TnC clones had lost one of the RP4 characters: transferability (Tra), tetracycline (Tc) or kanamycin (Km) resistances, but no ampicillin (Ap) sensitive clones were detected. Insertions giving each of these phenotypic changes cluster together at positions on the circular RP4 map that presumably locate the genes responsible for the Tra+, Kmr and Tcr phenotypes. The Tra? plasmids were grouped into four classes on the basis of their conferred phage sensitivities and plasmid copy numbers. The gene giving Apr was located by its known proximity to a BamHI-susceptible site. All the plasmids analysed had TnC inserted with one particular orientation. TnC insertions giving no detectable phenotypic change were not randomly placed around RP4, but clustered into certain regions. Two large regions, one containing TnA, had no TnC insertions. Ligation experiments with restriction fragments from various RP4-TnC plasmids led to the conclusion that both these regions contain genes essential to the replication and maintenance of RP4. The location of the HindIII site of RP4 within the gene giving Kmr should prove valuable to the use of this plasmid as a cloning vehicle. 相似文献
10.
11.
Homologous recombination between IS1 elements present on both replicons, P1 and NR1, resulted in P1-NR1 cointegrates and P1-RTF and P1-r-det phages. Cointegration between P1 and NR1-B, and NR1 derivative with multiple DNA rearrangements including insertion of the transposable element γδ, was also mediated by reciprocal recombination in IS1 sequences. However, all 4 hybrids studied carried deletions promoted by γδ residing on NR1-B. Further IS1-mediated deletions on the hybrid genomes resulted in plaque-forming P1Cm phages. 相似文献
12.
Using a direct miRNA cloning strategy we previously identified fourteen marsupial- or species-specific microRNAs in the marsupial species Monodelphis domestica. In the present study we examined each of the pre-miRNAs and their flanking sequences and demonstrate that half of these miRNAs evolved from marsupial-specific transposable elements. These findings reinforce the view that transposable elements are a previously unappreciated source of new, lineage-specific microRNAs. 相似文献
13.
We report results of a comprehensive computer-assisted analysis of new transposable elements (TEs) from Arabidopsis thaliana. Our analysis revealed several previously unknown pogo- and En/Spm-like families and two novel superfamilies of DNA transposons, Arnold and Harbinger. One of the En/Spm-like families (Atenspm) was found to be involved in generating satellite arrays in paracentromeric regions. Of the two superfamilies reported, Harbinger is distantly related to bacterial IS5-like insertion elements, and Arnold contains DNA transposons without terminal inverted repeats (TIRs), which were never reported in eukaryotes before. Furthermore,
we report a large number of young and diverse copia-like autonomous and nonautonomous retroelements and discuss their potential evolutionary relationship with mammalian retroviruses.
The A.thaliana genome harbors copia-like retroelements which encode a putative env-like protein reported previously in the SIRE-1 retrotransposon from soybean. Finally, we demonstrate a nonrandom chromosomal distribution of the most abundant A.thaliana TEs clustered in the first half of chromosome II, which includes the centromeric region. The families of TEs from A.thaliana are relatively young, extremely diverse and much smaller than those from mammalian genomes. We discuss the potential factors
determining similarities and differences in the evolution of TEs in mammals and A. thaliana.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
14.
Roberts AP Chandler M Courvalin P Guédon G Mullany P Pembroke T Rood JI Smith CJ Summers AO Tsuda M Berg DE 《Plasmid》2008,60(3):167-173
Transposable DNA elements occur naturally in the genomes of nearly all species of prokaryotes. A proposal for a uniform transposable element nomenclature was published prominently in the 1970s but is not, at present, available online even in abstract form, and many of the newly discovered elements have been named without reference to it. We propose here an updated version of the original nomenclature system for all of the various types of prokaryotic, autonomous, transposable elements excluding insertion sequences, for which a nomenclature system already exists. The use of this inclusive and sequential Tn numbering system for transposable elements, as described here, recognizes the ease of interspecies spread of individual elements, and allows for the naming of mosaic elements containing segments from two or more previously described types of transposons or plasmids. It will guard against any future need to rename elements following changes in bacterial nomenclature which occurs constantly with our increased understanding of bacterial phylogenies and taxonomic groupings. It also takes into account the increasing importance of metagenomic sequencing projects and the continued identification of new mobile elements from unknown hosts. 相似文献
15.
Survey of transposable elements from rice genomic sequences 总被引:27,自引:0,他引:27
Turcotte K Srinivasan S Bureau T 《The Plant journal : for cell and molecular biology》2001,25(2):169-179
Oryza sativa L. (domesticated rice) is a monocotyledonous plant, and its 430 Mb genome has been targeted for complete sequencing. We performed a high-resolution computer-based survey for transposable elements on 910 Kb of rice genomic DNA sequences. Both class I and II transposable elements were present, contributing 19.9% of the sequences surveyed. Class II elements greatly outnumbered class I elements (166 versus 22), although class I elements made up a greater percentage (12.2% versus 6.6%) of nucleotides surveyed. Several Mutator-like elements (MULEs) were identified, including rice elements that harbor truncated host cellular genes. MITEs (miniature inverted-repeat transposable elements) account for 71.6% of the mined transposable elements and are clearly the predominant type of transposable element in the sequences examined. Moreover, a putative Stowaway transposase has been identified based on shared sequence similarity with the mined MITEs and previously identified plant mariner-like elements (MLEs). Members of a group of novel rice elements resembling the structurally unusual members of the Basho family in Arabidopsis suggest a wide distribution of these transposons among plants. Our survey provides a preview of transposable element diversity and abundance in rice, and allows for comparison with genomes of other plant species. 相似文献
16.
17.
RP1, a broad-host-range incompatibility group P1 plasmid specifying multiple drug resistances, has been transferred into the chemolithotrophic bacterium Thiobacillus neapolitanus. The ability of T. neapolitanus to receive, express, and transmit RP1-encoded antibiotic resistances was examined. The data show that this obligate chemolithotroph can accept, replicate, and express heterologous plasmid DNA from a heterotrophic bacterium. 相似文献
18.
Zaleski P Wawrzyniak P Sobolewska A Mikiewicz D Wojtowicz-Krawiec A Chojnacka-Puchta L Zielinski M Plucienniczak G Plucienniczak A 《Plasmid》2012,67(3):264-271
We constructed pIGPZ, a new cloning and expression vector derived from Escherichia coli plasmid pIGWZ12::Kan. pIGPZ contains a kanamycin resistance marker, a multiple-cloning-site (MCS) region, and a promoter for constitutive expression of cloned genes. pIGPZ has the same high level of stability as the original plasmid, even in the absence of antibiotic selection. Furthermore, we show that pIGPZ is compatible with ColE1-based plasmids and a pSC101-like plasmid. All the characteristic elements of theta-replicating plasmids were found in the pIGPZ putative origin of replication. Finally, we demonstrate that pIGPZ can be used in a double-plasmid expression system by co-expressing UBP1 protease from pIGPZ with ubi-interferon alpha (IFNA13; GenBank Accession No. NM_006900.3) or ubi-human growth hormone (ubi-hGH; patent No. WO 2005/066208 A2) cloned in another plasmid. In this system, both ubi-interferon alpha and ubi-human growth hormone were deubiquitinated efficiently in E. coli cells. 相似文献
19.
Jelena Brkljacic Bettina Wittler Benson English Lindsey III Veena Devi Ganeshan Michael G. Sovic Jason Niehaus Walliyulahi Ajibola Susanna M. Bachle Tamás Fehér David E. Somers 《Microbial biotechnology》2022,15(2):455-468
By providing the scientific community with uniform and standardized resources of consistent quality, plasmid repositories play an important role in enabling scientific reproducibility. Plasmids containing insertion sequence elements (IS elements) represent a challenge from this perspective, as they can change the plasmid structure and function. In this study, we conducted a systematic analysis of a subset of plasmid stocks distributed by plasmid repositories (The Arabidopsis Biological Resource Center and Addgene) which carry unintended integrations of bacterial mobile genetic elements. The integration of insertion sequences was most often found in, but not limited to, pBR322-derived vectors, and did not affect the function of the specific plasmids. In certain cases, the entire stock was affected, but the majority of the stocks tested contained a mixture of the wild-type and the mutated plasmids, suggesting that the acquisition of IS elements likely occurred after the plasmids were acquired by the repositories. However, comparison of the sequencing results of the original samples revealed that some plasmids already carried insertion mutations at the time of donation. While an extensive BLAST analysis of 47 877 plasmids sequenced from the Addgene repository uncovered IS elements in only 1.12%, suggesting that IS contamination is not widespread, further tests showed that plasmid integration of IS elements can propagate in conventional Escherichia coli hosts over a few tens of generations. Use of IS-free E. coli hosts prevented the emergence of IS insertions as well as that of small indels, suggesting that the use of IS-free hosts by donors and repositories could help limit unexpected and unwanted IS integrations into plasmids. 相似文献
20.
Stefan Linquist Brent Saylor Karl Cottenie Tyler A. Elliott Stefan C. Kremer T. Ryan Gregory 《Biological reviews of the Cambridge Philosophical Society》2013,88(3):573-584
Considerable variation exists not only in the kinds of transposable elements (TEs) occurring within the genomes of different species, but also in their abundance and distribution. Noting a similarity to the assortment of organisms among ecosystems, some researchers have called for an ecological approach to the study of transposon dynamics. However, there are several ways to adopt such an approach, and it is sometimes unclear what an ecological perspective will add to the existing co‐evolutionary framework for explaining transposon‐host interactions. This review aims to clarify the conceptual foundations of transposon ecology in order to evaluate its explanatory prospects. We begin by identifying three unanswered questions regarding the abundance and distribution of TEs that potentially call for an ecological explanation. We then offer an operational distinction between evolutionary and ecological approaches to these questions. By determining the amount of variance in transposon abundance and distribution that is explained by ecological and evolutionary factors, respectively, it is possible empirically to assess the prospects for each of these explanatory frameworks. To illustrate how this methodology applies to a concrete example, we analyzed whole‐genome data for one set of distantly related mammals and another more closely related group of arthropods. Our expectation was that ecological factors are most informative for explaining differences among individual TE lineages, rather than TE families, and for explaining their distribution among closely related as opposed to distantly related host genomes. We found that, in these data sets, ecological factors do in fact explain most of the variation in TE abundance and distribution among TE lineages across less distantly related host organisms. Evolutionary factors were not significant at these levels. However, the explanatory roles of evolution and ecology become inverted at the level of TE families or among more distantly related genomes. Not only does this example demonstrate the utility of our distinction between ecological and evolutionary perspectives, it further suggests an appropriate explanatory domain for the burgeoning discipline of transposon ecology. The fact that ecological processes appear to be impacting TE lineages over relatively short time scales further raises the possibility that transposons might serve as useful model systems for testing more general hypotheses in ecology. 相似文献